
1

PharmaSUG 2011 – Paper AD08

An Excel Framework to Convert Clinical Data to CDISC SDTM Leveraging
SAS Technology

Sophie McCallum, Clinovo, Sunnyvale CA

Stephen Chan, Clinovo, Sunnyvale, CA

ABSTRACT
CDISC SDTM data is the standard format requested by the FDA for clinical trial data submission. SAS® is
often used as an Extract, Transform, Load (ETL) tool to manually convert SAS extracts from a clinical
database to SDTM format.

While this is a reasonable approach, it can quickly become tedious, error-prone, and time-consuming. In
addition, the code is difficult to maintain.

As an alternative, Clinovo has developed an Excel framework that maps any clinical database to CDISC
SDTM. All mapping definitions and rules written in Excel are then dynamically converted into a SAS program
that can perform the SDTM transformation & validation with minimum programming through a series of SAS
macros.

Our framework is highly extensible and we can rely on a function library of SAS macros for mapping
standard data elements. Additionally, this framework supports natively CDISC controlled terminology.

This presentation will be very helpful for SAS programmers interested in:

 Learning new SAS programming skills

 Using Microsoft Excel to dynamically generate SAS code and improve code re-usability

 Converting clinical data to the CDISC SDTM standard with minimum programming

 Helping their organization build an effective CDISC toolkit

 Promoting CDISC benefits within their organization

INTRODUCTION
CDISC Architect is a SAS application that converts clinical data into CDISC SDTM with minimum
programming. Designed for the pharmaceutical and biotechnology industry, CDISC Architect was designed
to expedite and improve the quality of FDA submission. By automatically and systematically translating data
into CDISC SDTM, the standard format for regulatory submission, companies are better prepared to improve
their time to market.

The CDISC Architect mapping rules are stored in an Excel spreadsheet, which is parsed and translated into
SAS code in real-time by a SAS-based transformation engine. The Excel spreadsheet acts as a set of
mapping specifications. The configuration of the Excel spreadsheet - i.e. the mapping file - is straightforward
for anyone with a technical background but is also accessible to a business analyst with no programming
experience. The transformation engine may be called by a SAS program, a UNIX shell or a DOS command
and integrates easily with any internal biometrics programming processes.

THE MAPPING FILE
GENERAL INFORMATION
The mapping file is an Excel file in XML format named “mapping.xls”. The mapping file contains several
sheets: the FORMAT tab, the domain tabs (DM, EX, IE etc) and the SUPPQUAL domains. A description of
these tabs is given below.

2

Figure 1. The different mapping file tabs

FORMAT TAB
All SAS formats can be used in the mapping file. However, you can also define custom formats and specify
them in the FORMAT tab (Figure 2).

The FORMAT tab contains 3 columns:

• format – Defines the format name.

• from – Defines the entry value that you want to apply the format to.

• tovalue – Defines the value that will replace the entry value.

As an example, in the Figure 2, the first format is $sev. If you apply this format to a variable, the value “1”
will be replaced by “MILD”.

Figure 2. FORMAT tab

3

DOMAIN TABS
Each SDTM domain that will be mapped has to have its own tab (Figure 3). The name of the tab defines the
SDTM domain dataset that is created (Data Management, Medical History etc).

Each domain tab contains 6 columns:

• Dataset – Specifies the source datasets that will be operated on to create the domain dataset as
defined by the name of the tab.

• Merge Key (optional) – Defines the variables that will be used to merge the datasets that are specified
in the Dataset column.

• Join (optional) – Specifies whether an inner or an outer join should be employed in merging the
datasets with a merge key.

• CDISC variable – Specifies the CDISC variables that will be created.

• Expression – Provides the detail on the assignment statement of the SDTM variable in the CDISC
variable column.

• Comments – It is merely for documentation purpose and is not used by CDISC Architect.

Figure 3. Medical History domain tab

1.4 SUPPQUAL TAB
The Supplemental Qualifiers (SUPPQUAL) dataset is used to capture non-standard variables and their
association to parent records in domains. It also allows capturing values for variables not presently included
in the general observation class models. Because the CDISC SDTM does not allow the addition of new
variables, it is necessary to represent the metadata and data for each non-standard variable/value
combination in the SUPPQUAL dataset.

4

The SUPPQUAL tab defines the variables to be created that cannot be mapped to defined SDTM variables.
Therefore, the SUPPQUAL variables metadata must be fully defined. This includes the domain name, the
variable name, label, type, length, source …

Once SUPPQUAL variables have been defined and created from the definitions in the SUPPQUAL, they are
computed directly within the DOMAIN tab. SUPPQUAL variables are differentiated from standard CDISC
variables by adding the prefix ‘~’ in the DOMAIN definitions.

Figure 4. SUPPQUAL tab

5

CDISC ARCHITECT INTERPRETATION OF THE MAPPING FILE
GENERAL INFORMATION
The CDISC Architect interprets the mapping file as instructions to map source datasets to SDTM.

Each domain tab contains instructions to create the dataset named by the tab, for example, DM. The source
datasets specified in the tab may be merged and/or ‘set’ (aggregated) together. The SDTM variables listed
in the CDISC variable column are assigned values as specified in the Expression column. The Expression
column may contain any valid SAS assignment or SAS macro from the function library that perform an
assignment.

DATASET COLUMN
The Dataset column indicates which source dataset to use. Before the CDISC Architect begins operating on
the datasets listed in the Dataset column, it checks if the “all” or “all(stack)” is listed as a dataset. “all”
instructs CDISC Architect to perform the variable computation only after all previous datasets have been
merged. “all(stack)” instructs CDISC Architect that all previous datasets will be stacked (SAS command
SET) together, and no merging will be done unless a merge key specifies which variable to use.

The dataset column may use a macro that creates a dataset to be operated on by CDISC Architect.

For instance, in Figure 5, the %cpd_importlist macro creates a dataset TV. This feature allows the
programmer to perform complex data operations on data using SAS that CDISC Architect mapping interface
is not able to support. The _dataset parameter is used to create the corresponding dataset in the tempdata
directory of CDISC Architect for troubleshooting. This mechanism is used for very complex mapping and
should be minimized to increase the readability of the mapping rules.

Figure 5. Example of dataset creation by a macro

MERGE KEY COLUMN
The CDISC Architect checks the merge key column to see if all merge key variables are the same for the
listed datasets in the Dataset column. If merge keys are different, the CDISC Architect will only merge
datasets with identical merge keys.

The CDISC Architect logic works for only up to two levels of merge. In the first pass, CDISC Architect will
merge all datasets separately that share the same merge key. This also means that a mapping file with a
single merge key will be incorrect and will not validate. If two levels of merge are not sufficient for complex
mapping, then it is advised to use a macro to be called from the dataset column.

CDISC VARIABLE COLUMN
This column indicates the name of the CDISC variable to be created. If the CDISC variable is prefixed by the
‘~’ character it means that the variable is defined in SUPPQUAL.

The symbol ‘*’ defines a temporary variable to be created within the dataset group. The temporary variable
is then used to create other CDISC variables that are created after the temporary variable.

6

EXPRESSION COLUMN
The Expression column can contain a:

• String – For example in Figure 8, the value for the CDISC variable DSSPID will be the constant string
“INFCONS”.

• Dataset variable – For example, the value for the CDISC variable DSDTC will be the value of the
variable dcmdt from the source dataset elco.

• Call – For example, a call to a macro from the function library. The CDISC Architect can use macros
that have already been programmed for a specific purpose. For instance, the CDISC variable DSTERM
for the source dataset disc has for value the result of the call of the macro %FORMAT. This macro has
for parameter the variable dccmp from the disc dataset and the format disp_event.

Figure 6. Expression column for the domain DS

7

JOIN COLUMN
The JOIN column is optional and is usually placed on the right of the ‘Merge Key’ column. It can take the
values ‘I’ (inner join) or ‘O’ (outer join). With this column, you can specify the type of join you want to use. If
‘I’ is indicated, the IN option is employed on the dataset. If ‘O’ is indicated, the IN option is not employed on
the dataset. If the join column is not present then the IN option is employed on both datasets. There are four
possibilities which are illustrated below:

data data3; *(I,I);
 merge data1(in=indata1) data2(in=indata2);
 by var1;
 if indata1 and indata2;
run;

data data3; *(O,O);
 merge data1 data2;
 by var1;
run;

data data3; *(I,O);
 merge data1(in=indata1) data2;
 by var1;
 if indata1;
run;

data data3;*(O,I);
 merge data1 data2(in=indata2);
 by var1;
 if indata2;
run;

EXAMPLES OF DATASET MANIPULATION

CREATION FROM A SINGLE DATASET
If only one source dataset is available in the Dataset column, the domain will be created from a single
dataset.

Figure 7. AE domain dataset creation from a single source dataset

8

For example, in Figure 7, the CDISC Architect creates a dataset AE in a single data step from the aedeaede
dataset. The dataset aedeaede is set and each CDISC variable is assigned to the expression as specified
in the tab. The code would look as follows:

data ae;

 set aedeaede;

 studyid=study;

 domain=&domain;

 usubjid=%concatenate(_variables=study invsite patnum);

 …

run;

CREATION BY STACKING MULTIPLE DATASETS FROM A SOURCE DATASET
In the figure below, we used several datasets in the Dataset column and used the term “all(stack)”. The
CDISC Architect creates a dataset VS by stacking multiple datasets created from the vsdebsde dataset.

Figure 8. VS domain dataset creation from multiple datasets

9

In SAS, the code that performs this transformation would look as follows:

data temp1;

 set vsdevsde(where=(resp ne .));

 vstestcd=”RESP”:

 …

run;

data temp2;

 set vsdevsde(where=(bpd ne .));

 vstestcd=”DIABP”:

 …

run;

data VS;

 set temp1 temp2;

 …

run;

MERGING MULTIPLE DATASETS USING THE SAME MERGE KEY
If the merge key column is not defined, the source datasets will be merged by the default variable: the
patient ID.

Furthermore, the CDISC Architect scans the Dataset column and discovers the special defined term “all”
which instructs CDISC Architect that all datasets encountered will be merged. CDISC Architect creates each
dataset in the order that they are specified in the Dataset column. Thus, the CDISC Architect will create the
dataset eldeelde. Then, the CDISC Architect will create the dataset elco. Once the two datasets are
created, the CDISC Architect will merge the datasets together based on the merge key specified. The
CDISC Architect now encounters the “all”, which instructs the CDISC Architect to create the CDISC
variables. The equivalent code would look as follows:

data temp1;
 set eldeelde;
 studyid=study;
 domain=&domain;
 usubjid=%concatenate(_variables=study invsite patnum);
 …
run;

data temp2;
 set elco;
 studyid=study;
 domain=&domain;
 usubjid=%concatenate(_variables=study invsite patnum);
 …
run;

data temp3;
 merge temp1(in=intemp1) temp2(in=intemp2);
 by patnum;
 if intemp1 and intemp2;
run;

data IE;
 set temp3;

10

 ieseq=%sequence();
run;

The CDISC Architect can do more than a single merge, for instance if three datasets are specified instead of
two:

data temp1;
…
run;

data temp2;
…
run;

data temp3;
…
run;

data temp4;
merge temp1(in=intemp1) temp2(in=intemp2) temp3(in=intemp3);
 by patnum;
 if intemp1 and intemp2 and intemp3;
run;

data IE;
 set temp4;
 ieseq=%sequence();
run;

MERGING MULTIPLE DATASETS USING DIFFERENT MERGE KEYS
The CDISC Architect can create and merge each dataset in the order that they are specified in the Dataset
column. Furthermore, the CDISC Architect scans the Dataset column and discovers the special defined term
“all(stack)” which instructs the CDISC Architect that all merged datasets will be stacked by setting together.

The CDISC Architect will create the datasets hxdehxde and hxco, and merge on PATNUM. The, the CDISC
Architect will create the dataset srdesrde and srco, and merge on PT. Once the two datasets are created,
the CDISC Architect will stack the two creating an MH dataset:

data temp1;
 set hxdehxde;
 …
run;

data temp2;
 set hxco;
 …
run;

data temp12;
 merge temp1(in=intemp1) temp2(in=intemp2);
 by patnum;
 if intemp1 and intemp2;
run;

data temp3;
 set srdesrde;
 …
run;

data temp4;
 set srco;

11

 …
run;

data temp34;
 merge temp3(in=intemp3) temp4(in=intemp4);
 by pt;
 if intemp3 and intemp4;
run;

data MH;
 set temp12 temp34;
 mhseq=%sequence();
 …
run;

SOLUTION BENEFITS
THE NEED FOR A CDISC SDTM DATA MODEL
CDISC is a standard initiative for clinical data that started in 1998. As a result, it is mature and offers a
complete framework to manage clinical data in a standardized and uniform way. Once clinical data is saved
in a standard format, we can improve SAS code re-usability for the many programs used in data
management and biostatistics: Edit Checks, Patient Profile, TLGs, and custom reports. In addition, cross
study analyses become easier, and Clinical Summary of Safety (CSS) or Clinical Summary of Efficacy are
readily available. Finally, CDISC is a standard that is strongly recommended by the FDA, thus complying to
this format significantly speeds-up the review process.

WHY MAPPING IS NECESSARY
While many EDC vendors are attempting to support the CDASH standard in order to start capturing CDISC
data directly from the system, it is not really feasible for the clinical database to fully comply with the
company CDISC data model for a number of reasons:

• A clinical database like an EDC system needs to be flexible enough to capture any form of clinical data
and cannot be tied to a particular data model.

• The CDISC model is subject to interpretation and allows for some flexibility, which means that every
sponsor company will implement SDTM with some variation.

• SDTM structure is flat and non hierarchical

As a result, programmers have to convert the clinical database into a SDTM format. While this task is not
very complex, it is extremely tedious due to the number of CDISC domains and variables. Also, many ETL
(Extract, Transform, Load) programmers lack the CDISC domain expertise and this may result in delays and
errors in the data conversion. Although SAS is one of the leading ETL vendors, a full CDISC conversion
would quickly result in thousand of lines of code difficult to maintain, understand and re-use.

STREAMLINE THE DATA MAPPING & CONVERSION
Our framework allows CDISC domain experts with minimum programming experience to implement complex
CDISC transformation as the data mapping rules are fully abstracted in an easy-to-read Excel spreadsheet.
In fact, this spreadsheet can play the role of specifications. It is also source code as the spreadsheet is
automatically converted through our SAS macro to SAS code to convert the clinical data into SDTM. This
approach allows for quick updates of the mapping definitions and versioning of the mapping excel file. Data
conversion may then take place any time new raw data extracts are produced through a simple SAS macro
call.

CONCLUSION
We showed in this paper how we could use an Excel-based framework to document mapping rules, and use
SAS to automatically convert clinical data to the CDISC SDTM format. It shows how SAS is an effective
development platform for ETL transformation. By streamlining the CDISC data transformation process, all
promises for code re-usability, data reporting, cross-study analyses, and improved FDA submission are
made reality.

12

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Name: Sophie McCallum
Enterprise: Clinovo
Address: 1208 East Arques Avenue
City, State ZIP: Sunnyvale CA 94085
Work Phone: 408-773-6258
E-mail: sophie@clinovo.com
Web: www.clinovo.com

Name: Stephen Chan
Enterprise: Clinovo
Address: 1208 East Arques Avenue
City, State ZIP: Sunnyvale CA 94085
Work Phone: 408-940-3941
E-mail: stephen@clinovo.com
Web: www.clinovo.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

