
1

PharmaSUG 2011 - Paper TT04

Using a HASH Table to Reference Variables in an Array by Name

John Henry King, Hopper, Arkansas

ABSTRACT
Array elements are referenced by their index value using a constant, e.g. a[1], a[2], or with a variable whose value contains the
index a[i] where i=1,2. This works well enough for most applications but there are situations where you need to reference an
array element but you only know the name of the variable not the array index. In a situation like that a HASH table can be
used to provide a lookup table for the array index using the variable name as a key. An example will be shown where this
technique is applied to an ODS OUTPUT data set created by PROC FREQ, to normalize the table variables. Another example
will show that many CSV files with a varying number of fields and with the fields in any order can be read in a single data step.

INTRODUCTION
Usually when we write a data step program we know the names of the variables. In effect the variable names are constant
data and are compiled with the programs various other parts. Of course this works well enough most of the time. However
there are situations, perhaps when we write a dynamic program, were we don’t know the names of the variables to process.
An example of this type of data set would be a stacked frequency counts data set created by PROC FREQ using ODS
OUTPUT.

 Cum Cum
Obs Table Sex Frequency Percent Frequency Percent Age

 1 Table Sex F 9 47.37 9 47.37 .
 2 Table Sex M 10 52.63 19 100.00 .
 3 Table Age 2 10.53 2 10.53 11
 4 Table Age 5 26.32 7 36.84 12
 5 Table Age 3 15.79 10 52.63 13
 6 Table Age 4 21.05 14 73.68 14
 7 Table Age 4 21.05 18 94.74 15
 8 Table Age 1 5.26 19 100.00 16

This data set contains the one-way frequency tables for SEX and AGE from SASHELP.CLASS. If there had been more
variables named in the TABLES statement this data would have more observations and more variables.

EXAMPLE 1: NORMALIZING OUTPUT DATA SET FROM PROC FREQ.
In a response to a question on the SAS® Discussion Forums PROC FREQ -- getting both unformatted and formatted values
into CSV file I posted a program that uses the technique of referencing an array element by name using a HASH table. The
program normalizes the table variables into either CVALUE or NVALUE depending on the variable type. The following
example is similar to the program I suggested for the SAS Discussion Forum.

proc format;
 value age 0-12='Tween' 13-19='Teen';
 value $sex 'M'='Male' 'F'= 'Female';
 run;
data class;
 set sashelp.class;
 attrib age format=age. label='Age Group';
 attrib sex format=$sex. label='Gender';

 run;
ods listing close;
proc freq data=class;
 ods output OneWayFreqs=OneWayFreqs;

http://support.sas.com/forums/message.jspa?messageID=45396&tstart=0�
http://support.sas.com/forums/message.jspa?messageID=45396&tstart=0�

2

 run;
ods listing;

These statements create the data set, “ONEWAYFREQS” used in the example. This is a data set of stacked frequency tables
see Exhibit 1 for contents and complete data listing. The following data step will normalized the table variables; the program is
dynamic in that any ONEWAYFREQS output from PROC FREQ can be processed with this data step. All the information
about which variables to process are contained in the data set and processed accordingly. The numbered statements are
described in detail below. See Exhibit 2 for the output from this data step.

data Normalized; 1
 length vName $32 vLabel $256 vType $1 vLength 8 vFormat $32 2
 i nValue 8 cValue $64 Formatted $256;
 if 0 then set OneWayFreqs; 3

 array _c _character_; 4
 array _n _numeric_;

 if _n_ eq 1 then do; 5
 declare hash vr(); 6
 vr.definekey('vName');
 vr.definedata('vName','vLabel','vType','VLength','vFormat','_i_');
 vr.definedone();
 do _i_ = 1 to dim(_c); 7
 vName = vName(_c[_i_]);
 vType = vType(_c[_i_]);
 vLength = vLength(_c[_i_]);
 vFormat = vFormat(_c[_i_]);
 vLabel = vLabel(_c[_i_]);
 vr.add();
 end;
 do _i_ = 1 to dim(_n); 7
 vName = vName(_n[_i_]);
 vType = vType(_n[_i_]);
 vLength = vLength(_n[_i_]);
 vFormat = vFormat(_n[_i_]);
 vLabel = vLabel(_n[_i_]);
 vr.add();
 end;
 vr.output(dataset:'vr'); 8
 end;
 set OneWayFreqs; 9
 vName = scan(table,-1,' '); 10
 formatted = vvalueX(vName); 11
 vr.find(); 12
 select(vType); 13
 when('N') nValue = _n[_i_];
 when('C') cValue = _c[_i_];
 end;
 keep vName vLabel vType Vlength vFormat 14
 nValue cValue Formatted
 Frequency Percent CumFrequency CumPercent;
 run; 15

1. The familiar DATA statement to start the definition of a data step program and name the output data set.
2. LENGTH used to define variables. Variables beginning with V will contain attributes of the normalized variables.

CVALUE and NVALUE will hold the values of the character and numeric normalized variables respectively. FORMATTED
is the formatted value of each variable created and _I_ is the array index variable.

3. The unexecuted SET statement defines all the variables in the input data. This is used at this location in the program in
order to have these variables included in the arrays defined in “3”.

4. Define two arrays one of all the character variables another of all the numeric variables. These arrays will include all the
variables that were summarized by PROC FREQ plus all other variables that have been named in the LENGTH
statement. We are interested in the ones summarized by PROC FREQ but we don’t know the names.

5. Do the next statements only one time when _N_=1.

3

6. Declare a HASH object named VR and define the attributes of the HASH object using the methods
a. DEFINEKEY defines VNAME as the variable that the HASH is keyed on.
b. DEFINEDATA defines the variables that are stored as data in the HASH.
c. DEFINEDONE signals no more DEFINEKEY or DEFINEDATA method statements follow.

7. Fill the HASH with the data about the variables defined by the arrays _C and _N. The V functions are used to extract the
relevant metadata about each variable and the array index _I_ associated the each variable. This data is stored
VR.ADD() in the hash VR indexed by VNAME.

8. The OUTPUT method creates a data set of the data stored in the HASH. This is not an important part of the program and
is only done to make it easier to see what data is contained in the hash object. See Exhibit 3 for contents and complete
data listing.

9. Read the data created by PROC FREQ.
10. Parse the variable TABLE for the name of the variable that the current observation is associated with.
11. Using VNAME create a formatted version of the variable using VVALUEX. If we were just making a stacked data

summary table this would probably be the only normalized value we would need.
12. Look up the metadata for the variable identified by VNAME using the FIND method. This sets the values of all the V

variables defined above and the all important array index _I_.
13. Now that we know the type and array index assign NVALUE or CVALUE accordingly.
14. KEEP the variables of interest.
15. Signal the end of the step.

EXAMPLE 2: READING MULTIPLE CSV FILES WITH CHANGING NUMBER OF VARIABLES.
This question was posted on SAS-L Reading in Multiple CSV files with changing number of variables regarding reading CSV
files. The user mentions that there are thousands of files and the files do not have exactly the same structure, all fields are not
present in all files or in the same order. The only thing we know is the names of the fields we want to read and the variable
type for each field. I suppose we could write a macro loop program to call PROC IMPORT for each CSV file but did I mention
there are thousands of files to read. Macro looping on PROC IMPORT would probably take a very long time and then we still
need to combine the SAS data sets. By using the technique demonstrated here we can write a single data step program that
will read all the files and create a single SAS data set.

Consider three small CSV files TT04a.csv, TT04b.csv, and TT04c.csv, they will provide input to the example.

TT04A.csv TT04B.csv TT04C.csv
x,y,z z,x,a,s x,z,dob
1,3,2 5,55,5,M 3,99,03/29/2008
.a,2,3 6,2,6,F .b,1,05/22/1985
1,9,7

For this example we will define a data set that has variables X, Y, DOB, and S. Notice that one of the fields Z will not be
included in the final data set. To communicate the variable information to the data step that reads the CSV files a data set is
defined that has all the variables of interest including any INFORMATS, FORMATS and LABELS. INFORMATS are
particularly import for reading any field that cannot be read with a default character of numeric INFORMAT. The following
data step is used in our example; it creates a data set with zero observations. CALL MISSING is used to keep the step from
generating uninitialized variable messages.

data csvData0;
 attrib x length= 8;
 attrib y length= 8;
 attrib dob length= 8 informat=mmddyy10. format=date9.;
 attrib s length= $1 informat=$1.;
 stop;
 call missing(of _all_);
 run;

After reading the CSV files a data set with the following data will be created.

http://www.listserv.uga.edu/cgi-bin/wa?A2=ind0810B&L=sas-l&D=0&P=22837�

4

 File
 Obs x y dob s Name

 1 1 3 . TT04A
 2 A 2 . TT04A
 3 1 9 . TT04A
 4 55 . . M TT04B
 5 2 . . F TT04B
 6 3 . 29MAR2008 TT04C
 7 B . 22MAY1985 TT04C

The data step that follows is a dynamic CSV reader. It will read the file(s) defined by the file reference using the variable
information passed to it by the data set CSVDATA0.

filename FT16F001 'TT04*.csv'; 1
data csvData; 2
 length cdummy $1 ndummy 8; 3
 call missing(cdummy,ndummy); 4
 if 0 then set csvData0; 5
 array _cvars[*] _character_; 6
 array _nvars[*] _numeric_ ;

 length vname $32 vtype $1 k j 8; 7
 declare hash vinfo(); 8
 vinfo.definekey('vname');
 vinfo.definedata('vname','k','vtype');
 vinfo.definedone();

 do k = 1 to dim(_cvars); 9
 vname = upcase(vname(_cvars[k]));
 vtype = vtype(_cvars[k]);
 vinfo.add();
 end;
 do k = 1 to dim(_nvars);
 vname = upcase(vname(_nvars[k]));
 vtype = vtype(_nvars[k]);
 vinfo.add();
 end;
 vinfo.output(dataset:'vinfo'); 10

 declare hash finfo(ordered:'a'); 11
 finfo.defineKey('j');
 finfo.defineData('vname','j');
 finfo.defineDone();
 declare hiter fI('finfo'); 12

 length fname $256 FileName $64; 13
 infile FT16F001 dsd missover filename=fname eof=eof eov=eov; 14
 do _n_ = 1 by 1; 15
 call missing(of _cvars[*] _nvars[*]); 16
 input @; 17
 if _n_ eq 1 or eov then do; 18
 finfo.clear(); 19
 FileName = scan(Fname,-2,'\.'); 20
 eov = 0; 21
 do j = 1 by 1; 22
 input vname:$upcase32. @; 23
 if missing(vname) then leave; 24
 finfo.add(); 25
 end;
 finfo.output(dataset:csvfilename); 26
 end;
 else do; 27
 do while(fi.next() eq 0); 28
 rc = vinfo.find(); 29

5

 if rc eq 0 then select(vtype); 30
 when('C') input _cvars[k] @;
 when('N') input _nvars[k] @;
 end;
 else input cdummy:$1. @; 31
 end;
 output; 32
 end;
 input; 33
 end;
 eof: 34
 stop; 35
 drop vname vtype k j cdummy ndummy rc; 36
 run;

1. Define a FILEREF with wildcard which allows reading any number of file as if they are one stream of data. INFILE
statement options will provide variables to differentiate the files as they are being read.

2. Signal the start of a data step program and name the output data set.
3. Define two “dummy” variables one character and one numeric to insure the ARRAY statements don’t fail if the data set

CSVDATA0 has no character or numeric variables.
4. CALL MISSING insures there are no uninitialized variable messages.
5. This unexecuted SET statement defines the variables in CSVDATA0 to this data step.
6. Now define two arrays of all the variables that are defined at this point in the complication; one for all the character

variables and another of all the numeric variables. It is important to understand that variables defined following these
statements are not included in these two arrays.

7. Define utility variables:
a. VNAME, VTYPE and K are used in the VINFO hash they provide the reference to the index to the arrays defined

in “6”.
b. J is the index to the HASH of column names read from the first record of each CSV file

8. Declare a HASH object named VINFO and define the attributes of the HASH object using methods
a. DEFINEKEY defines VNAME as the variable that the HASH is keyed on.
b. DEFINEDATA defines the variables that are stored as data in the HASH.
c. DEFINEDONE signals no more DEFINEKEY or DEFINEDATA method statements follow.

9. Fill the variable information hash VINFO with each variables type, VTYPE, and array index K.
10. Output the data in the VINFO hash to a SAS data set. The data shown here for our example shows the information

needed to reference the data in the arrays defined in “6”. If we want to reference variable X this hash tells us the array is
the numeric array, VTYPE=N with array index K=2.

Obs vname k vtype

 1 X 2 N
 2 Y 3 N
 3 CDUMMY 1 C
 4 NDUMMY 1 N
 5 DOB 4 N

11. Define another hash, FINFO, to hold the CSV file field information. This hash is indexed on J the position of the field
name in the field names record of each CSV. The data item is the field name. As the values of this hash are read the
data values stored in VNAME provide the lookup to the array index in the VINFO hash.

12. Declare a hash iterator object. The iterator object allows the program to use the hash like an array and easily process the
hash based on the lookup keys. For each data record in the CSV files the program will iterate over the field information
hash to read each field from the CSV.

13. Declare two variables to facilitate working with the CSV filenames.
14. The input statement opens the FILEREF FT16F001 and specifies the various options needed.

a. DSD (delimiter-sensitive data) used to specify how the delimiters in the CSV file are handled.
b. MISSOVER specifies that attempts to read past the end of record cause the variable to be assigned a missing

value while not flowing to the next record.

6

c. FILENAME= specifies a variable that will receive the full path name of the file where the current records are
being read from.

d. EOF= specifies a statement label where the program will jump to when the program reaches end of file.
e. EOV= specified a flag variable that is set to 1 when the first record of the concatenated files are read. The

program will use this flag to determine when to read the field names for each file.
15. The program uses and iterative DO instead of the tradition DATA step loop to read the file. This is an infinite loop but the

INFILE statement option EOF will save us.
16. Since the program is not using the data step loop CALL MISSING is used to insure that the values being read are

initialized to missing.
17. Each time the program reads a record it needs to determine if the record is a data record or field name record so each

record is read and held with the “trailing at”.
18. If the record is the first one _N_=1 or the first record in the concatenation EOV=1 process the field names. EOV is not set

to one for first file read that is why we need to check _N_ EQ 1.
19. The field information hash is cleared because each file in the concatenation has potentially different fields in a different

order.
20. Scan the relevant information from FNAME to create a variable to identify the source file for each record. FNAME is set to

the full path of the file being read.
21. Reset EOV, this variable is automatically set by the INFILE statement but the user has to set it back to zero or the value

stays one until it is reset to one again by the INFILE statement.
22. Start a loop and count by 1.
23. Read a field name from the field names record of the CSV.
24. Check if VNAME is missing and exit loop if it is. The MISSOVER option sets VNAME to missing when the fields are

exhausted, i.e. there is an attempt to read past the end of the record.
25. Using the ADD method add the Jth field name to the field information hash. This hash is essentially an array that will

change dimension for each new CSV.
26. Using the OUTPUT method output the FINFO hash to a data set, this is for the example only, but makes it easy to see the

result of reading the field name record. Here you can see that there are three fields X, Y and Z. With the data in this hash
we know the name of each field which in turn can be used to lookup the information need to read into a like named
variable.

 WORK.TT04A WORK.TT04B WORK.TT04C
Obs vname j Obs vname j Obs vname j

 1 X 1 1 Z 1 1 X 1
 2 Y 2 2 X 2 2 Z 2
 3 Z 3 3 A 3 3 DOB 3
 4 S 4

27. When the record is not a field information record but a data record do the work to read the fields.
28. Using the hash iterator created in “12” process all the records in the hash. If we were using an ARRAY this would be “DO

J=1 TO DIM(FINFO);” the difference here is we don’t know the dimension.
29. Using the FIND method and the key stored in VNAME returned from iterating over the FINFO hash look-up the array

index information stored in the VINFO hash. RC will contain information on the success of this operation. If the field is
not found in the VINFO hash the value of RC will not be zero, indicating a field that will not be read into the output data
set.

30. If the FIND was successful RC=0 then we can read the field based on data type and array index.
31. Otherwise read the field as CDUMMY to advance the input pointer to the next field.
32. Write the record to the output data set named in “2”.
33. Release the held input record.
34. This is the statement label named it the INFILE statement option EOF. This is object of an implied GOTO statement, the

program branches here on end of file.
35. When the program jumps to EOF: STOP.
36. Drop the utility variables.

7

CONCLUSION
This paper has described two programs where the variables in an array are reference by name. This is accomplished using a
hash keyed on variable name that stores the array index in the data section of the hash. This technique is useful for
processing ODS output data sets like those created by PROC FREQ. It is especially useful where an application reads CSV
files when the order of the fields is not consistent from file to file, or there are fields that are unwanted or unexpected.

CONTACT INFORMATION
John Henry King
Ouachita Clinical Data Services, Inc.
1769 Hwy 240 West
Hopper, AR 71935
PH: 501-351-0432

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

EXHIBIT 1: ODS OUTPUT ONEWAYFREQS
This is a listing of most the variables used in the Example 1 variables not relevant to the example are omitted.

 Table Name Frequency Percent Sex Age Height Weight

Table Name Alfred 1 5.2632 . . .
Table Name Alice 1 5.2632 . . .
Table Name Barbara 1 5.2632 . . .
Table Name Carol 1 5.2632 . . .
Table Name Henry 1 5.2632 . . .
Table Name James 1 5.2632 . . .
Table Name Jane 1 5.2632 . . .
Table Name Janet 1 5.2632 . . .
Table Name Jeffrey 1 5.2632 . . .
Table Name John 1 5.2632 . . .
Table Name Joyce 1 5.2632 . . .
Table Name Judy 1 5.2632 . . .
Table Name Louise 1 5.2632 . . .
Table Name Mary 1 5.2632 . . .
Table Name Philip 1 5.2632 . . .
Table Name Robert 1 5.2632 . . .
Table Name Ronald 1 5.2632 . . .
Table Name Thomas 1 5.2632 . . .
Table Name William 1 5.2632 . . .
Table Sex 9 47.3684 F . . .
Table Sex 10 52.6316 M . . .
Table Age 7 36.8421 11 . .
Table Age 12 63.1579 13 . .
Table Height 1 5.2632 . 51.3 .
Table Height 1 5.2632 . 56.3 .
Table Height 1 5.2632 . 56.5 .
Table Height 1 5.2632 . 57.3 .
Table Height 1 5.2632 . 57.5 .
Table Height 1 5.2632 . 59.0 .
Table Height 1 5.2632 . 59.8 .
Table Height 2 10.5263 . 62.5 .
Table Height 1 5.2632 . 62.8 .
Table Height 1 5.2632 . 63.5 .

8

Table Height 1 5.2632 . 64.3 .
Table Height 1 5.2632 . 64.8 .
Table Height 1 5.2632 . 65.3 .
Table Height 2 10.5263 . 66.5 .
Table Height 1 5.2632 . 67.0 .
Table Height 1 5.2632 . 69.0 .
Table Height 1 5.2632 . 72.0 .
Table Weight 1 5.2632 . . 50.5
Table Weight 1 5.2632 . . 77.0
Table Weight 1 5.2632 . . 83.0
Table Weight 2 10.5263 . . 84.0
Table Weight 1 5.2632 . . 84.5
Table Weight 1 5.2632 . . 85.0
Table Weight 1 5.2632 . . 90.0
Table Weight 1 5.2632 . . 98.0
Table Weight 1 5.2632 . . 99.5
Table Weight 2 10.5263 . . 102.5
Table Weight 2 10.5263 . . 112.0
Table Weight 2 10.5263 . . 112.5
Table Weight 1 5.2632 . . 128.0
Table Weight 1 5.2632 . . 133.0
Table Weight 1 5.2632 . . 150.0

EXHIBIT 2: DATA NORMALIZED
This is the data created in Example 1, the normalized output from PROC FREQ.

 Variables in Creation Order

 # Variable Type Len Format Label

 1 vName Char 32
 2 vLabel Char 256
 3 vType Char 1
 4 vLength Num 8
 5 vFormat Char 32
 6 nValue Num 8
 7 cValue Char 64
 8 Formatted Char 256
 9 Frequency Num 8 BEST8.
 10 Percent Num 8 6.2
 11 CumFrequency Num 8 BEST8. Cumulative Frequency
 12 CumPercent Num 8 6.2 Cumulative Percent

Variables 9 through 12, Frequency, Percent, CumFrequency, and CumPercent and some observations are omitted from the
listing below.

 v v n
Obs vName vLabel Type Length vFormat Value cValue Formatted

 1 Name Name C 8 $8. . Alfred Alfred
 2 Name Name C 8 $8. . Alice Alice
 3 Name Name C 8 $8. . Barbara Barbara

…
 19 Name Name C 8 $8. . William William
 20 Sex Gender C 1 $SEX6. . F Female
 21 Sex Gender C 1 $SEX6. . M Male

9

 v v n
Obs vName vLabel Type Length vFormat Value cValue Formatted
 22 Age Age Group N 8 AGE5. 11.0 Tween
 23 Age Age Group N 8 AGE5. 13.0 Teen
 24 Height Height N 8 BEST12. 51.3 51.3
 25 Height Height N 8 BEST12. 56.3 56.3

…
 40 Height Height N 8 BEST12. 72.0 72
 41 Weight Weight N 8 BEST12. 50.5 50.5
 42 Weight Weight N 8 BEST12. 77.0 77

…
 55 Weight Weight N 8 BEST12. 150.0 150

EXHIBIT 3: DATA SET VR
This is data set VR created by the OUTPUT method in Example 1, it is the data contain in the hash VR.

 Variables in Creation Order

 # Variable Type Len

 1 vName Char 32
 2 vLabel Char 256
 3 vType Char 1
 4 vLength Num 8
 5 vFormat Char 32
 6 _i_ Num 8

 v v
Obs vName vLabel Type Length vFormat _i_

 1 nValue nValue N 8 BEST12. 2
 2 vLabel vLabel C 256 $256. 2
 3 F_Height Height C 6 $6. 13
 4 vLength vLength N 8 BEST12. 1
 5 CumPercent Cumulative Percent N 8 F6.2 6
 6 Name Name C 8 $8. 9
 7 vType vType C 1 $1. 3
 8 vFormat vFormat C 32 $32. 4
 9 F_Weight Weight C 6 $6. 14
 10 Weight Weight N 8 BEST12. 9
 11 vName vName C 32 $32. 1
 12 F_Name Name C 7 $7. 8
 13 Table Table C 256 $256. 7
 14 Formatted Formatted C 256 $256. 6
 15 Height Height N 8 BEST12. 8
 16 cValue cValue C 64 $64. 5
 17 CumFrequency Cumulative Frequency N 8 BEST8. 5
 18 Percent Percent N 8 F6.2 4
 19 Age Age Group N 8 AGE5. 7
 20 F_Sex Sex C 6 $6. 10
 21 F_Age Age C 5 $5. 12
 22 Frequency Frequency N 8 BEST8. 3
 23 Sex Gender C 1 $SEX6. 11

	Abstract
	Introduction
	Example 1: normalizing output data set from proc freq.
	Example 2: reading multiple csv files with changing number of variables.
	Conclusion
	contact information
	EXhibit 1: ODS output ONEWAYFREQS
	Exhibit 2: data normalized
	Exhibit 3: Data set VR

