PharmaSUG2011 - Paper AD19

Symbol Table Generator
(New and Improved)

Jim Johnson, JKL Consulting, North Wales, PA

ABSTRACT

In Seattle at the PharmaSUG 2000 meeting the Symbol Table Generator was first presented. The original program was
simple, and so was the output: a line numbered listing of selected program followed by a symbol table which is a cross
reference of all the variables and keywords used in the program. In the New and Improved version comment limitations have
been overcome and the strengths of Proc Report have been employed. The line numbered listing is much more intelligent and
can provide up to three different types of program nesting. Other new features include optional suppression of common
keywords from the symbol table, tab processing, simple error checking, and even suppressing the symbol table altogether.

INTRODUCTION

Have you ever written a lengthy program, printed it, and tried to find where in the program that a particular variable or two were
used? Do you remember sitting there with your printout, highlighter, and program editor, repeatedly using the editor’s find
feature, then trying to locate the reference in the printed copy so you can highlight it? Or, maybe instead of tediously looking

for all the references, you simply used the editor's change feature and changed all occurrences of a variable to another
spelling. Then when you ran the program you found that you had changed things that you did not expect like TITLE statements,
data set names, or keywords. What you really need is a Symbol Table.

When something is 'new and improved', which is it? If it's new, then there has never been anything before it. If it's improved,
then there must have been something before it and couldn't be new. With this version of the Symbol Table Generator, it is
both new and improved. It existed previously and has been improved, and there are a lot of new features that never existed
before making it look and act like a completely new product.

“There are a hundred different ways to do everything in SAS®.” The techniques shown in this paper are only one way to do
things. There probably are many more. These techniques have been chosen to demonstrate specific functions of SAS and /
or the Symbol Table Generator, you are encouraged to explore other means of doing the same thing.

All examples given are based on the Microsoft® Windows® environment using SAS system for Personal Computers® version
9.2.

The remainder of this paper will discuss the New and Improved Symbol Table Generator as if it had never existed before.

WHAT IS A TOKEN?

The SAS Macro Language Reference defines a token as follows:

When the SAS System processes a program, a component called the word scanner reads the program, character by
character, and groups the characters into words. These words are referred to as TOKENS.

Tokens, therefore, are the individual words (keywords, variables, operators, and constants) that exist in your program.

WHAT IS A SYMBOL TABLE?

A symbol table is a cross reference of tokens, or symbols, providing the line numbers where each is used. The example below
tells you that the token print (which may be a variable, keyword, or text literal) is used on lines 10, 22, and 266. Now you know
exactly where to go in your program to review your code.

alpha 5, 17, 155, 210
beta 6, 22, 211, 234, 301
print 10, 22, 266

sort 45, 101

TYPES OF COMMENTS
There are three types of comments supported by the SAS System.

ASTERISK - SEMICOLON

These comments start with an asterisk (*) and end with a semicolon (;). The program fragement below shows several
examples of asterisk-semicolon comments. The first line shows a comment that starts and ends on one line. The second line
starts a comment that ends on the third line. The fourth line contains two SAS program statements, the first is not commented,
the second is. The last line of code is not commented. SAS knows that there is no comment in the fifth line, though it contains
an asterisk and semicolon, because SAS interprets the asterisk in context. SAS knows that use of the asterisk is not meant to
be a comment.

* a3 = means + 1 ;

* proc print

data = final;

cnt + 1; * index = cnt * 2;
raise = salary * 0.05;

SLASH STAR — STAR SLASH
These comments start with a slash star (/*) and end with a star slash (*/). The code below shows the same examples of code
using the slash star — star slash comments.

/* a = means + 1; */

/* proc print

data = final; */

cnt + 1; /* index = cnt * 2; */

MACRO COMMENTS

These comments start with a percent sign asterisk (%*) and end with a semicolon (;). The Symbol Table Generator treats
these comments exactly the same way as asterisk — semicolon comments. Any references in this paper to asterisk —
semicolon comments applies equally to macro comments.

COMMENT USAGE PERMUTATIONS
Comment types can be mixed. Asterisk — semicolon comments can contain slash star — star slash comments, and slash star —
star slash comments can contain asterisk — semicolon comments. Examples of these are shown below.

*a=a+1/*add 1l to a */ ;
/*a = a + 1; *add 1 to a; */

On any one line of program code, there are four possible comment scenarios for each type of comment:
1. Comment starts and stops on the given line
2. Comment starts but does not stop on the given line
3. Comment stops but does not start on the given line
4. Comment is ongoing, neither starts nor stops on the given line
Each of these possibilities is handled by the Symbol Table Generator.

WHY IS THIS IMPORTANT?

Since we all use ample comments in our code, it would be desirable to exclude those comments from the symbol table.
Therefore, the Symbol Table Generator ignores all comments. Below are three lines of code. The first will be tokenized, the
second will be ignored, and third line will tokenize the first statement and ignore the second. SAS understands the second
statement on the third line is a comment, because it interprets the asterisk in context. The Symbol Table Generator is
sophisticated enough to also recognize the use of the asterisk.

raise = salary * 0.05;
*a = mean + 1;
cnt + 1; * index = cnt * 2;

NESTING TYPES

BASE DO/ END NESTING

The Symbol Table Generator can also interpret dos and ends in context. It can tell the difference between a do used as a
keyword and a do used as a variable. It can also tell if an end is connected to a do or other keywords such as a base SAS
select statement or an SQL procedure case statement, or if it is just another variable.

MACRO %DO / %END NESTING
As with base do / end nesting, the Symbol Table Generator can also track %do and %end nesting.

MACRO NESTING
Another feature similar to do / end nesting is macro nesting. This is the nesting of %macro and %mend statements to help
you keep track of how deeply your macros are nested.

Line
Number

e

0]
=t
b
=]
Q

Original Code

1740
1741
1742
1743
1744
1745
1746
1747
1748

start_sub = start_sub + col_segmentlength;
end;
end;
%$end;

end;

$mend ;

COoOORRFRRLRNWWIES
cOCoo0oo0oOoORrRRRER
OrRrRFHRRLRRLRRLRRIE

Nesting levels show base (B) do / end nesting, macro (M) %do / %end nesting, and macro (L) nesting. In the example above,
notice that the B level, the base do / end nesting level reduces when each end is encountered, and the M level, the macro
%do / %end nesting, reduces when each %end is encountered, and the L level, the %macro nesting level reduces when each
%mend is encountered.

HOW DOES THE SYMBOL TABLE GENERATOR WORK?

The Symbol Table Generator is invoked by a simple call:
$symbol (fully qualified name of a SAS program) ;

$symbol (c:\sas\program\test.sas) ;

A line numbered program listing will be generated. Every page will have a header indicating the name of the program
processed, the date and time the listing was produced, and a page number. Lines of program code that are greater than the
LINESIZE provided in the SAS session (less space for the line number and nesting) will wrap to the next line.

The input program is then scanned, and comments are detected and removed.

The remaining code is then broken into tokens. Tokens are separated by common delimiters
H{l'@#$"*)(+-=/:}\|"?><,.~" space
Note that included in that list are the single and double quote and semicolon.

EXCLUDED from the list are the numerals 0-9, allowing for variables like b6, datel, or table2a. Numeric constants like 6, 5.1,
2.54 are programmatically eliminated from the symbol table. Also EXCLUDED from the delimiter list are the & and % which
allows for macro commands and macro variables. The underscore (_) is also excluded from the delimiter list since it is a valid
component of SAS variable names.

The tokens are collected in a SAS data set along with the line number on which it is used. The data set contains one
observation for each token and line number. If a token appears twice on a line of code, then there will be two observations on
the data set. This data set is processed into a smaller set which contains one observation per token and all the line numbers
on which it appears. Then the final SAS data set is printed.

FEATURES

SUPPRESS COMMON KEYWORDS FROM SYMBOL TABLE

The larger the program, the more common keywords like if, then, else, do, end, put, and data will be used. These common
keywords are tokenized with the rest of the program and reported in the Symbol Table just like all other tokens. With larger
programs, the Symbol Table may go on for a full page or more reporting every place your program used the keyword if. By
suppressing the common keywords from the Symbol Table, it can make it easier for you to scan through the table and
certainly will shorten the report for printing.

This feature comes with drawbacks. The Symbol Table Generator has no way of knowing if you have used symbols like if or
where, or most of the other common keywords, as keywords or variables. While the program can tell if certain keywords such
as do, end, and data have been used as keywords or variables, it would be impossible to determine the context of all the

common keywords used in SAS. To write a program that dynamic would pretty much mean writing a program as large as the
SAS system itself. So, use this feature with caution.

EMBEDDED TABS CHANGED TO SPACES

Many programmers use the tab key to indent their program code for readability. It is also possible to set preferences in the
SAS enhanced editor to automatically indent the next line of code and to use tabs or spaces for that indentation. As a result,
many programs contain tab characters. The Symbol Table Generator reports these tabs as unprintable characters, and
depending on the printer attached to the computer, they may appear as rectangles or a strange print alignment of the code
and symbol table. The tabs will also be interpreted as part of the following symbol causing it to sort away from the rest of the
same symbols.

The code below was written using tabs.

data _null ;
do a =1 to 10;
do b =1 to 5;
put a= b=;
end;
end;
run;

The tabs are not visible, so the code has been shown again demonstrating where the tabs have been used.

data null ;

<tab>do a = 1 to 10;
<tab><tab>do b = 1 to 5;
<tab><tab><tab>put a= b=;
<tab><tab><tab>end;
<tab><tab>end;

run;

Below is an example of the line listing output with the tabs in place. In this example, the tabs, now unprintable characters,
have essentially been suppressed, making the program code appear to have no indentation.

Line nesting
Number B M Original Code
1 data _null ;
do a =1 to 10;

N oUW N
ORr NNRE OO
OO0 ooooo

o]

=

cr

[\

I

I

The symbol table represents the unprintable characters slightly differently, causing the line numbers to appear out of their
column seemingly related to the number of tabs preceding the symbol. Notice that the symbols do not appear in alphabetic
order and that the symbols do and end are listed twice. This is all because the tabs have been attached to the symbols and
that <tab>do is different than <tabs><tab>do.

Symbol Line Numbers
end 5

put 4

do 3

end 6

do 2

a 2,4
b 3,4
data 1
run 7
to 2,3
null 1

The Symbol Table Generator automatically detects and converts tabs into four spaces. Four spaces is the default size of a tab
in SAS. While this value can be set to anything you like in the enhanced editor, the Symbol Table Generator has no idea what
setting was used for the generation of the program code it is analyzing. Therefore, it simply uses the default value of four
spaces. This will align the printed code more suitably than using the tabs did, and the symbols preceded by a tab now appear
the same as those that are not, thus keeping all the same symbols clustered together in the Symbol Table.

The Symbol Table Generator will produce the output below from the sample source file.

Line nesting
Number B M Original Code

1 0 0 data _null_;
2 0 0 do a =1 to 10;
3 1 0 do b =1 to 5;
4 2 0 put a= b=;
5 2 0 end;
6 1 0 end;
7 0 0 run;
Symbol Line Numbers
a 2,4
b 3,4
data 1
do 2,3
end 5,6
put 4
run 7
to 2,3
null 1

SUPPRESS SYMBOL TABLE

There may be times when the Symbol Table is not desired. For instance, very large programs can produce very large Symbol
Tables that may be of little use, or if the nesting levels are being used to track down missing or extra dos or ends, then the
Symbol Table would be of no use at all. The Symbol Table Generator allows you to turn the Symbol Table off and just
generate the line numbered listing of the original program code.

NESTING OPTIONS

The nesting described earlier can be controlled with one of four settings available for report generation. You can request no
nesting, base do / end nesting only, base do / end and macro %do / %end nesting, or base do / end, macro %do / %end
nesting, and macro nesting.

CHECKS IF FILE EXISTS
The Symbol Table Generator checks that your file exists, and if it does not, indicates that it does not exist with an error
message and then aborts in a controlled manner.

INTERPRETING IN CONTEXT

The SAS System interprets your program code in context. That is, SAS can tell by the way you are using a keyword or
operator whether it is being used as a keyword or variable, or in the case of operators, if they are being used as mathematic or
logical operators or as special symbols like comments or concatenation.

The Symbol Table Generator can interpret only certain symbols as keywords or variables. The list is limited and directly
related to the calculation of program nesting. The symbols that can be interpreted in context are data, do, end, select, and set.
Each of these has a unique relationship to the determination of nesting. SAS has many other keywords that can also be used
as variables, but they do not affect the computation of do / end nesting.

The keyword do can be used in at least these following statements:

doa =1 to 5;

do while (..);

do until (..);

do over (..);

. then do;

. else do;

when (..) do; (Base SAS select or SQL procedure case statements)
otherwise do;

Identifying whether a do is being used as a keyword or variable is not as straight forward as you might think. The examples
above represent basically two forms of do as a keyword. The first is a do at the beginning of a statement, that is, a do
following a semicolon. The second is a do being used at the end of a statement, that is, a do preceding a semicolon.

The examples below demonstrate the complications of devising an algorithm by introducing the use of do as a variable. These
are all valid statements.

do do = 1 to 5;

do a = 1 to do;

do while (do = 1);
. then do + 1;

. else 1 + do;
data do;

set do;

do = 1 + do;

The same issues exist determining the use of end as a keyword or variable.

do end = 1 to 5;
do = 1 + end;
end + 1;

set end end=end;

Beyond determining if do and end are used as keywords or variables, there are a number of circumstances that require special
handling to keep track of do / end nesting. These are times when end is used without a do and are directly related to the
keywords data, select, and set.

DATA AND SET STATEMENTS
Data and set have to be interpreted in context because do and end can be used as data set names and do not affect the
nesting levels. In addition, set offers the end= option which does not affect the nesting level.

data do;
set end end=do;
if do then do;

DATA STEP SELECT STATEMENT
In the data step the keyword end closes the select statement and does not affect nesting.

data _null ;
set dsn;
select (variable) ;
when (0) wvariable + 1;
otherwise;
end;

For this situation, the Symbol Table Generator first detects the select and checks whether it is being used as a keyword or
variable. A select followed by an open parenthesis or preceded and followed by a semicolon is a keyword. Once it has been
determined that select is being used as a keyword, the program seeks a corresponding end keyword. It is possible to have
one or more do / end combinations within the select / end construct. The algorithm for tracking select / end combinations is
different from that which does the do / end nesting, so no additional complications are created.

data null ;
set dsn;
select (variable) ;
when (0) do;

variable + 1;
end;
otherwise;
end;

SQL PROCEDURE CASE STATEMENT
In the SQL procedure the keyword end closes the case statement and does not affect nesting.

proc sqgl;
select 1 as one

,2 as two

,case answer_code
when 'l' then 'yes
when '2' then 'no !
else 'maybe'
end as answer_text;

The Symbol Table Generator still checks if case has been used as a keyword by checking for an open SQL procedure select
statement. If case is being used as a keyword then the program knows there will be an associated end keyword to come.

TEMPLATE PROCEDURE DEFINE AND EDIT STATEMENTS
In the TEMPLATE procedure the keyword end closes the define statement and the edit statement.

proc template;
define style styleO;
replace fonts /

'FixedFont' = ("Courier",2)

'BatchFixedFont' = ("SAS Monospace, Courier",2)
'FixedHeadingFont' = ("Courier",2)
'FixedStrongFont' = ("Courier",2,Bold)
'FixedEmphasisFont' = ("Courier",2,Italic)

end;

The Symbol Table Generator is able to tell that define or edit have been used as a keyword if the TEMPLATE procedure has
been started and a step boundary (data, proc, or run statements) have not been encountered, therefore it should expect an
associated end keyword.

WHAT ABOUT... ?

What about TITLE and FOOTNOTE statements?

TITLE and FOOTNOTE statements will be tokenized as if they were standard SAS code. The TITLE and FOOTNOTE
statements were not excluded from processing since it is possible for them to contain variables.

What about mixed case?

Variables and keywords can appear in a program in upper, lower, or mixed case. Each will be tokenized and accumulated and
reported separately because the difference in case may have some meaning or importance to the programmer. In the sort
phase of the program an upper case form of the symbol is used. The mixed case form of the symbol will be used to print in the
Symbol Table. Thus, it is possible to see what appears to be the same variable listed more than once with different line
numbers. Below is an example where the same symbol appears in three different text cases and they are listed adjacent to
one another in the symbol table.

Symbol Line Numbers

LINE 442

Line 447,455,464,474,523

line 174,175,208,446,447,454,455,463,464,473,474,496,501

What about spaces? Or the lack thereof?
Use of spaces is important to the Symbol Table Generator. The base SAS statement IF A & B will tokenize, alphabetically, to
A, B, and IF. The equivalent base SAS statement IF A&B will tokenize, alphabetically, to A&B and IF.

What about the use of /* or */ in the code?

If a line of code such as IF STRING =‘/* OR STRING = "*/' THEN... were encountered, it would cause a problem. The
Symbol Table Generator would try to find the comment text that is associated with the apparent comment symbol and
eliminate it. It was decided that the chances of this happening were very slight and not worth the time it would take to program
around it. Therefore is it NOT handled in this version of the Symbol Table Generator.

PRACTICAL USES

DOCUMENTATION TOOL

The Symbol Table Generator can be used as a documentation tool. Validated programs could be run through the Symbol
Table Generator and the printed output could be stored with the other program documentation. Future programmers could
browse the printed output using the symbol table and perhaps other documentation, such as flow diagrams, as a guide to help
trace the use or calculation of a variable.

DEBUGGING TOOL

When the Symbol Table Generator runs against a program with balanced do / end nesting, the nesting levels will all be zero at
the end of the program listing. The example below shows the output from a balanced program because line 23 show all
nesting levels at zero. Line 2 has a base nesting (B) level of zero because the do statement is opening a new level and the
code following the do is at the new level. The closing end will have a nesting level that matches the opening do. Therefore,
the nesting level which begins at line 2 will end when the nesting level returns to zero, at line 22. The nesting level which
begins at line 15 will end when the nesting level returns to 2, at line 17. The nesting level which begins at line 3 will end when
the nesting level returns to 1, at line 21.

Line nesting
Number B M Original Code

1 0 0 data _null ;

2 0 0 do a =1 to 10;

3 1 0 do b =1 to a;

4 2 0 do ¢ =1 to b;

5 3 0 output;

6 2 0 end;

7 2 0

8 2 0 if b = 5 then do;
9 3 0 d = b;

10 2 0 end;

11 2 0 else do;

12 3 0 d = a;

13 2 0 end;

14 2 0 select (a);

15 2 0 when (1) do;

l6e 3 0 d = a;

17 2 0 end;

18 2 0 when (5) d = 0;
19 2 0 otherwise d = .;
20 2 0 end; /** select statement **/
21 1 0 end;
22 0 0 end;
23 0 0

“THERE WAS 1 UNCLOSED DO BLOCK”

The example below is the same code from above, but line 13 has been commented, thus eliminating an end statement. When
this program runs SAS will print the message “There was 1 unclosed DO block” and abort. The fact that line 23 shows a
positive non-zero base nesting (B) level indicates that there are more do statement than end statements. The nesting level
cannot determine whether there is a missing end or an extra do in the code. The message from SAS suggests you are
missing an end statement, however only the programmer can say if the code is missing an end or has an extra do.

Line nesting
Number B M Original Code
1 data null ;
do a =1 to 10;
do b =1 to a;
doc =1 to b;
output;
end;

o

H O WowJ0 Ul b W
NNWNMNMNDWNERE OO
O OO OO0 O0OOoO oo

R

12 3 0 d = a;

13 3 0 **x* end;

14 3 0 select (a);

15 3 0 when (1) do;

l6 4 0 d = a;

17 3 0 end;

18 3 0 when (5) d = 0;
19 3 0 otherwise d = .;
20 3 0 end; /** select statement **/
21 2 0 end;

22 1 0 end;

23 1 0

“NO MATCHING DO/SELECT STATEMENT”

In the example below a do statement has been commented at line 3. When this program runs SAS will print the message “No
matching do/select statement” and abort. This time the base nesting (B) level at line 23 is negative, telling you that there are
more end statements than there are do statements. The nesting level cannot pinpoint the erroneous code because it does not
know if you provided an extra end or have a missing do. The message from SAS suggests you are missing a do statement,
however only the programmer can say if the code is missing a do or has an extra end.

Line nesting
Number B M Original Code

1 0 0 data null ;

2 0 0 do a =1 to 10;

3 1 0 *** do b =1 to a;

4 1 0 do c =1 to b;

5 2 0 output;

6 1 0 end;

7 1 0

8 1 0 if b = 5 then do;
9 2 0 d = b;

10 1 0 end;

11 1 0 else do;

12 2 0 d = a;

13 1 0 end;

14 1 0 select (a);

15 1 0 when (1) do;

le 2 0 d = a;

17 1 0 end;

18 1 0 when (5) d = 0;
19 1 0 otherwise d = .;
20 1 0 end; /** select statement **/
21 0 0 end;
22 -1 0 end;
23 -1 0

TESTING

The testing of the Symbol Table Generator has been extensive, however, the testing cannot be considered all encompassing.
The testing suite includes programs written by at least half a dozen programmers with varying levels of experience and using
styles vastly different from my own, and each other. The test suite demonstrates several of the limitations and restrictions
discussed in the next section.

The test suite includes a program over 120 lines long made up almost exclusively of comments to prove that all comment
combinations can be identified and ignored. This test of comments not only tests that comments are ignored, but also that
active program code leading, trailing, or between comments is properly recognized and represented in the symbol table.

Other tests check the use of the SAS keywords data, set, do, end, and select used as both keywords and variables alone and
in various combinations. Other tests check processes that use end as a keyword without a do keyword.

KNOWN LIMITATIONS / RESTRICTIONS

There are a few known limitations or restrictions in the Symbol Table Generator. Given the complexity of the code, there are
probably more that are not yet known.

MACROS

The Symbol Table Generator does not compile code as the SAS processor does, therefore it does not properly interpret the
use of macros. Macros are simply code substitution. That is, macro code is substituted into the job stream where a macro is
called. The Symbol Table Generator does not attempt the code substitution.

9

MACROS THAT CREATE CODE FRAGMENTS

Macros are often used to generate code fragments. Below is an extreme case of a macro being used to generate a code
fragment. This macro only generates the keyword end when called. The keyword do exists in the base code, but each do is
ended by calling the macro. The program below will function perfectly, but the Symbol Table Generator will not report the do /
end nesting accurately.

Line nesting
Number B M Original Code

1 0 0 %macro e;

2 0 0 end;

3 -1 0 %mend;

4 -1 0

5 -1 0 data one;

6 -1 0 do a =1 to 10;

7 0 0 do b =1 to 10;
8 1 0 do ¢ =1 to 10;
9 2 0 output;
10 2 0 %e;
11 2 0 %e;
12 2 0 Se;
13 2 0 run;

MACROS THAT BYPASS PROGRAM CODE

A common method of bypassing a large section of code in a program is to enclose it in a macro and never call the macro. The
SAS system will compile the macro as it would any other macro, but SAS does not know or care if the macro is ever actually
called. This is an effective way of bypassing blocks of code that contain slash-star star-slash comments.

Using this technique of bypassing code can deactivate dos or ends in your code; however the Symbol Table Generator does
not interpret the macro and may get lost. Below is an example that uses this technique. Though this program will execute and
probably run correctly, the Symbol Table Generator will parse the code that is intended to be skipped, counting dos and ends,
and will detect unbalanced dos / ends.

Line nesting
Number B M Original Code

1051 O 0 else do;

1052 1 0 if undersc = ' !

1053 1 0 then do;

1054 2 0 dd = ' ';

1055 2 0 end;

1056 1 0 else do;

1057 2 0

1058 2 0 %macro skipl;

1059 2 0 if indexc (undersc,'/-') = 0
1060 2 0 then do;

1061 3 0 dd = substr (undersc,1,2);
1062 3 0 if rank(dd) < 48 | rank(dd) > 57
1063 3 0 then dd = ' '

1064 3 0 end;

1065 2 0 else do;

1066 3 0 dd = substr (undersc,7,2);
1067 3 0 end;

1068 2 0 end;

1069 1 0 %mend skipl;

1070 1 0

1071 1 0 if indexc (undersc,'/-') *= 0
1072 1 0 then do;

1073 2 0 dd = scan(undersc,1,'/-"');
1074 2 0 if dd in ('UNK', 'DD')
1075 2 0 then dd = ' 'y

1076 2 0 end;

1077 1 0 else do;

1078 2 0 dd = substr (undersc,7,2);
1079 2 0 end;

1080 1 0 end;

1081 O 0

1082 O 0 end;

1083 -1 0

10

“UNREASONABLE” COMBINATION OF DOS AND ENDS IN TEMPLATE PROCEDURE

Using do or end in “unreasonable” ways will cause the base do / end nesting to produce unexpected results. In the example
below, though do and end are being used in a perfectly legal fashion, its acceptability may be in question. It seems
reasonable to believe that more meaningful names for the styles could be used.

Line nesting
Number B M Original Code
1 proc template;

o

0

2 0 0 define style end;

3 0 0 replace fonts /

4 0 0 'FixedFont' = ("Courier",2)

5 0 0 'BatchFixedFont' = ("SAS Monospace, Courier",2)
6 0 0 'FixedHeadingFont' = ("Courier",2)

7 0 0 'FixedStrongFont' = ("Courier",2,Bold)

8 0 0 'FixedEmphasisFont' = ("Courier",2,Italic);
9 0 0 end;

10 -1 0 run;

11 -1 0

12 -1 0 proc template;

13 -1 0 define style do;

14 O 0

15 0 0 parent = end;

16 0 0 replace fonts /

17 0 0 'FixedFont' = ("Courier",2)

18 0 0 'BatchFixedFont' = ("SAS Monospace, Courier",2)
19 0 0 'FixedHeadingFont' = ("Courier",2)
20 0 0 'FixedStrongFont' = ("Courier",2,Bold)
21 0 0 'FixedEmphasisFont' = ("Courier",2,Italic);
22 0 0 end;
23 -1 0 run;
24 -1 0

SPECIFICATIONS
The parameters of the Symbol Table Generator are

$macro symbol (

dsn /* REQUIRED, fully qualified program name to process */
,suppress = n /* Defaulted, suppress common keywords? Y|N x/
,nesting = 2 /* Defaulted, nesting level desired. 0]|1]2]3 */
, symbol =y /* Defaulted, provide symbol table? Y|N */

)i

» DSN, required positional parameter, the fully qualified file name for the Symbol Table Generator to process.
» SUPPRESS=, optional keyword parameter, valid values Y | N, default = N, indicates whether or not to suppress the
common keywords from the symbol table.
» NESTING=, optional keyword parameter, valid values 0 | 1 | 2 | 3, default = 2, indicates the level of nesting to provide in
the line numbered listing.
0 = no nesting
1 = base DO/END nesting
2 = base and macro DO/END nesting
3 = base and macro DO/END and macro nesting
» SYMBOL=, optional keyword parameter, valid values Y | N, default = Y, indicates whether or not to produce the symbol
table.

SO, WHAT DO YOU GET?
Appendix 1 shows a page from the line numbered listing with the code exactly as it appears in the provided program, including
comments.

Appendix 2 shows a sample of the Symbol Table. The tokens, or symbols, are in the first column, and the second column
contains all the line numbers on which the symbol is referenced.

11

DISCLAIMER

The New and Improved Symbol Table Generator has been tested against many programs, large and small, efficient or not,
conveniently human readable or not, written by many different programmers, experienced or not, technical or not. Many
different programming styles have been encountered. However, this in no way means that all scenarios have been tested or
accounted for.

RECOMMENDED READING

Johnson, Jim (May 2000), “Symbol Table Generator”, Proceedings of the 2000 Conference of the Pharmaceutical Industry
SAS Users Group, Cary, NC: SAS Institute, Inc., 415-420. This paper is available on the Lex Jansen website at
http://www.lexjansen.com/pharmasug/2000/techtech/tt07.pdf.

TRADEMARKS

SAS is a registered trademark or trademark of SAS Institute, Inc. in the USA and other countries. ® indicates USA registration.

ABOUT THE AUTHOR

Jim Johnson has been programming with SAS in the Pharmaceutical Industry since 1986. He has presented at many local,
regional, and national conferences and has been teaching in the SAS Certificate Program at Philadelphia University since its
inception in 1997. Jim has a reputation as a “problem solver” and efficiency enthusiast. His recent work includes large SAS
systems, writing programs that write programs, standard macro programming, advanced validation and documentation skills,
and an SDTM compliance verification system.

Jim Johnson
jimmy2960@verizon.net

12

Appendix 1

Line nesting

Number

LINE LISTING for c:\symbol.sas

Original Code

08:39 Thursday, February 10,

1
2011

NNMNNHFHFFRFRPFRPMNWEWWOWWRNNNNMNEFREPREPENONWOWOWOWWWWWWWWRNNNHEFRERREPNNNHEFEFENNNHOOOFROOOOOOOOOOOOOOOOOOoOo

OO0 O0OO00000O0O0000D0O0O00O0OO0OO0O0O0O0O0O0O0O0O0O0OO0 OO

Sk sk ok ok ok ok ok Sk ok ke k ok ok ok ok ok ok Sk Kk ok ok ok ok ok ok Sk kK ke ok ok ok ok ok ok ok Kk ok ok ok ok ok ok ok ok kK ok ok ok ok ok ok ok ok Sk Kk ok ok ok ok ok ok ok Sk Kk ok ok ok ok ok ok ok ok Kk ok ok ok ok ok ok ok

*

*
*

e e ok ok ok ok ok ok ok Kk kK Sk ok ok ok ok ok ok kS kR ko ks k ok ok ko ko k kK ko ko ko k ok k ko k ok ko k ok ok k ko k ok ok ok k ok ok ko kkk ok ok k ok ok ko k ok kK

/*

$macro symbol (dsn, suppress=n, nesting=2, symbol=y)
/*

gmacro count_do; /*
if data and leading = ';' /*
then data = 0; /*
/*

if set and leading = ';' /*
then set = 0; /*
/*

if template = 1 and /*
define = 1 and /*
symbol2 '"END' /*
then do; /*
define = 0; /*

end; /*

/*

else do; /** not part of proc template **/ /%
if symbol2 = '$DO' then do; /*

if indexc(trailing,'''"') = 0 and /*

indexc (leading, '''"') = 0 /*

then ml = 1; /*

end; /*

/*

if symbol2 = '$END' then do; /*

if indexc(trailing,'''"') = 0 or /*

indexc (leading, '''"') = 0 /*

then m0 = m0 - 1; /*

end; /*

/*

if symbol2 = 'DO' then do; /*

if not data and /*

not set /*

then do; /*

if when /*

then delims = '"*+-/:,=(""'"'; /*

else delims = '"*+-/:,=()"'''; /*

i

If PROC TEMPLATE is active
and it has an open DEFINE statement
then do not count the END.

* ?? why this limited number of delimiters ?? ;

* close paren removed from leading for

data step select like when (0) do ... H

* colon added to leading 20080331 for something like err: do not match ... ;
if (indexc (trailing,'*+-/,=$()''"') = 0 and
indexc (leading, delims) =0 and
(trailing *= ' ' or leading *“= ' ')
OR (trailing = ' ' and leading = ' ' and last_sym in ('THEN' 'ELSE'))
then d1 = 1; /*
if select then dos + 1; /*
end; /*
end; /** symbol2 = DO **/ /*
/*
if symbol2 = 'END' then do; /*
if (select = 0 OR (select = 1 and dos > 0)) and
(not data) and
(not set) /*
then do; /*
if indexc (trailing, '*+-/,=()''"'") = 0 and
indexc (leading, '*+-/,=()''"') = 0 and
(trailing "= ' ' or leading = ' ')
then do; /*
do = do - 1; /*
end; /*
end; /*
end; /** symbol2 = 'END' *%x/ /*
/*
if symbol in ('&' '%') /* if word is & or %
then; /* then do NOTHING! DO NOT DELETE!
else do; /* else output record.
count + 1; /*
output _ symb__ ; /*
last_sym = symbol2; /*

13

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Appendix 2

do

d1

DATA
data
datasets
date
datetime
DEFINE
define
delete
delimiter
delims
display

DO

end

file
fileexist
filename
first
flow

for
format
headline
IF

if

in

SYMBOL TABLE for c:\symbol.sas 3
08:39 Thursday, February 10, 2011

Line Numbers

293,296,297,300,305,319,322,329
175,184,421,424,426,454,456,463,465,473,475

64,64,184,421,433,433

50,184,433,434

112,339,488
10,11,37,57,116,118,119,146,174,199,445,453,462,472,484,495,499,520,522
529

517

152,206

348
17,20,197,344,350,447,448,455,456,457,464,465,466,467,474,475,476,477,478,522,523
262,281,311,333,490,504,532
182,190,191,365,381,384,390,394,402,406,411,417

41,42,47

447,448,455,456,457,464,465,466,467,474,475,476,477,478,523

36,488

19,23,24,30,36,39,55,59,63,71,91,97,151,155,161,205,212,220,241,245,258,269,278,296,306,309
320,330,342,357,366,372,378,380,382,387,399,401,413,425,511

139

51,56,85,132,132

170

349

49,488
23,42,71,215,245,249,265,274,313,316,325,360,399
18,55,86,131,488

21,28,34,52,53,65,66,67,75,77,94,100,153,164,165,171,176,207,217,223,250,251,263,272,282,301,
312,314,323,334,345,368,374,389,395,397,405,407,408,409,419,429,500,514

177

137

139

505

448,457,467,478,522,523

442,518

447,455,456,464,465,466,474,475,476,477

445,453,462,472,520

488
10,13,16,24,25,30,31,36,37,40,46,51,55,56,60,69,79,84,89,96,102,107,112,118,121,126,130,150,
154,205,213,238,243,246,254,267,276,304,308,318,327,338,346,348,358,362,370,377,379,381,383,
386,400,403,411,424,486,504,505,508,510

49,69,81,103,108,109,148,486

14

	WHAT IS A SYMBOL TABLE?

