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ABSTRACT 
Mixed models are widely used in the literature for the analysis of single outcome variable measured repeatedly over time. 
Multivariate longitudinal data arise when a set of different responses on the same unit are measured repeatedly over time. A 
joint modeling of such kind of data is necessary to quantify, firstly, the relationship between evolutions of different responses 
and, secondly, the evolution of relationship between different response variables over time. An associated problem with joint 
modeling is as the number of response variable goes up, the convergence issue becomes more and more severe. To resolve 
this computational complexity, a pairwise fitting approach has been proposed in the literature (Fieuws and Verbeke, 2006, 
2007). Purpose of this article is to describe implementation of pairwise fitting approach and estimation of correlations among 
response variables in SAS. 
 
Keywords: Joint modeling, Mixed model, Multivariate longitudinal data, Pairwise fitting approach, Correlation between 
evolutions, Marginal correlation. 

1. INTRODUCTION 
Mixed models are widely used in the literature for the analysis of single outcome variable, measured repeatedly over time. We 
can denote this standard situation as the analysis of univariate longitudinal data. Multivariate longitudinal data arise when a set 
of different responses on the same unit are measured repeatedly over time. In such a case a mixed model can be used for 
each response variable, separately.  However, the above strategy is not useful to answer the following research questions: 
 
Q1: How the evolution of one response is related to the evolution of another response 
Q2: How the association between responses evolves over time 
 
To answer the above questions a joint modeling strategy is needed.  
 
This paper has been organized in a way first to describe the statistical detail and then its implementation in SAS. In section 2, 
A very brief discussion on univariate longitudinal modeling has been given. In section 3, joint model for multivariate longitudinal 
data is presented along with its advantage and issues in fitting. Pairwise fitting approach for joint modeling is described in 
section 4. In section 5, implementation of pairwise fitting approach in SAS has been described in step by step. Joint modeling 
through pairwise fitting and estimation of pairwise correlations using sas macro %allpairs has been illustrated in section 6. 
Throughout this paper the response variables are assumed as continuous one. 

2. UNIVARIATE LONGITUDINAL ANALYSIS 
Under the usual univariate longitudinal set-up we use the following mixed model  

௜ܻሺݐሻ ൌ ሻ்઺ݐ௜ሺ܆ ൅ ௜܊ሻ்ݐ௜ሺ܈ ൅                                                                           ሻݐ௜ሺߝ

where,  

௜ܻሺݐሻ : Measurement of univariate response in ith patient at time t 

 ሻ : Vector of fixed covariate for ith subject at time t (of dimension d)ݐ௜ሺ܆

 ሻ: Vector of random covariate for ith subject at time t (of dimension q)ݐ௜ሺ܈

઺ : Vector of unknown parameters associated with fixed covariate (of dimension d) 

 ௜ : Vector of unknown parameters associated with random covariate for ith subject (of dimension q) ~ MVN(0, D)܊

  ሻ : Random error componentݐ௜ሺߝ

Further, 

 ܈௜ሺݐሻ is subset of ܆௜ሺݐሻ  
 ઽ௜ ൌ ሾ ߝ௜ሺݐଵሻ, ,ଶሻݐ௜ሺߝ  … , ௡೔ݐ௜ሺߝ

ሻሿ் ~ MVN(0, Ri) 
 ઽ௜ is independent of ܊௜ 
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Note that it is usual practice to assume Ri as ۷௡೔
 which implies conditional independence. In other words, given ܊௜, the 

observations on response variable are assumed to be independent.  

3. EXTENSION TO MULTIVARIATE CASE 
Now under Multivariate set-up more than one response variables are observed in each occasion. Hence, we measure vector 
of responses, ܇௜ሺݐሻ, at each occasion and thus we can use the following model: 

ሻݐ௜ሺ܇ ൌ ሻ்઺ݐ௜ሺ܆ ൅ ௜܊ሻ்ݐ௜ሺ܈ ൅ ઽ௜ሺݐሻ 

                   ઽ௜ ൌ ሾ ઽ௜ሺݐଵሻ,  ઽ௜ሺݐଶሻ, … , ઽ௜ሺݐ௡೔
ሻሿ் ~ MVN(0, Ri) 

,௜~MVNሺ૙܊                     ۲ሻ  

                Cov(܊௜, ઽ௜ሻ ൌ ૙  

Note that here the assumption of conditional independence does not hold because, given ܊௜, the observations are not totally 
independent. Given ܊௜, the observations measured at same occasion on same individual might be correlated. As a result, 

௜܀                     ൌ ۷௡೔
ٔ ∑௠ൈ௠ 

where ∑௠ൈ௠ is the variance covariance matrix of m response variables conditional on ܊௜. 

Let’s look at the problem in its simplest form when we have only two continuous response variables ଵܻ and ଶܻ are measured 
over time for a number of subjects.  Each of the variables is described using the linear mixed-effects model: 

ଵܻ௜ሺݐሻ ൌ ሻݐଵሺߤ ൅ ܽଵ௜ ൅ ܾଵ௜ݐ ൅  ሻݐଵ௜ሺߝ
ଶܻ௜ሺݐሻ ൌ ሻݐଶሺߤ ൅ ܽଶ௜ ൅ ܾଶ௜ݐ ൅  ሻݐଶ௜ሺߝ

 
where ߤଵሺݐሻ and ߤଶሺݐሻ refer to the population means at time t. We assume that random effects are jointly distributed as follows 

൦

ܽଵ௜
ܾଵ௜
ܾଵ௜
ܾଶ௜

൪ ~ܰሺ૙, ۲ሻ 

 
 where, D, the covariance matrix of the random effects, has the following structure: 

ۏ
ێ
ێ
ێ
ۍ
௔భߪ

ଶ ௔భ௔మߪ
௔భ௕భߪ

௔మߪ 
ଶ ௔మ௕భߪ

௕భߪ  
ଶ

    
௔భ௕మߪ

௔మ௕మߪ

௕భ௕మߪ

௕మߪ                                 
ଶ ے

ۑ
ۑ
ۑ
ې

 

 
The error components are uncorrelated and not associated with the random effects 

ቂ
ଵ௜ߝ
ଶ௜ߝ

ቃ ~ܰ ቆቂ0
0

ቃ , ቈ
ଵߪ

ଶ ଵଶߪ
 

0 ଶߪ
ଶ ቉ቇ 

 
Clearly, (Q1) the correlation between the evolution of ଵܻ and ଶܻ is given by: 

ாݎ ൌ
,ሺܾଵݒ݋ܥ ܾଶሻ

ඥܸܽݎሺܾଵሻ ൈ ሺܾଶሻݎܸܽ
ൌ

௕భ௕మߪ

ටߪ௕భ
ଶ ൈ ௕మߪ

ଶ
 

 
And (Q2) the marginal correlation between  ଵܻ and ଶܻ at time t is given as: 

ሻݐெሺݎ ൌ
ሺݒ݋ܥ ଵܻ௜ሺݐሻ, ଶܻ௜ሺݐሻሻ

ඥܸܽݎሺ ଵܻ௜ሺݐሻሻ ൈ ሺݎܸܽ ଶܻ௜ሺݐሻሻ
ൌ

௔భ௔మߪ
൅ ௔భ௕మߪݐ

൅ ௔మ௕భߪݐ
൅ ௕భ௕మߪଶݐ

൅ ଵଶߪ
 

ටሺߪ௔భ
ଶ ൅ ௔భ௕భߪݐ2

൅ ௕భߪଶݐ
ଶ ൅ ଵߪ

ଶሻ ൈ ሺߪ௔మ
ଶ ൅ ௔మ௕మߪݐ2

൅ ௕మߪଶݐ
ଶ ൅ ଶߪ

ଶሻ
 

 
It is not difficult to comprehend that as the number of response variables (or the dimension of multivariate response) 
increases, the number of covariance parameter increases exponentially and the problem of estimation of covariance 
parameters becomes more and more difficult.  
 
If we have m response variables and 2 random effects (random slope and intercept) for each response variables, then we 
have 2m random effects. If we assume that random effects follow MVN(0, D) then D will have ൫ଶ௠

ଶ ൯+2m covariance parameters 

and R will contain covariance ൫௠
ଶ ൯+m unknown parameters. Therefore, together D and R will have ൫ଶ௠

ଶ ൯+൫௠
ଶ ൯+3m covariance 

parameters. For example, when m=14, this quantity will be 511. 

4. PAIRWISE FITTING APPROACH 
To resolve the computational complexity of high dimensional joint random-effects models, the dimensionality of the problem 
needs to be reduced. One possible strategy might be fitting first all pairwise bivariate models separately, instead of maximizing 
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the likelihood of the full joint multivariate model (Fieuws and Verbeke, 2006, 2007). Assuming the full joint model is correct, all 
possible pairwise models are correct. This approach is equivalent to maximizing a pseudo-likelihood function (Besag, 1975) of 
the following form 

ሺદሻ݈݌ ൌ ݈൫܇ଵ, ,ଵ܇ଶ|દଵ,ଶ൯݈൫܇ ଷ|દଵ,ଷ൯܇ …  ݈൫܇௠ିଵ, ௠|દ௠ିଵ,௠൯܇ ൌ ෑ ෑ ݈൫܇௥, ௦|દ௥,௦൯܇

௠

௦ୀଵ

௠ିଵ

௥ୀଵ

 

So the pseudo-log likelihood can be written as 

ሺદሻ݈݈݌ ൌ ෍ ෍ ݈݈൫܇௥, ௦|દ௥,௦൯܇

௠

௦ୀ௥ାଵ

௠ିଵ

௥ୀଵ

 

where, ݈൫܇௥, ,௥܇௦|દ௥,௦൯, ݈݈൫܇  ௦|દ௥,௦൯ and દ௥,௦ represent likelihood, log likelihood and the vector of all parameters in the bivariate܇
joint mixed model corresponding to the rth and sth response variable, respectively. 
 
We have P possible pairs from m response variables where P=m(m-1)/2. We can write the ݈݈݌ሺદሻ in following way as well 

ሺદሻ݈݈݌ ൌ ෍ ݈݈൫܇௣|દ௣൯

௉

௣ୀଵ

 

where, ܇௣ contains all the observations in pth pair. Similarly, દ௣ contains all the parameters of pth pair. 
 
Let, દכ be the vector containing all parameters (fixed effect parameters as well as covariance parameters) of full multivariate 
joint mixed model and દ be the stacked vector combining all pair-specific parameter vectors દ௣ ሺ1=݌,…,P). Also assume that 
દ෡௣ is the maximizer of ݈൫܇௣|દ௣൯. Then દ෡, the stacked vector combining all દ෡௣, would maximize the ݈݈݌ሺદሻ. 
 
Under regularity conditions, the asymptotic distribution of દ෡ (maximizer of pseudo likelihood) is given as (Geys, Molenberghs & 
Ryan, 1999): 

√ܰ൫દ෡ െ દ൯ ~ ܸܰܯሺ૙,  ۸ିଵ۹۸ିଵሻ 
where,  

                      ۸ ൌ ൥
۸ଵ ڮ ૙
ڭ ڰ ڭ
૙ ڮ ۸௉

൩                   ۹ ൌ ൥
۹ଵଵ ڮ ۹ଵ௉

ڭ ڰ ڭ
۹௉ଵ ڮ ۹௉௉

൩          

 
where, 

                       ۸௣ ൌ െ
1
ܰ

 ෍ ܧ ቆ
߲ଶ݈݈௜൫܇௣|દ௣൯

߲દ௣߲દ௣
் ቇ

ே

௜ୀଵ

 

                       ۹௣௣′ ൌ
1
ܰ

 ෍ ܧ ቆ
߲݈݈௜൫܇௣|દ௣൯

߲દ௣

߲݈݈௜൫܇௣′|દ௣′൯

߲દ௣′
் ቇ

ே

௜ୀଵ

 

Let, 
෡௜,௣܄ ൌ ௜,௣۲෡܈ ௣܈௜,௣

் ൅ ෡܀ ௜,௣                                     ܅෡௜,௣ ൌ ෡௜,௣܄
ିଵ 

 
Then, ۸௣ and ۹௣௣′ are estimated as follows 

۸መ௣ ൌ
1
ܰ

 ෍ ௜,௣܆
் ௜,௣܆෡௜,௣܅

ே

௜ୀଵ

                                               ۹෡ ௣௣′ ൌ
1
ܰ

 ෍ ௜,௣܆
் ௜,௣ᇱ܆௜,௣൫܍෡௜,௣܅

் ௜,௣ᇱ൯܍෡௜,௣ᇱ܅
்

ே

௜ୀଵ

 

 
where, ܆௜,௣, ܈௜,௣ and ܍௜,௣ are contribution due to ith subject in ܆௣(design matrix pertaining to fixed factor), ܈௣ (design matrix 
pertaining to random factor) and ܍௣ (residual vector). N indicates the number of subjects. 
 
If we write 

۶௣ ൌ ෍ ௜,௣܆
் ௜,௣܆෡௜,௣܅

ே

௜ୀଵ

 ܽ݊݀  ۵௣ ൌ ଵ,௣܆ൣ
் ଵ,௣܍෡ଵ,௣܅ … ே,௣܆

்  ே,௣൧܍෡ே,௣܅

and also assume, 

۶ ൌ ቎
۶ଵ ڮ ૙
ڭ ڰ ڭ
૙ ڮ ۶௉ 

቏     ۵ ൌ ൥
۵ଵ
ڭ

۵௉

൩ 

Then,  

                       ۸መ ൌ
1
ܰ

۶                            and        ۹෡ ൌ
1
ܰ

۵۵T 

 
It is important to note that the parameter vectors દכ and દ are not equivalent (see step 7 - step 10 in section 5). Indeed, some 
parameters in દכ will have a singular counterpart in દ, for example, the covariance between random effects from two different 
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outcomes. Other elements in દכ will have a multiple counterpart in દ,  for example, the covariance between random effects 
from the same outcome. In later case, a single estimate is obtained by averaging all corresponding ML estimates in દ෡. 
 
We can find out a matrix A  such that દכ ൌ  ,દ. Thenۯ
                                     √ܰ൫દ෡כ െ દכ൯ ~ MVNሺ૙,                           ,ሻ்ۯ઱ۯ
where, ઱ ൌ  ۸ିଵ۹۸ିଵ and      દ෡כ ൌ  દ෡ۯ

5. IMPLEMENTATION IN SAS 
Here implementation of pairwise fitting approach (as described in section 4) in SAS has been explained assuming 3 response 
variables (say Y1, Y2 and Y3) and 2 predictor variables (say, X1 and X2) in addition to time variable (say, TIMEVAR). The 
random part of the model includes random intercept and random slope for TIMEVAR. 
 
STEP 1: DETERMINE THE POSSIBLE PAIRS OF RESPONSE VARIABLES AND CREATE PAIR-SPECIFIC DATASETS 
Since we have 3 response variables, we can have 3 possible pairs, namely, (Y1, Y2), (Y1, Y3) and (Y2, Y3). Let consider the 
1st pair (Y1,Y2). We need to create a dataset (say, data1) with the following variables: 

 Patid: Patient or subject id 
 Y12: all the entries of Y1 followed by all the entries of Y2. If there are n1 observations in Y1 and n2 in Y2 then Y12 

will have n1+n2 observations. 
 Outcome_num: 1 (2) if observation in Y12 belongs to Y1 (Y2). 
 Timevar_1: if outcome_num=1 then  Timevar_1=Timevar, otherwise Timevar_1=0 
 Timevar_2: if outcome_num=2 then  Timevar_2=Timevar, otherwise Timevar_2=0 
 int_1: if outcome_num=1 then  int_1=1, otherwise int_1=0 
 int_2: if outcome_num=2 then  int_2=1, otherwise int_2=0 
 X1_1: if outcome_num=1 then  X1_1=X1, otherwise X1_1=0 
 X1_2: if outcome_num=2 then  X1_2=X1, otherwise X1_2=0 
 X2_1: if outcome_num=1 then  X2_1=X2, otherwise X2_1=0 
 X2_2: if outcome_num=2 then  X2_2=X2, otherwise X2_2=0 

 
Important note: For every patient, if there is an observation with Outcome_num=1 at given value of timevar, then there need to 
be a row with Outcome_num=2 (In case there is missing observation, use dot(.) to represent missingness in Y12) or vice-
versa. This should be ensured for correct calculation of J and K in next steps. 
 
In a similar way, we need to create dataset data2 and data3 for pair (Y1, Y3) and (Y2, Y3), respectively. We can create 
dataset data2 (just replace Y12 by Y13 and Y2 by Y3 in the above) and dataset data3 for pair (Y2, Y3) (replace Y12 by Y23, 
Y1 by Y2 and Y2 by Y3 in the above) in similar way as instructed above. 
 
STEP 2: FIT BIVARIATE NORMAL MODEL FOR EACH PAIR 
We can fit bivariate normal (BVN) model either using PROC MIXED or Proc NLMIXED. When response variable is continuous, 
either PROC MIXED or PROC NLMIXED can be used. However, PROC MIXED may be preferred because we need to provide 
initial parameter estimate in PROC NLMIXED. Following code can be used to fit BVN model for the 1st pair (Y1, Y2). 
proc mixed data=data1 covtest noclprint; 
 class patid timevar outcome_num ; 
  model Y12=int_1 int_2 timevar_1 timevar_2 X1_1 X1_2 X2_1 X2_2  
                                      /noint solution outpm=resid_1; 
 random int_1 int_2 timevar_1 timevar_2/subject=patid type=un; 
 repeated outcome_num/subject=patid*timevar type=un; 
 ods output covparms=cov_1 solutionF=Fixed_1; 
run; 
Suppose it returns the following output (partial) 
                                      The Mixed Procedure 
 
                                 Covariance Parameter Estimates 
 
                                       Standard         Z 
              Cov Parm    Subject       Estimate       Error     Value        Pr Z 
 
              UN(1,1)     patid          0.04838    0.006903      7.01      <.0001 
              UN(2,1)     patid           0.2496     0.04027      6.20      <.0001 
              UN(2,2)     patid           1.8470      0.3293      5.61      <.0001 
              UN(3,1)     patid         -0.00227    0.001210     -1.88      0.0603 
              UN(3,2)     patid         -0.01231    0.007868     -1.56      0.1178 
              UN(3,3)     patid         0.000713    0.000294      2.42      0.0077 
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              UN(4,1)     patid         -0.01127    0.009597     -1.17      0.2404 
              UN(4,2)     patid         -0.02576     0.06806     -0.38      0.7051 
              UN(4,3)     patid         0.004793    0.002193      2.19      0.0288 
              UN(4,4)     patid          0.05864     0.02358      2.49      0.0064 
              UN(1,1)     patid*timevar  0.02911    0.001863     15.63      <.0001 
              UN(2,1)     patid*timevar  0.07433     0.01125      6.61      <.0001 
              UN(2,2)     patid*timevar  1.4938      0.1088     13.73      <.0001 
 
                                   Solution for Fixed Effects 
 
                                        Standard 
                 Effect     Estimate       Error      DF    t Value    Pr > |t| 
 
                 Int_1         1.3072     0.07771     292      16.82      <.0001 
                 Int_2        12.2925      0.5539     284      22.19      <.0001 
                 Timevar_1    -0.01184    0.003994    234      -2.96      0.0033 
                 Timevar_2    -0.2013     0.03337     225      -6.03      <.0001 
                 X1_1         -0.00173    0.001598    670      -1.08      0.2787 
                 X1_2         -0.05062     0.01143    670      -4.43      <.0001 
                 X2_1          0.06824     0.03844    670       1.78      0.0763 
               X2_2         0.1563     0.2761    670      0.57      0.5716 
So here,  

દ෡ଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

 
Int_1
Int_2

Timevar_1
Timevar_2

X1_1
X1_2
X2_1
X2_2

ے 
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

 
1.3072

12.2925
െ0.0118
െ0.2013
െ0.0017
െ0.0506
0.0682
0.1563

ے 
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

   ۲෡ ૚ ൌ Cov ቎

ri of Y1
ri of Y2
rs of Y1
rs of Y2

቏ ൌ ቎

0.048 0.250 െ0.002
 1.847 െ0.012
   0.001

െ0.011
െ0.026
0.005

   0.059

቏ , cov ቂ
ଵ௜ߝ
ଶ௜ߝ

ቃ ൌ ቂ0.029 0.074
 1.494

ቃ 

Similarly, we can obtain (દ෡ଶ, ۲෡ ૛ and ܀෡ ૛) after running PROC MIXED in data2 and (દ෡ଷ, ۲෡ ૜ and ܀෡ ૜) from data3. Let we have, 

દ෡ଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

 
Int_1
Int_3

Timevar_1
Timevar_3

X1_1
X1_3
X2_1
X2_3

ے 
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

 
1.3027
4.6399

െ0.0087
െ0.0438
െ0.0017
െ0.0063
0.0639
0.4017

ے 
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 ۲෡ ૛ ൌ Cov ቎

ri of Y1
ri of Y3
rs of Y1
rs of Y3

቏ ൌ ቎

0.050 0.158 െ0.003
 0.654 െ0.013
  0.001

    
െ0.005
െ0.026
0.002

                                        0.009

቏ , cov ቂ
ଵ௜ߝ
ଷ௜ߝ

ቃ ൌ ቂ0.029 0.047
 0.447

ቃ 

દ෡ଷ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

 
Int_2
Int_3

Timevar_2
Timevar_3

X1_2
X1_3
X2_2
X2_3

ے 
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

 
12.3390
4.5710

െ0.2220
െ0.0506
െ0.0504
െ0.0046
0.1964
0.4188

ے 
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

  ۲෡ ૜ ൌ Cov ቎

ri of Y2
ri of Y3
rs of Y2
rs of Y3

቏ ൌ ቎

1.835 0.780 െ0.044
 0.635 െ0.045
     0.069

െ0.029
െ0.021
   0.009

      0.007

቏ , cov ቂ
ଶ௜ߝ
ଷ௜ߝ

ቃ ൌ ቂ1.459 0.166
 0.449

ቃ 

 
where ri and rs stands for random intercept and random slope, respectively. 
 
STEP 3: CALCULATE H AND G FOR EACH PAIR 
Following code can be used to calculate H and G matrix for the pair (Y1, Y2). 
proc iml symsize=10000 worksize=10000; 
  free H; free G; 
 
 /*Between subject covariance matrix*/ 
 D={ 0.048 0.250 -0.002 -0.011, 
          0.250 1.847 -0.012 -0.026, 
         -0.002 -0.012 0.001 0.005, 
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         -0.011 -0.026 0.005 0.059 }; 
 
 /*Within subject covariance matrix*/ 
 R={ 0.029    0.074, 
     0.074    1.494}; 
 /*Extracting Y, X, Z and residuals*/ 
 use resid_1; 
 read all var{patid} into id; 
 read all var{Y12} into Y; 
 read all var{resid} into resid; 
 read all var{ int_1 int_2 timevar_1 timevar_2 X1_1 X1_2 X2_1 X2_2} into X; 
 read all var{ int_1 int_2 timevar_1 timevar_2} into Z; 
 close resid_1; 
 numobs=nrow(X); 
 
/*Generate vsize that contains number of observations for each subject*/ 
 count=1; 
 free vsize; 
 do i=1 to (numobs-1); 
  if id[i]=id[i+1] then  
   do;  count=count+1;  end; 
  else if id[i]^=id[i+1] then  
   do;  vsize=vsize//count; count=1;  end; 
  if i=numobs-1 then vsize=vsize//count; 
 end; 
 nsubjects=nrow(vsize); 
 p=ncol(X); 
 
 
 H=J(p,p,0); 
 do i=1 to nsubjects; 
  if i=1 then pnt=1; 
 
  /*Z, X, Y and resid matrix for i-th subject*/ 
  Zi=Z[pnt:pnt+vsize[i]-1,]; 
  Xi=X[pnt:pnt+vsize[i]-1,]; 
  yi=y[pnt:pnt+vsize[i]-1]; 
  residi=resid[pnt:pnt+vsize[i]-1]; 
 
  /*Generates Ri */ 
  ni=nrow(yi); 
  I_ni=diag(J(ni/2,1,1)); 
  Ri=I_ni@R; 
 
  /*Check for missing observation in Y and X 
    Vector pr_Y: contains the list of non-missing observations in Y 
    Vector pr_X: contains the list of non-missing observations in X.  
    (If any of the covariate value is missing - it will be considered as missing    
               in general)*/ 
  pr_Y=loc(residi^=.); 
  tloc=ncol(Xi); 
  fnd=(Xi^=.); 
  fnd2=fnd[,+]; 
  pr_X=loc(fnd2=tloc); 
  if (ncol(pr_Y)>0 & ncol(pr_X)>0) then  
   do; 
     Present=xsect(pr_Y, pr_X); 
     Zi=Zi[Present,]; 
     Xi=Xi[Present,]; 
     yi=yi[Present,]; 
     Residi=Residi[Present,]; 
     Ri=Ri[Present,Present]; 
     Vi=Zi*D*t(Zi)+Ri;        /*Vi*/ 
     Wi=ginv(Vi);       /*Wi*/ 
     H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 
     H=H+H_i;      /*Accumulated Hessian matrix till i-th individual*/ 
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     G_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 
     G=G||G_ik;         /*Accumulated G matrix till i-th individual*/ 
    end; 
   else G=G||J(p,1,0); 
   pnt=pnt+vsize[i]; 
  end; 
  create J_1 from H; append from H; 
  create G_1 from G; append from G; 
quit; 
Resultant H_1 and G_1 dataset are the H and G matrix for pair 1. We will call them H1 and G1. In our case H1 will be a matrix 
of order (8X8). (Why 8? Because we have 8 fixed parameters to estimate for each pair). 
 

9631.37 -891.58 23938.42 -1910.03 456738.19 -42309.15 1410.04 -129.72 

-891.58 189.03 -2015.23 375.09 -42309.15 8966.39 -129.72 27.28 

23938.42 -2015.23 145568.15 -9688.88 1134228.64 -95704.15 3541.55 -303.88 

-1910.03 375.09 -9688.88 1975.93 -90637.37 17817.42 -287.86 57.21 

456738.19 -42309.15 1134228.64 -90637.37 22349023.99 -2071133.04 67838.54 -6272.72 

-42309.15 8966.39 -95704.15 17817.42 -2071133.04 438808.64 -6272.72 1317.91 

1410.04 -129.72 3541.55 -287.86 67838.54 -6272.72 1410.04 -129.72 

-129.72 27.28 -303.88 57.21 -6272.72 1317.91 -129.72 27.28 

 
G1 is an matrix of order (8XN), where N is the number of subjects.  Similarly we need to find out H2, G2 (from pair 2) and H3 
and G3 (from pair 3) using the above code. Just we need to update D and R matrix in the code for each pair. 
 
STEP 4: COMBINE ALL J AND K OBTAINED FOR ALL PAIRS 
Once we have (H1, G1), (H2, G2) and (H3, G3), we need to combine H1, H2 and H3 into H and G1, G2 and G3 into G. Combined 
H and K matrix will be 

۶ ൌ ቎

 
۶૚

૙ ૙
૙ ۶૛ ૙
૙ ૙ ۶૜ 

቏

ଶସ௑ଶସ

                                               ۵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

 
۵૚
…
۵૛…
۵૜

ے 
ۑ
ۑ
ۑ
ۑ
ې

ଶସ௑ே

 

Following code serve this purpose. 
proc iml; 
use H_1; read all into H_1; close H_1; 
use H_2; read all into H_2; close H_2; 
use H_3; read all into H_3; close H_3; 
 
H_comb=block(H_1, H_2, H_3); 
create H from H_comb; 
append from H_comb; 
 
use G_1; read all into G_1; close G_1; 
use G_2; read all into G_2; close G_2; 
use G_3; read all into G_3; close G_3; 
 
G_comb=G_1//G_2//G_3; 
create G from G_comb; append from G_comb; 
quit; 
 
STEP 5: FIND OUT ESTIMATE J AND K 
Once we have the H and G, we can find out estimate of J and K as follows 

                       ۸መ ൌ
1
ܰ

۶                            and        ۹෡ ൌ
1
ܰ

۵۵T 

 
Following code serve this purpose. 
proc iml; 
 use G; read all into G; close G; 
 nsubjects=ncol(G); 
 K_1=G*t(G); 
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 K=K_1#1/nsubjects; 
 create K from K; append from K; 
 

use H; read all into H; close H; 
J=H#1/nsubjects; 
create J from J; append from J; 

quit; 
In our case, both J and K will be of order (24X24). 
 
STEP 6: ESTIMATE ઱ ൌJ-1KJ-1

 AND ઱૙ ൌ
ଵ

N
઱ 

proc iml; 
  use J; read all into J; close J; 
  use K; read all into K; close K; 
  nsubjects=<specify the number of subjects>; 
  Sigma=inv(J)*K*inv(J); 
  Sigma0=Sigma#1/nsubjects; 
  create Sigma0 from Sigma0; append from Sigma0; 
quit; 
Again, both ઱ and ઱૙ will be of order (24X24). 
 
STEP 7: COMBINE THE FIXED PARAMETER ESTIMATES FOR EACH PAIR TO OBTAIN દ 
We obtained the fixed parameter estimates for each pair in Step 2. Now we need to combine them to obtain f દ.   
proc iml; 
  Theta_est1={1.3072, 12.2925, -0.01184, -0.2013, -0.00173, -0.05062, 0.06824,0.1563};              
  Theta_est2={1.3027, 4.6399, -0.00874, -0.04383, -0.00174, -0.00628, 0.0638, 0.4017};              
  Theta_est3={12.3390, 4.5710,  -0.2220, -0.05057, -0.05038, -0.00457, 0.1964, 0.4188}; 
  Theta_est=Theta_est1//Theta_est2//Theta_est3; 
  create Theta_est from Theta_est;  
  append from Theta_est; 
quit; 
For the ongoing example, the combined fixed parameter estimates should look like as follows and it will be stored in the 
dataset Theta_est. 

દ෡ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

 
દ෡૚
…
દ෡૛…
દ෡૜

ے 
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

 
Int_1
Int_2

Timevar_1
Timevar_2

X1_1
X1_2
X2_1
X2_2

… … …  
Int_1
Int_3

Timevar_1
Timevar_3

X1_1
X1_3
X2_1
X2_3

… … …   
Int_2
Int_3

Timevar_2
Timevar_3

X1_2
X1_3
X2_2
X2_3

ے 
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

 
1.3072

12.2925
െ0.0118
െ0.2013
െ0.0017
െ0.0506
0.0682
0.1563
… … …   
1.3027
4.6399

െ0.0087
െ0.0438
െ0.0017
െ0.0063
0.0638
0.4017
… … …   

12.3390
4.5710

െ0.2220
െ0.0506
െ0.0504
െ0.0046
0.1964
0.4188

ے 
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Step 8: Determine the appropriate A matrix 
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દ෡כ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1_ݐ݊ܫ
2_ݐ݊ܫ
3_ݐ݊ܫ

1_ݎܽݒ݁݉݅ܶ
2_ݎܽݒ݁݉݅ܶ
3_ݎܽݒ݁݉݅ܶ

ܺ1_1
ܺ1_2
ܺ1_3
ܺ2_1
ܺ2_2
ܺ2_3 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ  દ෡ܣ

Here A is 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1/2 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 1/2 0 0 0 0
0 0 0 0 1/2 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 ے1/2

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 
STEP 9: CALCULATE, દ෡כ ൌ  ࢀۯ઱ۯ દ෡ ANDۯ
We can accomplish step 9 executing the following code. 
proc iml; 
A={0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 
   0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0, 
   0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0, 
   0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0, 
   0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0, 
   0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0, 
   0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0, 
   0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0, 
   0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0, 
   0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0, 
   0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0, 
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5}; 
use Sigma0; read all into Sigma0; close Sigma0; 
use Theta_est; read all into Theta_est; close Theta_est; 
Theta_est_star=A*Theta_est; 
temp=diag(A*Sigma0*t(A)); 
stderr=J(12,1,0); 
do i=1 to 12; 
 stderr[i,1]=sqrt(temp[i,i]); 
end; 
create Theta_est_star from Theta_est_star; append from Theta_est_star; 
create Stderr from Stderr; append from Stderr; 
quit; 
The dataset Theta_est_star and Stderr will contain the fixed parameter estimates with their standard errors. 
 
STEP 10: OBTAIN ۲෡  AND ܀෡  
Here we need to combine ۲෡ ૚, ۲෡ ૛ and ۲෡ ૜ into ۲෡  and obtain ܀෡ from ܀෡ ૚, ܀෡ ૛ and ܀෡ ૜ 

۲෡ ൌ Cov

ۏ
ێ
ێ
ێ
ێ
ۍ
ri ofY1
rs ofY1
ri ofY2
rs ofY2
ri ofY3
rs ofY3ے

ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0.049 െ0.0025 0.250 െ0.011 0.158 െ0.005

 0.001 െ0.012 0.005 െ0.013 0.002
  1.841 െ0.035 0.780 െ0.029
   0.064 െ0.045 0.009
    0.644 െ0.024
ے 0.008     

ۑ
ۑ
ۑ
ۑ
ې

 

෡܀ ൌ Cov ൥
εଵ
εଶ
εଷ

൩ ൌ ൥
0.029 0.074 0.047

 1.4765 0.166
  0.448 

൩ 
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where ri and rs stands for random intercept and random slope, respectively. Note that two estimates of variance of random 
intercept of Y1 are available – 0.048 from  ۲෡ ૚ and 0.50 from ۲෡ ૛.  The average of this two estimates have been included in  ۲෡  
as a combined estimates of variance of random intercept of Y1. Other entries in ۲෡  and ܀෡ have been obtained in similar way. 
 
Step 11: Calculation of Correlation among evolutions and marginal correlation 
Once we have estimated D and R matrix, we are ready to calculate pairwise correlation between evolutions and Marginal 
correlation at any time point. Note that marginal correlation varies with time. We can estimate pairwise correlation between 
evolutions and marginal correlation at time point 2 using the following code. We can calculate marginal correlation at any time 
point making appropriate change in T matrix in the following code. 
 
proc iml; 
    D   = {    0.049   -0.0025  0.158  -0.005  0.250  -0.011, 
           -0.0025   0.001  -0.013   0.002 -0.012   0.005, 
                0.158   -0.013   0.644  -0.024  0.780  -0.045, 
               -0.005    0.002  -0.024   0.008 -0.029   0.009, 
                0.250   -0.012   0.780  -0.029  1.841  -0.035, 
               -0.011    0.005  -0.045   0.009 -0.035   0.064}; 
 
    D_slope={0.001 0.002 0.005, 
             0.002 0.008 0.009, 
             0.005 0.009 0.064}; 
 
    R={0.029 0.047 0.074, 
       0.047 0.448 0.166, 
       0.074 0.166 1.476}; 
 
    T = {1 5 0 0 0 0, 
   0 0 1 5 0 0, 
   0 0 0 0 1 5}; /*Here 2 is used to calculate marginal correlation at time 2*/ 
 
    D_marg=T*D*t(D) + R; 
 
    /*Association between slopes*/ 
    corr_bet_evol=j(nrow(D_slope), nrow(D_slope), 0); 
    do i=1 to nrow(D_slope); 
  do j=1 to ncol(D_slope); 
   corr_bet_evol[i,j]=D_slope[i,j]/sqrt(D_slope[i,i]*D_slope[j,j]);  
  end; 
    end; 
    print corr_bet_evol; 
 
    /*Marginal correlation at time 2*/ 
    Marg_corr=j(nrow(D_marg), nrow(D_marg), 0); 
    do i=1 to nrow(D_marg); 
  do j=1 to ncol(D_marg); 
  Marg_corr[i,j]=D_marg[i,j]/sqrt(D_marg[i,i]*D_marg[j,j]);  
  end; 
    end; 
    print Marg_corr; 
run; 
quit; 

7. GENERALIZED MACRO 
Macro %jointpair, written by Steffen Fieuws, implementing pairwise approach to multivariate longitudinal data modeling can 
be obtained from http://med.kuleuven.be/biostat/software/software.htm#MLMMpw.  We present here a macro %allpairs 
which extends the functionality of the %jointpair macro.  The major contributions of this paper include the ability to fit the 
models with some of the measure outcomes missing, comparison of the model AIC values and pairwise correlations (as 
explained in step 11 of previous section) of the outcomes. The first contribution enables the model fitting in the common 
longitudinal data situation setting where outcome missingness is a norm rather than the exception. AIC comparison, 
implemented via the randomno1 key parameter, lets us select the best error covariance structure for each pair in an 
automatic way. The macro is not included in the paper because of space constraints, but can be obtained by contacting with 
the authors (see the contact information below) or from the webpage http://mgkundu.webs.com/.  The use of %allpairs has 
been illustrated below. 
 
Example 1:  %allpairs(data=MyData, 
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                   respvars=%str(Y1 Y2 Y3), 
                   fixed=%str(Timevar X1 X2), 
                   randomno2=%str(1 0 1), 
                   timevar=Timevar, 
                   time4mc=2); 
 
Example 2:  %allpairs(data=MyData, 
                  respvars=%str(Y1 Y2 Y3), 
                  fixed=%str(Timevar X1 X2), 
                  randomno1=1, 
                  timevar=Timevar, 
                  time4mc=2); 
 
Here one need to specify following parameters in the above macro: 
 
data Specify the name of the input dataset 
respvars Specify all the response variables, separated by space 
fixed Specify all the fixed variables, separated by space 
randomno1 Specify 1 if the decision on random slope or intercept need to be made for each pair based on AIC and 

convergence criteria. 
randomno2 specify string of 1 and 0, separated by space. The number of elements should be equal with number of 

response variables.   
Specify ‘1’ if random slope of corresponding response variable is of interest. Specify zero to consider random 
intercept only.  

timevar Specify the time variable. 
time4mc Time for marginal correlation 
 
Note that we need to specify either randomno1 or randomno2. If both of them are specified, then random2 will be 
ignored. To specify random2 we need to know beforehand, for each response variable, whether random slope or random 
intercept works better than the other.  For example, in Example 1, following covariance models will be used: 
 
(Y1, Y2) random intercept of Y1, random slope(week) of Y1 and random intercept of Y2 
(Y1, Y3) random intercept of Y1, random slope(week) of Y1, random intercept of Y3 and random slope(week) of Y3 

(Y2, Y3) random intercept of Y2, random intercept of Y3 and random slope(week) of Y3 
 
However, there might be case where we don’t have this information and we want to make the decision on random slope or 
intercept based on AIC. In that case we need to specify randomno1=1 as in Example 2. In this case, for each pair, following 
4 models with different covariance structures will be considered. 
 
 Covariance structure 
Model1 both Intercept and slope of both the variables in the pair. 
Model2 both Intercept and slope of 1st variable, but only intercept for 2nd variable. 
Model3 both Intercept and slope of 2nd variable, but only intercept for 1st variable. 
Model4 only Intercept of both the variables in the pair. 
 
Best model will be chosen according to AIC value, satisfaction of the convergence criterion and positive definiteness of the 
estimated covariance matrices. Note that if for any particular pair we failed to obtain a model that converges and produce 
positive definite covariance matrix then that pair will be ignored. 
 
The macro produces the outputs in the form of Marginal correlation at the requested time point, Correlation among evolutions,  
D matrix for random effects (b ~ N(0, D)), Error variances (epsilon ~ N(0,R)) and Fixed parameter estimates with standard 
error. Further details on the macro come with the %allpairs macro itself. 
 
8. CONCLUSION 
Joint modeling of longitudinal multivariate responses is necessary to explore the association between response variables. An 
usual problem with the joint modeling is failing to convergence because of large number of association parameter to estimate. 
Pairwise fitting approach (using pseudolikelihood) is helpful in overcome this shortcoming. Both %jointpair and %allpairs 
implements joint modeling through pairwise fitting approach. The macro %allpairs has its advantages like it takes care of 
missing observations and also can choose correct covariance model for each pair based on AIC value, satisfaction of 
convergence criterion and positive definiteness of the estimated covariance matrices. On execution, %allpairs also returns 
the estimates of correlation between evolutions and marginal correlation for each pair of response variables. 
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