
1

PharmaSUG 2011 – Paper TT01

Scatter Charts of Serial Observations with Proc SGPLOT
and Graphics Template Language

Anthony L. Feliu, Genzyme Corporation, Cambridge, Massachusetts

ABSTRACT

The new statistical graphics procedures and underlying Graphics Template Language (GTL) in SAS® 9.2 offer programmers
the opportunity to create sophisticated, publication–ready charts using less code than with the traditional graphics procedures.
This paper selects one chart common to clinical trials—scatter chart to trend observational data—and presents a step-by-step
analysis of the code to create this output, including how sample counts can be presented below the chart image.

INTRODUCTION

Clinical trials are conducted to assess the safety and efficacy of drug products and devices. Patient data are routinely collected
at intervals prescribed in the protocol, and analyzed by comparing findings for study subjects vs. a comparator group, or by
comparing pre– vs. post–treatment findings for a single cohort.

Most trials collect voluminous
quantities of data, particularly
laboratory test results.
Therefore, graphical data
presentation is an important
technique to comprehend
patterns that might not be easily
discerned from tabular or
summarized outputs. Among the
charts used for this purpose is
one presenting the mean test
result at serial visits, as shown at
left.

With the traditional graphics
procedures, most charting
requires data preprocessing and
painstaking configuration of both
GOPTIONS and procedure
options.

However, the SAS 9.2 statistical
graphics functionality
considerably simplifies the task of
creating this chart. Firstly, some
computational capability is
encapsulated with the procedure,
allowing the observational file to

be charted without prior summarization. Secondly, the overall chart appearance leverages the Output Delivery System (ODS),
conferring consistency across a set of outputs. Finally, customizations can be implemented by plot statement options within
the procedure or by preparing a specific GTL template.

In this paper, four techniques to create a mean–test–result chart with SGPLOT and GTL programming are discussed.

2

APPROACH 1: PROC SGPLOT WITH SOURCE DATA

Given raw data with one observation per record, such as the CDISC ADaM Basic Dataset Structure (BDS), a trending chart
can be created with one concise call to the SGPLOT procedure:

proc sgplot data = work.adam ;
 vline avisitn / response = aval
 group = trtan
 stat = mean
 limitstat = stddev
 limits = both
 markers ;
 where paramcd = 'MYTEST' ;
run ;

Behind the scenes, observations are grouped by visit number
AVISITN, similar to the “class” statement in Proc MEANS.

Means and standard deviations of the result variable AVAL
for each patient treatment group TRTAN are then computed
on the fly before Proc SGPLOT creates the chart. The
GROUP=TRTAN option thus serves as another “class” variable.

By default, the X-axis scale of a VLINE
plot is categorical. By adding an XAXIS
statement this could be changed to a
proportional scale:

xaxis type = linear ;

Colors, markers, and line styles are set by
ODS. The default ODS style was used
here.

For customizations, create a new ODS
style with Proc TEMPLATE, or add options
to the VLINE statement (see below).

In many situations, the resulting output is entirely adequate. One disadvantage, however, is overlap of the error bars which
partly obscures group differences.

3

APPROACH 2: PROC SGPLOT WITH PREPROCESSED DATA

Visual separation of the data series can
be achieved by configuring Proc SGPLOT
to create a secondary X-axis with identical
scale but offset from the primary X-axis.

To accomplish this, our original dataset will have to be transposed to place result values for cases and controls in different
variables. At the same time, we will run off a list of visit numbers to configure the X-axis ticks.

proc transpose data = work.adam
 out = work.transpose
 prefix = aval ;
 by subjid avisitn ;
 var aval ;
 id trtan ;
 format trtan ;
 where paramcd = 'MYTEST' ;
run ;

proc print data = work.transpose ;
run ;

Obs SUBJID AVISITN AVAL0 AVAL1

 1 01011 0 52.75
 2 01011 10 70.71
 3 01011 20 70.54
 4 01011 40 77.84
 5 01011 50 70.23
 6 01011 60 70.10

 7 01012 0 69.68
 8 01012 10 69.53
 9 01012 20 63.28
 10 01012 40 63.14

proc sql noprint ;
 select distinct avisitn
 into :vis_list separated by ' '
 from work.transpose
 order by 1 ;
quit ;

%put VIS_LIST: &vis_list ;

VIS_LIST: 0 10 20 40 50 60 75

4

With this dataset—which remains observational—two VLINE plot statements can be arranged.
Don’t worry !! It’s not nearly as complicated as it looks !

proc sgplot data = work.transpose ;
 yaxis label = 'Test Result (Mean %sysfunc(byte(0177)) SD)' ;

 /* Primary axis (bottom) */
 xaxis type = linear
 values = (&vis_list)
 offsetmin = 0.05
 offsetmax = 0.07
 label = 'Scheduled Visit' ;

 /* Secondary axis (top) */
 x2axis type = linear
 values = (&vis_list)
 offsetmin = 0.07
 offsetmax = 0.05
 display = (nolabel noticks novalues) ;

Axis TYPE=LINEAR plots numeric
values on proportional scale.

Primary and secondary X axes
are given a tick list so they have
identical ranges regardless of
the data.

Options OFFSETMIN, OFFSETMAX
define margins which SAS will
maintain clear of data points:

“0.05” is 5% margin.
“0.07” is 7% margin.

Our “secret” to achieve visual separation without programming is to tinker with the margins, while maintaining the same range.

 Both axes devote 12% to margins. The primary XAXIS has a rather wider right margin, while the secondary X2AXIS has
a wider left margin.

 At the same time, the value list synchronizes both axis ranges, even though the Controls have data to Week 60, while the
Cases have data through Week 75.

With these axis definitions in place, it remains merely to plot the data for each treatment group.
Several plot options have been added to enhance the presentation.

 vline avisitn / response = aval1
 stat = mean
 limits = both
 limitstat = stddev
 x2axis /* note x2axis option */
 markers
 markerattrs = (size = 9 symbol = circle)
 lineattrs = (thickness = 2px)
 limitattrs = (thickness = 1px)
 legendlabel = "Cases" ;

This VLINE statement will
summarize and plot data for the
cases (RESPONSE=AVAL1).

It references the secondary
X2AXIS.

 vline avisitn / response = aval0
 stat = mean
 limits = both
 limitstat = stddev
 markers
 markerattrs = (size = 9 symbol = circle)
 lineattrs = (thickness = 2px)
 limitattrs = (thickness = 1px)
 legendlabel = "Controls" ;

This VLINE statement will
summarize and plot data for the
controls (RESPONSE=AVAL0).

There is no mention of an axis,
so the primary XAXIS will apply.

 keylegend / location = inside
 position = bottomleft
 noborder
 title = '' ;

Place legend within the axes.

 format avisitn vis. ;
run ;

X-axis uses numeric visits to
have linear scaling, but the tick
label display will be visit names.

For a modest programming investment, we improved the appearance of our chart.

5

APPROACH 3: GTL WITH COLUMNAXES BLOCK

When there is need for sample counts to accompany the chart—a common request from statisticians and medical writers—we
must go beyond Proc SGPLOT functionality.

In the old days, programmers using
SAS/GRAPH would have to make an
annotate file, basically placing each count
by hand.

With SAS 9.2 and Graphics Template
Language (GTL), presentation of data
points and sample counts can be entirely
automated.

Let’s plan for a pair of charts, one above
the other:

 The upper chart will duplicate what
we already have.

 A lower chart will place treatment
group on the Y-axis, visit number on
the X-axis, and use pre-calculated
sample counts as the “markers.”

 X-axis scaling will be common to both
charts.

SAS CAN WRITE GTL CODE FOR YOU

GTL syntax is different from Proc SGPLOT. However, crafting graphs with GTL is not difficult because Proc SGPLOT uses
GTL behind the scenes.

proc sgplot data = work.transpose
 tmplout = 'mygraph.txt' ; /* look */
 yaxis label = 'Test Result ...' ;
 xaxis ... ;
 vline avisitn / response = aval0 ... ;
 vline avisitn / response = aval1 x2axis ... ;
 keylegend ... ;
run ;

With the TMPLOUT= procedure option, SAS shows
you how it is rendering a graph.

SAS–generated GTL is the perfect starting point
when building out a custom template.

DIGRESSION

SGPLOT and GTL work within the Output Delivery System. When you compile GTL with Proc TEMPLATE, by default, SAS
writes to a permanent item store, SASUSER.TEMPLAT. Especially when you are developing—or even thereafter !!—you
might want to redirect your code to a temporary item store. Keep your hard drive clean! After all, out of sight, out of mind!

Find something that works for you and do it consistently. Here’s my approach:

proc datasets library = sasuser nowarn nolist ;
 delete templat (memtype = itemstor) ;
run ;

In case something was saved and forgotten,
delete personal item store.

proc datasets library = work nowarn nolist ;
 delete templat (memtype = itemstor) ;
run ;
quit ;

When developing code, running and rerunning
things, sometimes it’s good to clear even the
working item store.

6

ods path reset ;

ods path (prepend) work.templat (update) ;

Put temporary item store first in the ODS path. Any
subsequent GTL will be saved there.

Lastly, I’ll print what I actually have to the SAS log.

ods path show ; Current ODS PATH list is:

1. WORK.TEMPLAT(UPDATE)

2. SASUSER.TEMPLAT(UPDATE)

3. SASHELP.TMPLMST(READ)

WORK.TEMPLAT is the new temporary item store.
It’s showing first. Good.

SASUSER.TEMPLAT is the default permanent
item store (generally found in the “My SAS Files”
folder if running SAS on Windows platform).

SASHELP.TMPLMST is part of the SAS software
distribution, containing all built–in ODS styles and
templates.

GTL SYNTAX

Graphic template language has two syntactical constructs:

 GTL Blocks are units of code identified by opening and
closing tags. They serve as wrappers for GTL
statements and for other blocks.

 In the example at right, a layout block is nested within a
graph block.

 GTL Statements are programming instructions. They
consist of a keyword, followed by arguments, ending with
a semicolon.

 In the example at right, two statements are shown within
the layout block.

BEGINGRAPH ;

 LAYOUT OVERLAY / {optional arguments} ;

 KEYWORD {required arguments} /
 {options} ;

 KEYWORD {required arguments} /
 {options} ;

 ENDLAYOUT ;

ENDGRAPH ;

GTL is feature rich. Both blocks and statements have many possible options.
Keep the SAS documentation at hand to find your way.

GTL PLANNING

To begin constructing this template, we prepare a drawing canvas with provision for two charts:

proc template ;
 define statgraph approach3 ;
 begingraph ;

Create a graph template named
“approach3”.

 dynamic _ti ;
 entrytitle _ti ;

Create a “dynamic” variable for the graph
title. Dynamic variable values can be
assigned at run time.

This definition allows changing the title
without recompiling the template every
time.

7

 layout lattice /
 columns = 1
 rows = 2
 rowweights = (0.9 0.1)
 rowgutter = 0
 columndatarange = union ;

A LATTICE layout block creates a virtual
grid wherein the plot areas and axes are
aligned among the several graphs.

Layout options prepare for two charts,
one above the other. The upper chart (for
the data) will occupy 90% of the canvas.
The lower chart (for the sample counts)
will occupy 10% of the canvas.

There will be no spacing between the two
chart areas (ROWGUTTER=0), and the
column data range (i.e. X-axis) will be
consistent (COLUMNDATARANGE=UNION).

 /* This is an outline. */
 /* COLUMNAXES and LAYOUT blocks will */
 /* be fully developed in subsequent */
 /* sections of this paper. */

 columnaxes ;
 columnaxis / ... ;
 endcolumnaxes ;

The COLUMNAXES block supports the
unified X-axis we specified with the
COLUMNDATARANGE=UNION option.

Notice this block is at the same level of
hierarchy as the two graphs because it
exerts control on all charts in that column.

 layout overlay / ... ;
 scatterplot x = avisitn ... ;
 scatterplot x = avisitn ... ;
 discretelegend ... ;
 endlayout ;

An OVERLAY layout block creates a
single chart. It is called “overlay” because
more than one data series can be
overlaid on the given X–Y axis pair.

This is the first layout block, so it will be
sized 90% of the canvas area.

In this chart we will plot the data.

 layout overlay / ... ;
 scatterplot x = avisitn ... ;
 scatterplot x = avisitn ... ;
 endlayout ;

This is the second layout block, sized
10% of the available canvas area.

We will use this chart to present the
sample counts. Taking advantage of the
unified X-axis, sample counts for each
visit will automatically align with the
corresponding data point.

 endlayout ; /* End lattice layout block. */
 endgraph ; /* End graph block. */
 end ; /* End define block. */
run ;

Block closing tags.

GTL COLUMNAXES BLOCK

The COLUMNAXES block will have options to configure the unified X-axis we requested with the LATTICE layout.

columnaxes ;

 columnaxis /

Opening tag of COLUMNAXES block.

COLUMNAXIS statement has no required
arguments, but the forward slash signals
that optional arguments follow.

 offsetmin = 0.05
 offsetmax = 0.07

Offsets define margins clear of data
points. Unequal margins (5% left, 7%
right) borrow the idea used in Approach 2.

8

 type = linear Axis TYPE=LINEAR results in a proportional
numeric scale. (TYPE=DISCRETE would
give equally–spaced ticks. We rejected
those after reviewing Approach 1).

 linearopts = (tickvaluelist = (&vis_list)
 tickvalueformat = vis.)

Further options input the tick list. Without
this, SAS would automatically decide on
the tick intervals. In other data, this is
fine, but here we want to see every visit
label.

 label = 'Visit Number'
 display = (line label tickvalues)

Option DISPLAY= specifies to draw the axis
line, to label the axis, and to print tick
values. Tick marks will be omitted.

 displaysecondary = none ; Drawing of a secondary axis at the top of
the canvas is suppressed.

endcolumnaxes ; Block closing tag.

GTL UPPER LAYOUT OVERLAY BLOCK

In the main chart, we are plotting the two data series, with mean values and standard deviations. GTL does not have the
built–in computational ability that Proc SGPLOT does, so we will have to summarize the data before using the template. For
now, let’s continue writing code.

There’s a lot going on within this block, but it’s quite straightforward.

layout overlay / Opening tag of LAYOUT block.

Remember, an OVERLAY layout
specifies one X–Y chart.

Optional arguments follow the
forward slash.

 x2axisopts = (offsetmin = 0.07
 offsetmax = 0.05
 linearopts = (tickvaluelist = (&vis_list))
 display = none)

The primary X–axis was already defined
at the LATTICE level.

Here, a secondary X–axis is created. The
margin offsets are opposite to the primary
X–axis.

Providing the tick list at this point is
crucial to have identical scaling between
primary and secondary axes.

Option DISPLAY=NONE suppresses display
of labels and tick marks which would
appear at the top of the chart.

 yaxisopts = (offsetmin = 0.05
 offsetmax = 0.03
 label =
 "Test Result (Mean (*ESC*){unicode 'B1'x} SD)"
)

The Y–axis is for result values. By
default, it is displayed on numeric scale
(TYPE=LINEAR). We’ll let SAS will
determine the range.

(Logarithmic scaling with base 10, 2, or E
is also supported.)

Marginal offsets anticipate clearance for a
legend inside the chart at the bottom.

 ; End of layout block options.

9

 scatterplot x = avisitn
 y = mean_1 /
 xaxis = x2
 name = 'G1'
 legendlabel = "%scan(&trt_list, 2, %str(|))"
 markerattrs = (size = 8
 symbol = circlefilled
 color = red)
 yerrorupper = eval(mean_1 + std_1)
 yerrorlower = eval(mean_1 - std_1)
 ;

This SCATTERPLOT statement charts
mean values with error bars for the cases
(Y=MEAN_1).

The secondary axis is referenced
(XAXIS=X2).

Standard deviations must be derived in
advance. But use of the GTL function
EVAL avoids the need to create high and
low limit variables.

 scatterplot x = avisitn
 y = mean_0 /
 xaxis = x
 name = 'G0'
 legendlabel = "%scan(&trt_list, 1, %str(|))"
 markerattrs = (size = 8
 symbol = circle
 color = blue)
 yerrorupper = eval(mean_0 + std_0)
 yerrorlower = eval(mean_0 - std_0)
 ;

This SCATTERPLOT statement charts
data for the controls (Y=MEAN_0).

The primary axis is referenced (XAXIS=X).

 discretelegend "G0" "G1" / location = inside
 autoalign = (bottom)
 border = false ;

To position the legend with respect to this
chart, the legend statement is included
within this OVERLAY layout.

(Incidentally, a DISCRETELEGEND is for
serial data. Another legend type
CONTINUOUSLEGEND is available for
color stripes.)

endlayout ; Block closing tag.

GTL LOWER LAYOUT OVERLAY BLOCK

The lower chart is a convenient “device” to align automatically sample counts and visit labels. The Y values will be constants,
the X values our visit numbers. This forms a grid that will adjust to the schedule of visits in our data.

Instead of plotting symbols, we plot a variable which holds the count of subjects for each treatment group at each visit.
Naturally, we must prepare these variables in advance of generating the chart. Since counting is easy, I hope you will agree it
is fair for SAS/GTL do the hard work of placing them on the page.

layout overlay / Opening tag of LAYOUT block with
arguments to follow.

 walldisplay = none Chart wall refers to a box around the plot
area. It’s turned off because we’re
interested in a table of numbers.

10

 yaxisopts = (offsetmin = 0.3
 offsetmax = 0.3
 type = linear
 linearopts = (tickvaluelist = (0 1)
 tickvalueformat = trtn.)
 display = (tickvalues)
 tickvalueattrs = (size = 7pt)
 label = ' ')

There are two treatment groups, so we
arrange Y margin offsets to evenly space
two rows of numbers.

The tick list consists of our treatment
group constants.

The tick values are formatted so
treatment group labels are displayed
instead of zero and one.

No mention is made of the X-axis
because we already configured this at the
layout lattice level. Indeed, SAS would
ignore XAXISOPTS because a
COLUMNAXES block exists.

 ; End of layout block options.

 scatterplot x = avisitn
 y = tx_1 /
 name = 'N1'
 markercharacter = cnt_1 ;

 scatterplot x = avisitn
 y = tx_0 /
 name = 'N0'
 markercharacter = cnt_0 ;

Two scatter plot statements for cases and
controls respectively.

The plot option MARKERCHARACTER is the
crucial bit. SAS will display variable
values instead of symbols.

endlayout ; Block closing tag.

This concludes the code walk through for Approach 3. See Appendix for the clean, ready–to–compile program code.

PREPROCESSING THE DATA

In elaborating the template, the needs and constraints of GTL have driven our assumptions of the input dataset. Yet, in all this
programming, we have not strayed as far from our original data as you might have thought.

That’s surely a good thing, lest the burden of reworking the data outweigh any benefits of GTL. How about this ?

proc summary data = work.adam nway missing ;
 class avisitn trtan ;
 var aval ;
 output out = work.summary (drop = _:)
 mean = mean
 std = std
 n = n ;
run ;

%macro tr(v) ;
 proc transpose data = work.summary
 out = work.tr&v
 prefix = &v._ ;
 by avisitn ;
 id trtan ;
 var &v ;
 format trtan ;
 run ;
%mend ;

%tr(mean)
%tr(std)
%tr(n)

11

data work.mean_sd ;
 merge work.trmean work.trstd work.trn ;
 by avisitn ;

 retain tx_0 0 tx_1 1 ; /* Treatment group constants for lower chart. */
 length cnt_0 cnt_1 $10 ; /* Counts translated to "N=0" formatted strings. */
 array n n_: ;
 array c cnt_: ;

 do over n ;
 if not missing(n) then c = 'N=' || trim(left(put(n, best.))) ;
 end ;
run ;

proc print data = work.mean_sd ;
run ;

 WORK.MEAN_SD: Source data after summary and transpose. For GTL/Proc SGRENDER.

Obs AVISITN MEAN_0 MEAN_1 STD_0 STD_1 N_0 N_1 TX_0 TX_1 CNT_0 CNT_1

 1 0 52.3919 53.0188 17.6863 17.6976 31 51 0 1 N=31 N=51
 2 10 57.5246 50.9804 24.2356 18.4387 24 45 0 1 N=24 N=45
 3 20 53.4100 53.0490 19.7771 18.2700 22 40 0 1 N=22 N=40
 4 40 53.0113 54.2000 25.1030 18.5240 16 31 0 1 N=16 N=31
 5 50 46.1257 55.0194 20.5661 16.0268 7 18 0 1 N=7 N=18
 6 60 57.6200 52.1300 25.0103 13.5643 4 10 0 1 N=4 N=10
 7 75 29.3800 5.0063 2 0 1 N=2

Gee, that was quick. Now for the fun stuff !

RENDERING THE CHART

Once the GTL code has been complied using Proc TEMPLATE, we may bring together template and data to generate the
chart image.

Proc SGPLOT automatically enables ODS graphics. But with GTL, we must do this explicitly.

ods graphics on / imagefmt = png
 imagename = "approach3"
 border = off
 height = 600px
 width = 800px
 ;

Initialize ODS graphics.

Statement options include file format, image dimensions, and file
name.

ods listing / image_dpi = 200
 style = default
 ;

Open one (or several) ODS destinations. The “listing” destination
produces an image file only.

Statement option STYLE= permits selection among several built–in
color schemes (ANALYSIS, DEFAULT, JOURNAL, STATISTICAL), or a
user–defined style. Sample images in this paper have all
referenced the DEFAULT style.

proc sgrender template = approach3
 data = work.mean_sd ;
 dynamic _ti = "My dynamic title" ;
run ;

Merge data with template using Proc SGRENDER to generate the
chart.

ods graphics off ;

ods listing close ;

Lastly, close the ODS destination.

Voila !

12

APPROACH 4: GTL WITHOUT COLUMNAXES BLOCK

There remain few details to complete our
work.

In approach 3, counts and data series
came together nicely with the unified
X-axis. But the resulting presentation was
non–standard. The visit axis came below
the table of counts, when normally counts
would be at the very bottom.

Compare the arrangement at left.

Also, we neglected to connect the visits.
This is something Proc SGPLOT does
automatically, but in GTL we must code
for it.

In order to place the axis and tick labels at the edge of the chart, we have to relinquish the convenience of a unified X-axis.
Think of it this way. The COLUMNAXES definition applied to the pair of charts, so the display attributes (axis line, tick labels,
and axis label) would necessarily be at the bottom of the stack. Conversely, neither chart described by LAYOUT OVERLAY
blocks could have an X–axis definition because the COLUMNAXES block held precedence.

Well then, what is the impact of omitting the COLUMNAXES block? More responsibility for the programmer.

We now have three axis definitions to maintain in synchrony—primary and secondary axes on upper chart plotting the data
series, and primary axis on lower chart with the counts. Look at these revisions ...

proc template ;
define statgraph approach4 ;
 begingraph ;

 dynamic _ti ;
 entrytitle _ti ;

 layout lattice /
 columns = 1
 rows = 2
 rowweights = (0.9 0.1)
 rowgutter = 0
 columndatarange = union ;

LAYOUT LATTICE block options are
similar, except the COLUMNDATARANGE
option is no longer applicable. This
option had signaled the GTL compiler to
expect a COLUMNAXES block.

 columnaxes ;
 columnaxis ... ;
 endcolumnaxes ;

The COLUMNAXES block is entirely
eliminated.

 /* Upper chart plots means with SD. */
 layout overlay /

/* NEW CODE: X-axis options with value list added to LAYOUT OVERLAY block. */
/***/ xaxisopts = (offsetmin = 0.05
/***/ offsetmax = 0.07
/***/ type = linear
/***/ linearopts = (tickvaluelist = (&vis_list)
/***/ tickvalueformat = vis.)
/***/ label = 'Visit Number'
/***/ display = (label line tickvalues))

13

 /* No change to options for the secondary X2–axis or Y–axis. */
 /* Compare margin offsets for XAXISOPTS and X2AXISOPTS. */

 x2axisopts = (offsetmin = 0.07
 offsetmax = 0.05
 linearopts = (tickvaluelist = (&vis_list))
 display = none)
 yaxisopts = (offsetmin = 0.05
 offsetmax = 0.03
 label = "Test Result (Mean (*ESC*){unicode 'B1'x} SD)")

 ; /* End of block options for upper chart. */

 /* No change to SCATTERPLOT statements drawing means and error bars. */

 scatterplot x = avisitn
 y = mean_1 /
 xaxis = x2
 name = 'G1'
 legendlabel = "%scan(&trt_list, 2, %str(|))"
 markerattrs = (size = 8
 symbol = circlefilled
 color = red)
 yerrorupper = eval(mean_1 + std_1)
 yerrorlower = eval(mean_1 - std_1)
 ;

 /* Of course, XAXIS = X now refers to the axis definition */
 /* within this chart rather than the column axis. */

 scatterplot x = avisitn
 y = mean_0 /
 xaxis = x /* note */
 name = 'G0'
 legendlabel = "%scan(&trt_list, 1, %str(|))"
 markerattrs = (size = 8
 symbol = circle
 color = blue)
 yerrorupper = eval(mean_0 + std_0)
 yerrorlower = eval(mean_0 - std_0)
 ;

When Proc SGPLOT generates a vertical line VLINE chart, it uses a combination of GTL SCATTERPLOT and SERIESPLOT
statements. Check this for yourself with use of TMPLOUT= procedure option.

The scatter plot is category oriented, and has the functionality to draw error bars. The series plot is longitudinal, and joins
consecutive points with straight line segments.

To connect the X–Y pairs, we need to add SERIESPLOT statements.

/* NEW CODE. Connect the points. */
/***/ seriesplot x = avisitn
/***/ y = mean_0 /
/***/ xaxis = x
/***/ lineattrs = (pattern = solid
/***/ color = blue)
/***/ ;

/***/ seriesplot x = avisitn
/***/ y = mean_1 /
/***/ xaxis = x2
/***/ lineattrs = (pattern = mediumdash
/***/ color = red)
/***/ ;

Series plots do not display markers
(unless requested with the MARKERS plot
option). Because our scatter plots
already draw markers, we don’t need
them here.

Series plot lines are color coordinated
with the scatter plot markets using the
LINEARATTRS option.

 discretelegend "G0" "G1" / location = inside
 autoalign = (bottom)
 border = false ;

 endlayout ; Block closing tag.

14

In the lower layout block for sample counts, we add matching X–axis options.

 /* Lower chart has table of counts. */
 layout overlay /

/* NEW CODE: X-axis options match scaling in the upper chart. */
/***/ xaxisopts = (
/***/ offsetmin = 0.05
/***/ offsetmax = 0.07
/***/ type = linear
/***/ linearopts = (tickvaluelist = (&visit_numlist))
/***/ display = none /* No axis line or tick labels */
/***/)

 /* No change to Y-options and wall display. */
 walldisplay = none
 yaxisopts = (offsetmin = 0.3
 offsetmax = 0.3
 type = linear
 linearopts = (tickvaluelist = (0 1)
 tickvalueformat = trtn.)
 display = (tickvalues)
 tickvalueattrs = (size = 7pt)
 label = ' ')

 ; /* End of block options for lower chart. */

 /* SCATTERPLOT statements not changed. */

 scatterplot x = avisitn
 y = tx_1 /
 name = 'N1'
 markercharacter = cnt_1 ;

 scatterplot x = avisitn
 y = tx_0 /
 name = 'N0'
 markercharacter = cnt_0 ;

 endlayout ; /* Close overlay layout block. */

 endlayout ; /* Close lattice layout block. */
 endgraph ;
end ;
run ;

With these additions to the GTL template, we are ready to generate the target graphic using summarized data as in Approach
3. See Appendix for the clean, ready–to–compile program code.

CONCLUSIONS

Proc SGPLOT and GTL can create high quality, customizable graphs. Proc SGPLOT is quick, easy to use, and easy to
remember. GTL is more verbose but highly structured and flexible.

All SAS programmers are urged to try these tools on their next assignment. Any investment in learning will be well rewarded
by the end results.

15

FURTHER READING

These papers are worthwhile for beginner and experienced programmers alike:

 “Effective Graphics Made Simple Using SAS/GRAPH® SG Procedures”
D. Heath, PharmaSUG 2008, Paper SA06.

 “Getting Started with ODS Statistical Graphics in SAS® 9.2”
R.N. Rodriguez, SAS Global Forum 2008, Paper 305.

 “Modifying ODS Statistical Graphics Templates in SAS® 9.2”
W.H. Kuhfeld, SAS Global Forum 2009, Paper 323.

 “Using PROC SGPLOT for Quick High-Quality Graphs”
L.D. Delwiche, SAS Global Forum 2009, Paper 158.

 “When Simpler is Better – Visualizing Laboratory Data Using “SG Procedures”
W. Cheng, PharmaSUG 2009, Paper PO22.

 “An efficient way to create graphs in SAS 9.2: Utilizing SG procedures and GTL”
Y.Z. Ling, NESUG 2010, Paper GR10.

 “The Graph Template Language and the Statistical Graphics Procedures: An Example-Driven Introduction”
W.F. Kuhfeld, PharmaSUG 2010, Paper TU-SAS01.

The SAS documentation is indispensible to make full use of the many statement options and their syntax. Each volume is
nicely hyperlinked for easy navigation. Find them at http://support.sas.com/documentation.

 SAS/GRAPH 9.2: Statistical Graphics Procedures Guide

 SAS/GRAPH 9.2: Graph Template Language Reference

 SAS/GRAPH 9.2: Graph Template Language User's Guide

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
Anthony L. Feliu
Genzyme Corporation
500 West Kendall Street
Cambridge, MA 02142
Tel: (617) 768-9296
E-mail: ANTHONY.FELIU@GENZYME.COM

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective
companies.

16

APPENDIX: FINAL CODE FOR APPROACH 2

proc transpose data = work.adam /* Create AVAL0, AVAL1 with result values for */
 out = work.transpose /* treatment groups 0 and 1, repectively. */
 prefix = aval ;
 by subjid avisitn ;
 var aval ;
 id trtan ;
 format trtan ;
run ;

proc sql noprint ; /* Get all visit numbers for tick list. */
 select distinct avisitn
 into :vis_list separated by ' '
 from work.transpose
 order by 1 ;
quit ;

proc sgplot data = work.transpose ;
 yaxis label = 'Test Result (Mean %sysfunc(byte(0177)) SD)' ;

 xaxis type = linear /* Primary axis (bottom). */
 values = (&vis_list) /* Tick list to label every visit. */
 offsetmin = 0.05
 offsetmax = 0.07
 label = 'Scheduled Visit' ;

 x2axis type = linear /* Secondary axis (top). */
 values = (&vis_list) /* X2AXIS synchronizeed with XAXIS. */
 offsetmin = 0.07
 offsetmax = 0.05
 display = (nolabel noticks novalues) ;

 vline avisitn / response = aval1 /* Plot visit means and SD for cases. */
 stat = mean
 limits = both
 limitstat = stddev
 x2axis
 markers
 markerattrs = (size = 9 symbol = circle)
 lineattrs = (thickness = 2px)
 limitattrs = (thickness = 1px)
 legendlabel = "Cases" ;

 vline avisitn / response = aval0 /* Plot visit means and SD for controls.*/
 stat = mean
 limits = both
 limitstat = stddev
 markers
 markerattrs = (size = 9 symbol = circle)
 lineattrs = (thickness = 2px)
 limitattrs = (thickness = 1px)
 legendlabel = "Controls" ;

 keylegend / location = inside
 position = bottomleft
 noborder
 title = '' ;

 format avisitn vis. ;
run ;

17

APPENDIX: FINAL CODE FOR APPROACH 3

ods path reset ;

ods path (prepend) work.templat (update) ;

proc template ;
define statgraph approach3 ; /* GTL template name is "APPROACH3". */
 begingraph ;

 dynamic _ti ; /* Chart title passed at run time. */
 entrytitle _ti ;

 /* Create canvas for two charts. */
 layout lattice /
 columns = 1
 rows = 2
 rowweights = (0.9 0.1) /* Relative chart sizing 90%-10%. */
 rowgutter = 0
 columndatarange = union ;

 /* One X-axis definition will apply */
 /* across both charts. */
 columnaxes ;
 columnaxis / offsetmin = 0.05
 offsetmax = 0.07
 type = linear
 linearopts = (tickvaluelist = (&vis_list)
 tickvalueformat = vis.)
 label = 'Visit Number'
 display = (line label tickvalues)
 displaysecondary = none ;
 endcolumnaxes ;

 /* This chart displays data series. */
 /* X2AXIS applies to this chart only. */
 layout overlay / x2axisopts = (offsetmin = 0.07
 offsetmax = 0.05
 linearopts = (tickvaluelist = (&vis_list))
 display = none)
 yaxisopts = (offsetmin = 0.05
 offsetmax = 0.03
 label = "Test Result (Mean (*ESC*){unicode 'B1'x} SD)")
 ;

 scatterplot x = avisitn
 y = mean_1 /
 xaxis = x2
 name = 'G1'
 legendlabel = "%scan(&trt_list, 2, %str(|))"
 markerattrs = (size = 8
 symbol = circlefilled
 color = red)
 yerrorupper = eval(mean_1 + std_1)
 yerrorlower = eval(mean_1 - std_1)
 ;

 scatterplot x = avisitn
 y = mean_0 /
 xaxis = x
 name = 'G0'
 legendlabel = "%scan(&trt_list, 1, %str(|))"
 markerattrs = (size = 8
 symbol = circle
 color = blue)
 yerrorupper = eval(mean_0 + std_0)
 yerrorlower = eval(mean_0 - std_0)
 ;

18

 discretelegend "G0" "G1" / location = inside
 autoalign = (bottom)
 border = false ;

 endlayout ;

 /* This chart displays counts. */
 layout overlay / walldisplay = none
 yaxisopts = (offsetmin = 0.3
 offsetmax = 0.3
 type = linear
 linearopts = (tickvaluelist = (0 1)
 tickvalueformat = trtn.)
 display = (tickvalues)
 tickvalueattrs = (size = 7pt)
 label = ' ')
 ;

 scatterplot x = avisitn
 y = tx_1 /
 name = 'N1'
 markercharacter = cnt_1 ;

 scatterplot x = avisitn
 y = tx_0 /
 name = 'N0'
 markercharacter = cnt_0 ;

 endlayout ; /* Close overlay layout block. */

 endlayout ; /* Close lattice layout block. */
 endgraph ;
end ;
run ;

HOW TO GENERATE CHART WITH TEMPLATE

 /* Activate ODS graphics feature. */
ods graphics on / imagefmt = png
 imagename = "approach3"
 border = off
 height = 600px
 width = 800px ;

 /* Open ODS destination. Choose style. */

ods listing / image_dpi = 200
 style = default ;

/* FOR DATA SUMMARIZATION, SEE MAIN NARRATIVE OF THIS PAPER. */
 /* Create the chart image. */
proc sgrender template = approach3
 data = work.mean_sd ;
 dynamic _ti = "My dynamic title" ;
run ;

 /* Close ODS destination. */
ods graphics off ;

ods listing close ;

19

APPENDIX: FINAL CODE FOR APPROACH 4

ods path reset ;

ods path (prepend) work.templat (update) ;

proc template ;
define statgraph approach4 ; /* GTL template name is "APPROACH4". */
 begingraph ;

 dynamic _ti ; /* Chart title passed at run time. */
 entrytitle _ti ;

 /* Canvas prepared for two charts. */
 layout lattice /
 columns = 1
 rows = 2
 rowweights = (0.9 0.1)
 rowgutter = 0 ;

 /* This chart plots means with SD. */
 /* Axis definitions are self-contained.*/
 layout overlay /
 xaxisopts = (offsetmin = 0.05
 offsetmax = 0.07
 type = linear
 linearopts = (tickvaluelist = (&vis_list)
 tickvalueformat = vis.)
 label = 'Visit Number'
 display = (label line tickvalues))
 x2axisopts = (offsetmin = 0.07
 offsetmax = 0.05
 linearopts = (tickvaluelist = (&vis_list))
 display = none)
 yaxisopts = (offsetmin = 0.05
 offsetmax = 0.03
 label = "Test Result (Mean (*ESC*){unicode 'B1'x} SD)")
 ;

 /* Plot markers and error bars. */
 scatterplot x = avisitn
 y = mean_1 /
 xaxis = x2
 name = 'G1'
 legendlabel = "%scan(&trt_list, 2, %str(|))"
 markerattrs = (size = 8
 symbol = circlefilled
 color = red)
 yerrorupper = eval(mean_1 + std_1)
 yerrorlower = eval(mean_1 - std_1)
 ;
 scatterplot x = avisitn
 y = mean_0 /
 xaxis = x /* note */
 name = 'G0'
 legendlabel = "%scan(&trt_list, 1, %str(|))"
 markerattrs = (size = 8
 symbol = circle
 color = blue)
 yerrorupper = eval(mean_0 + std_0)
 yerrorlower = eval(mean_0 - std_0)
 ;

20

 /* Draw lines to connect the points. */
 seriesplot x = avisitn
 y = mean_0 /
 xaxis = x
 lineattrs = (pattern = solid
 color = blue)
 ;

 seriesplot x = avisitn
 y = mean_1 /
 xaxis = x2
 lineattrs = (pattern = mediumdash
 color = red)
 ;

 discretelegend "G0" "G1" / location = inside
 autoalign = (bottom)
 border = false ;

 endlayout ;

 /* Lower chart has table of counts. */
 /* Axis definitions also self-contained. */
 /* X-scaling and margins match upper chart. */
 layout overlay / xaxisopts = (offsetmin = 0.05
 offsetmax = 0.07
 type = linear
 linearopts = (tickvaluelist = (&visit_numlist))
 display = none)
 walldisplay = none
 yaxisopts = (offsetmin = 0.3
 offsetmax = 0.3
 type = linear
 linearopts = (tickvaluelist = (0 1)
 tickvalueformat = trtn.)
 display = (tickvalues)
 tickvalueattrs = (size = 7pt)
 label = ' ')
 ;

 scatterplot x = avisitn
 y = tx_1 /
 name = 'N1'
 markercharacter = cnt_1 ;

 scatterplot x = avisitn
 y = tx_0 /
 name = 'N0'
 markercharacter = cnt_0 ;

 endlayout ; /* Close overlay layout block. */

 endlayout ; /* Close lattice layout block. */
 endgraph ;
end ;
run ;

/* TO USE THIS TEMPLATE, FOLLOW "HOW TO" AS IN APPROACH 3. */

