
 1	
  

PharmaSUG 2011 - Paper AD18 
 

Listening to the Voice of the Customer when Deploying Your Application: Using 
SAS and Design Methodologies to Create a Pleasing User Installation Experience 

 
Joe Perry, Perry & Associates Consulting, Oceanside, CA 

 
ABSTRACT 
 
We have all had to install software from a simple package like WinZip® or something more complex like SAS® and 
these installations create a lasting first impression about the quality of the software vendor’s product and the 
competency of their coding.  Work for a large company planning an internal deployment or a small company 
deploying your software at multiple client sites you have limited opportunities to create a good impression and 
continue the business relationships you have made. The fact is that whether you like it or not, just like meeting other 
people first impressions count and the installation and first use of your software is your opportunity to make that 
impression a good one. This paper explores how to think like a naïve SAS user and not like a programmer while 
planning your next deployment of your SAS-based software applications. This paper is intended for users of 
moderate to advanced SAS skills. 
 
BACKGROUND 
 
A story, not of SAS but; you’ll get the picture later… You would like to use some new communication technologies 
available through the web and friends have recommended that you try Skype. So, you download Skype, install it, 
register a new account with a distinct password (carefully typing it into a separate document) and, typing twice into 
the designated space on the website, you are good to go, simple right? Now, log into this new account with that 
password still sitting in that document you have open and… usually, the whole process works without a glitch but 
somehow… somehow, the password is inexplicably wrong.  
 
You try to log in again and… the Skype window tells you that the account/password combination is incorrect. Now, 
you are not amused and you are getting annoyed because, well, the password is sitting right there! Worse yet, you 
know that if you try calling Skype, there is a good chance that you will probably be spoken to like a third grader 
because, as everyone knows it must be operator error. Really, Skype has millions of users and if this were really a 
problem in the Skype application they couldn’t possibly have that many users so, a system with a problem as 
fundamental as inability to get an account set up can’t possibly exist, right?  
 
But, you call anyway, they do talk to you like a third grader but, hey, at least they don’t tell you that you have to reload 
your operating system and cause you to lose all of the data on your hard disk. You swallow your pride, listen to the 
lecture, admit that maybe, just maybe you might have typed the password wrong (whilst you are thinking that THAT is 
about as likely as you being hit by a meteorite in the next second) but, hope springs eternal and you dutifully listen to 
the technical support advice and promise yourself that you’ll try this… once!  
 
So, you are told to try changing your password; you follow the directions on the site and the system sends you a 
temporary new password, you log back onto the Skype site and go with a ‘new’ password, one that you can really 
remember but, hey, why not take that same password you have in your desktop document, re-enter it, verify it and 
now you know that this will work. You are now thinking to yourself that you are really sure that the password in that 
silly document is the one that the system took right? it must be, isn’t it? You typed it twice, it looked just like the one in 
the document so, memory, and your age, couldn’t cause a problem.  
 
So, the system tells you the password has been changed and you log off the website and start a Skype session on 
your desktop; logging in with the password that was entered into the website, twice, you carefully type the password 
in with two fingers so you don’t make a mistake and… dang, the password is once again rejected! You want to call up 
the technical support site again but you figure if they can’t even get the password part of the application right then 
there’s probably other functions in the application that will be as poorly designed as this one so, you might as well 
forget Skype and try some other application.  
 
After all, your time is valuable, something (you think) that a $10/hour tech support person doesn’t quite get and, even 
though Skype is free, free isn’t worth it if it does not work as advertised, right? Now, given that there is free enterprise 
system and there are a lot of smart, ambitious programmers out there, there’s a very good chance that there’ll be 
other, similar applications to Skype and you might as well try one of those because (hopefully) someone appreciates 
the client’s point of view so, you just figure ‘next’ and move on! 
 
Back to SAS-based development… Change the name of the application from Skype to one that you have designed or 
have work on… change the price from free to a higher figure, an amount that will ensure the beginnings of financial 



 2	
  

security for you and your family and the above is a pretty likely example you might have a part in, i.e. a ‘dream’ 
software package’s installation and first use1 cycle nightmare; a nightmare that will stop your dreams in their tracks. It 
may seem unreal to you, as an application programmer, but it is a nightmare that is all too familiar to the naïve users 
of software, including some that you might have had a hand in developing.  
 
THE MORAL OF THE STORY: USER-CENTRIC MINDEDNESS 
 
The moral of the above story is: users and programmers of software often have different perspectives on performing 
their jobs. Users don’t want technical challenges when they use the software – they just want to use the software; 
programmer-type people (i.e. those that: develop, install and setup software packages, read the ‘Skype’ 
programmers) accept technical challenges as a necessary part of their work. The ‘technical’ people tolerate 
installation glitches but; these ‘glitches’ are not tolerated by the users because they are seen as, quite possibly, a 
reflection of the applications’ quality.  Users have a different view of software than the ‘normal’ view that the 
programmer-types have of the same issues.   
 
The take away from this story is this: To get the greatest use of yours or any application: system engineers, 
developers and programmers need to change their frame of reference from a developer-centric to a user-centric 
frame of reference.  
 
Some products are clunky and difficult to use but, though difficult, are used anyway because of business 
requirements and/or some other external rationale; but they are not by free choice and alternative products are 
constantly being sought out and undesirable performance characteristics are reason enough to find a replacement.  
 
The truth seems to be that, only when an application is: developed, produced and supported to and with user- or 
customer- centric systems will users get products that they will really want to use rather than products that they have 
to use… only then will your product have a real chance in the free marketplace. 
 
BECOMING USER-CENTRIC: LESSONS FROM THE SERVICE INDUSTRY 
 
In the example above, assuming that a real error existed in the password sub-system, it can be reasonably argued 
that the technical support system had a bias against the user and in favor of the system design and programming.  
 
This bears repeating: Many, if not most, technical software support systems have a bias against the user and 
in favor of the system design and programming organizations! 
 
This fact stands in sharp contrast to the claims of many companies that they ‘care’ about their customers yet, given a 
reasonable person’s interpretation of a bias towards the technical organization, that claim must be taken with a grain 
of salt. The fact is, the customer always loses when a company’s user support structure favors the company’s 
product delivery systems over the customer, if a bias exists in the systems those biases must be in favor of the 
customer, not the company.  
 
It should be clear that being or becoming user- or customer- centric requires more than just words and good 
intentions; it requires working structures within the company that places the technical production and user support 
systems subservient to user’s wants and needs; anything less and the company’s claims fall short of reality. 
 
One fundamental rule from the service industry is to never give the technical delivery group sole control over what’s 
delivered to the client; they tend to produce what is comfortable for them to deliver rather than going the extra mile to 
create a pleasant first use experience. In the SAS world, we are used to being able to do anything and everything via 
code yet programmers, if left to their own devices, will stop enhancing code when they feel it is good enough; the 
problem is that it probably is good enough -- for a programmer but, probably not good enough to produce a pleasant 
user experience!  
 
This then is the conundrum facing the company’s management; the application developer or programmer is seldom 
given installation and first use performance criteria yet they have to make decisions on when to stop enhancing the 
code for the customer’s experience, assuming that customer experience was even considered at all. If management 
fails to provide that information to the technical delivery team, management is ceding control of the critical user 
experience system elements to the technical delivery team; a team whose mission and production processes seldom 
aligns with the needs of the customer.  
 
It is this lack of other, user-centric, controlling standards combined with the need to work within a departmental 
budget that ensures that their production-centric performance decisions will win out over any user-centric 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  	
  	
   ‘First	
  use’	
  is	
  defined	
  as	
  all	
  of	
  the	
  steps	
  after	
  the	
  extraction	
  and	
  placement	
  onto	
  the	
  disk	
  location	
  up	
  to	
  the	
  point	
  that	
  the	
  software	
  is	
  

ready	
  to	
  use	
  and	
  includes:	
  installation	
  testing,	
  operational	
  qualifications	
  (if	
  needed)	
  and	
  account	
  setups.	
  	
  



 3	
  

performance standards. This results in the customer losing out and, most probably, the company will ultimately pay 
the price in lower product adoption rates. 
 
WHAT ARE THE CUSTOMER’S WANTS AND NEEDS DURING INSTALLATION? 
 
It is said that for all endeavors there are only a handful of fundamentals that need to be mastered to perform that task 
well; similarly, customers that are installing software have a few wants and needs that, if satisfied during software 
installation will result in a pleasant and acceptable user experience. Wants and needs fall into MUST HAVES and 
MUST NOT HAVES of an installation process, the below is some suggested rules for judging whether the user has 
been properly incorporated into the programming calculus. 
 

Must Haves Must NOT Haves 
1) Simple installation with automatic 

configuration steps, whenever possible: 
target installation time < 5 minutes 

1) Too many configuration steps including 
MANY trivial configuration steps 

2) No ambiguity on correct installation; it is 
either PASS or FAIL 

2) Un-explained or un-actionable errors 
during installation 

3) No ambiguity on correct operation, it is 
either PASS or FAIL 

3) Doubts that the operational routines are 
both correct and working correctly 

4) If a has problem occurred; clear, 
actionable next steps to rectify the 
situation 

4) Obtuse messages requiring uncommon 
knowledge to initiate corrective action 

  
 
USING SAS’ AUTOMATION CAPABILITY TO BECOME MORE USER-CENTRIC  
 
SAS is a perfect tool for verifying an application’s installation and operational functionality, but as with anything good, 
it can take a little thought and discipline to make it work for you. A typical project can be illustrative.  
 
In a real-world example, an application that consists of SAS: datasets, macros and simple AF screens; the code was 
to be; tested, packaged into a deployment archives, un-packaged as it would be at the user’s site and then subjected 
to the Installation and Operational Qualification processes. SAS was used to deploy the application from the 
development area to both a testing and a ‘packaging’ area via a sequence of simple SAS statements; thus using SAS 
to maintain synchronized copies of the software. This had the additional advantage that the same process can be 
used to set up new deployment areas for, say, the application ported to both SAS v9.1.3 and v9.2 as well as for a 
spattering of Operating Systems, say Windows XP and Windows 7.  
 
For each of the four versions of the software from above, there was to be at least two identical work areas: one area 
was to be left untouched during testing and was the source of the deployment package sent to the client; the second 
area was used to perform full testing of the application in a ‘clean’ environment.  
 
Additionally, once testing was completed, the first area was to be ‘packaged’ into a full deployment package, 
unpacked into a new area and subjected to the full Installation and Operational test suites (IQs and OQs, 
respectively). For simple applications, maintaining synchronization between the various deployment areas via 
Windows’ cut and paste functionality was possible but not recommended because of the concerns that simple errors 
could have undetected consequences; for applications with dozens of source files it was felt that the only safe path 
was in scripting or automation, through SAS if possible but, scripting none-the-less. 
 
DEPLOYING THE APPLICATION 
 
The tasks for populating each deployment area are: 
 

1) Ensure a clean macro catalog by killing the macro catalog in each deployment area and copy the updated 
compiled macros back in; 

2) Ensure a clean macro catalog by killing the AF catalog each deployment area and copy the updated 
compiled, non-editable, AF files back in; 

3) Remove all SAS datasets from the deployment area and refresh the datasets with the currently required 
data; and 

4) Refresh text files in the deployment areas by using SAS to first delete them in the deployment area then 
copy all required text files back in. 
 



 4	
  

The code for Step #1, macro deployment is:  
 

 
 
For Step #2, updating the User Interfaces, the code is: 
 

 
          
 
HANDLING THE VOLUME OF WORK THROUGH AUTOMATION 
 
When working with the above it became obvious, very quickly, that if a better system was not developed that it would 
be impossible to get the product out and, due to unexpected failures during the testing processes, more and more 
automation was introduced. In hindsight, it seems intuitively obvious that, for the above example, the level of testing 
associated with this deployment is not possible with limited resources, unless… unless scripting or automation was 
introduced into the equation. Scripting was first introduced for pushing the software into the ‘deployment’ areas but, 
the further we got into the process the more it became obvious that both the IQs and OQs would have to be 
automated as well since we did not have the resources necessary to run through the scripts for the four different 
scenarios. 
 
Eventually, all deployment tasks, including the IQs and OQs were scripted. A Setup Configuration Utility, located the 
SAS configuration file (sasV9.cfg), copied a modified version into the applications directory then launched the 
remaining setup tasks. Interestingly, because of the challenges presented by the broad deployment outlined above, 
the user tasks were reduced from upwards of 70-100 to less than 10, actually, less than five. All setup tasks were 
fully automated and required no more than the batch submittal of a Setup Configuration Utility; Installation 
Qualifications, First Use and Operational Qualifications tasks were performed via SAS scripts and the user was able 
to start working with the application within the targeted five minutes.  Failed IQ or OQ operations were identified by an 
obviously named file containing a simple description of the problem and what to do.  
 

*====================================================*; 
* MACROS                                             *;  
* ========                                           *;  
*                                                    *; 
* Process to follow for each catalog...              *; 
* =====================================              *;   
*  1) Kill the target catalog                        *;  
*  2) Copy the master macro catalogs to the target   *;  
*  3) Repair the catalog to ensure it is in the best *; 
*     condition for deployment                       *;  
*====================================================*;  
  proc catalog cat=DployOne.sasmacr kill ; 
  run ; 
  quit ; 
  proc catalog cat = macStore.sasmacr ; 
    copy out= DployOne.sasmacr ; 
  run ; 
  quit ;            
  proc datasets lib= DployOne ; 
    repair sasmacr / mt = cat ; 
  run ; 
  quit ; 

	
  

*=================================================*;   
* USER INTERFACES                                 *;  
* ===============                                 *; 
*                                                 *; 
* Follow the steps for the catalogs but, prohibit *; 
* editing and source code.                        *; 
*=================================================*;  
  proc catalog cat= DployTwo.catTwo kill ; 
  run ; 
  quit ;   
  proc catalog cat= DployTwo.catTwo ; 
    copy out= AreaTwo.catTwo noedit nosource ; 
  run; 
  quit ;     
  proc datasets lib= DployTwo ; 
    repair catTwo / mt = cat ; 
  run ; 
  quit ; 



 5	
  

 
CONCLUSION 
 
The four objectives identified above: installation in under five minutes, clear Installation and Operational Qualification 
successes or failures, if a failure occurred, a simple but effective directive to the user was provided that proved useful 
in satisfying the wants and needs of the customer. 
 
 
__________________________________________________________________ 

 
 
The author can be contacted at: 
 
Joe Perry 
Perry & Associates Consulting 
342 Spring Canyon Way 
Oceanside, CA 92057 
Phone: 760-822-7959 
email: PerryAJoE@cox.net    

 
 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.   
 
Other brand and product names are trademarks of their respective companies. 


