
 1

PharmaSUG2011 - Paper CD12

ADaM Standard Naming Conventions are Good to Have

Christine Teng, Merck Sharp & Dohme Corp, Rahway, NJ

ABSTRACT

The Clinical Data Interchange Standards Consortium (CDISC) Version 1.0 Analysis Data Model Implementation
Guide (ADaMIG) was released in 2009. The ADaMIG specifies ADaM standard dataset structures and variables,
including naming conventions. It also specifies standard solutions to implementation issues. This paper focuses on
the naming conventions (*GRy, *FL, etc.) which enable the use of wildcards in programming code when displaying
the data content for quality control (QC) purposes. This paper presents code examples using SAS data dictionary
tables and Perl regular expressions to output the values of key variables of interest based on naming conventions.
The code examples can also be applied to the standard Basic Data Structure (BDS) required variables such as
PARAM and PARAMCD. An Excel workbook (using the SAS®9 ExcelXP tagset) that contains metadata for all ADaM
datasets of a mock study will be produced. Each worksheet includes information for one ADaM dataset and the
associated values of specified variables based on naming conventions. This workbook is very helpful in data
validation during the development process. The code can be re-used for any study that follows the ADaM standards.

SAS®9, Windows®, Intermediate Level
Key Words: CDISC, ADaM, ExcelXP, Naming Convention, Regular Expressions

INTRODUCTION

Based on the Analysis Data Model (ADaM) document - CDISC Analysis Data Model Version 2.1, it specifies the
fundamental principles and standards to follow in the creation of analysis datasets and associated metadata. The
purpose of ADaM is to provide a framework that enables analysis of the data, while at the same time allowing
reviewers and other recipients of the data to have a clear understanding of the data's lineage from collection to
analysis to results. The ADaM document also describes ADaM metadata, the subject-level dataset ADSL, and a
multiple-record-per-subject data structure: the ADaM Basic Data Structure (BDS). The CDISC Version 1.0 Analysis
Data Model Implementation Guide (ADaMIG) specifies ADaM standard dataset structures and variables, including
naming conventions. It also specifies standard solutions to implementation issues. The ADaMIG should be used in
concert with the ADaM document. Founded on section 4 of the ADaM document,

Analysis datasets must:

- include a subject-level analysis dataset named “ADSL”

- consist of the optimum number of analysis datasets needed and have enough self-sufficiency to allow analysis
and review with little or no additional programming or data processing

- be named using the convention “ADxxxxxx”

- use ADaM standard variable names and naming conventions when available

- maintain the values and attributes of SDTM variables if copied into analysis datasets without renaming (i.e.,
adhere to the “same name, same meaning, same values” principle of harmonization

- apply naming conventions for datasets and variables consistently across studies within a given submission and
across multiple submissions for a product

 2

This paper focuses on how the naming conventions can help simplify programming for the display of data content. A
simple regular expression function PRXMATCH is used to demonstrate how easy it is to display data based on
certain patterns of variable names. The report of metadata and value of some variables will be displayed in an Excel
workbook which is created via the SAS ExcelXP tagset.

The SAS ExcelXP tagset generates XML output that conforms to the Microsoft XML Spreadsheet Specification ("XML
Spreadsheet Reference", Microsoft Corp.). It provides the functionality to create multiple worksheets in a workbook
as well as multiple tables within a single worksheet. These features are very useful for creating metadata
documentation where each ADaM dataset has its own worksheet with label. It enables quicker accessibility to locate
the information for each ADaM dataset. With SAS DICTIONARY and PROC SQL, the metadata documentation can
be created without hardcoding. This paper is not a tutorial about the ExcelXP tagset. Rather, it demonstrates
another application using the ExcelXP tagset. The detailed tutorials and references for the ExcelXP tagset can be
found in the References section of this paper.

SAS provides many standard style templates that allow for customization. To see a list of templates provided by
SAS, (1) go to the Results windows, (2) right click on Results and select Template, (3) expand sashelp.Tmplmst (See
Table-1 in Appendix). Templates for Tagsets and Styles can be found here. Templates can be customized using
parent templates provided by SAS. Style templates make the output more presentable. Examples of some SAS
ODS styles can be found at http://stat.lsu.edu/SAS_ODS_styles/SAS_ODS_styles.htm.

Perl regular expressions (regexp) is a language for searching text that consists of a string of literal characters and
special characters called metacharacters. When searching with a regexp, a literal character in the regexp matches
that character in the string being searched. For example, the regexp /abc/ will search for the characters abc in a
string. All regexp begin and end with a delimiter for example, " /". The power of regexp lies with the metacharacters.
The regexp metacharacters perform special actions when searching. For instance, the regexp "/gr\d/" will match the
text gr followed by a digit. The metacharacter for a digit 0-9 is \d. However, \D matches non-digit.

The Version 9 Online DOC or any book on PERL programming will provide you with more details about different kind
of metacharacters or wild cards to locate pattern.

ADaM NAMING CONVENTIONS

Section 3 of ADaMIG defines the required characteristics of standard variables that are frequently needed in analysis
datasets. The ADaM standard requires that these variable names be used when a variable that contains the content
defined in Section 3 is included in an analysis dataset. ADaMIG section 3.1 describes variables in ADSL and section
3.2 describes variables in the BDS.

Values of ADaM “Core” Attribute in ADaMIG

Req = Required. The variable must be included in the dataset.

Cond = Conditionally required. The variable must be included in the dataset in certain circumstances.

Perm = Permissible. The variable may be included in the dataset, but is not required.

Unless otherwise specified, all ADaM variables are populated as appropriate, meaning nulls are
allowed.

Below are some examples used in this paper to demonstrate standard variables and naming conventions in getting
data content.

Required variables:
Example 1: ADSL SEX , RACE, TRTxxP (xx refer to specific period) and ARM
Example 2: BDS PARAM and PARAMCD

Conditional variables:
Example 3: *FL (Character subject-level population flag names end in FL. Similarly, parameter-level population flag
names end in PFL, and record-level population flag names end in RFL)

 3

Permissible variables:
Example 4: *GRy (Variables whose names end in GRy are grouping variables, where y refers to the grouping scheme
or algorithm)

IMPLEMENTATION

Since the ExcelXP tagset is still evolving, there are some limitations and hence its functionality may be changed in
the future. It is recommended that the user always download the latest update to verify the changes and
enhancements. To use the ExcelXP tagset, first download the latest ExcelXP tagset from the SAS ODS MARKUP
page. This page also provides links to documentation for using and customizing tagsets. For this exercise, the
ExcelXP tagset version dated 08/25/10 2010, version 1.116 was used. Details of ExcelXP syntax used will not be
explained in this paper. Please refer to SAS knowledge base website for reference.

Below is the framework that creates a workbook, where each worksheet has information for metadata about the
dataset and variables as well as specific data content for each ADaM dataset defined in &datadir libname. Use %Do-
%While loop to process/parse each dataset. In the outer shell for ExcelXP setup,

ods tagsets.ExcelXP path = ”c:\temp\excelXP” * output location
 file = ”test.xml” * workbook name
 style = XLStatistical; * customized style template;

 *Build the worksheets (see below);

 ods tagsets.ExcelXP close;

proc sql noprint;
 *dsetname contains a list of ADaM datasets in a directory;
 select memname into :dsetname separated by '+'
 from dictionary.tables
 where libname="&datadir" and memtype="DATA" ;

 *examlst contains a list of ADaM datasets that have the PARAMCD variable;
 select memname into :examlst separated by ' '
 from dictionary.columns
 where libname="&datadir" and memtype="DATA" and name = 'PARAMCD' ;
quit;

---;
*Initialize the loop;
%let num=1;
%let list = %upcase(%scan(&dsetname, &num, +));

*Use Do-While loop to create individual worksheet;
%do %while (&list. ne);
 *Create worksheet with defined options for ExcelXP;
 ods &_ODSDEST options(absolute_column_width='10, 15, 23, 28, 23, 10,10,10' autofit_height='yes'
 sheet_interval='none' sheet_name="&list");

 *Print ADaM name and label at the beginning of the sheet;
 proc sql;
 select memname label='ADaM', crdate label='Created on', nobs label='Observations',
 memlabel label='ADaM Label'
 from dictionary.tables
 where libname="&datadir" and memtype="DATA" and memname="&list";
 quit;

 4

 *Print variables for a given ADaM dataset and attributes information;
 proc sql;
 select int(varnum) as Pos, upcase(name) as VarName,
 propcase(catx('',type,put(length, best5.))) as TypeLen,
 substr(label,1) as Label
 from dictionary.columns
 where libname = "&datadir" and memtype = "DATA" and memname = "&list"
 order by varnum;
 quit;

 *Keep data in memory to save processing time;
 data &list;
 set &datadir..&list;
 run;

 Example 1;
 Example 2;
 Example 3;
 Example 4;

 *Ready to build the next worksheet;
 %let num = %eval(&num + 1);
 %let list = %upcase(%scan(&dsetname, &num, '+'));
%end;

Example 1: ADSL SEX , RACE and ARM
Listing required variables directly as their names are fixed and they are also part of ADSL.

%if &list = ADSL %then %do;
 proc sql;
 select SEX, RACE, count(*) label='Frequency'
 from &list

 5

 group by SEX, RACE;

 select ARM, count(*) label='Frequency'
 from &list
 group by ARM;
 quit;
%end;

Example 2: BDS PARAM and PARAMCD
Using pre-stored values in macro variable &examlst which contains all BDS dataset names to determine if paramcd
and param should be listed in the current parsed dataset.

%if %index(&examlst., &list.) %then %do;
 proc sql;
 select distinct paramcd, param
 from &list.;
 quit;
%end;

Example 3: *FL
Using a Like clause in SQL to find all variable names ending with FL from dictionary table and list them by AVISIT.

proc sql noprint;
 select name into :frqnames separated by ' avisit*'
 from dictionary.columns
 where (name like '%FL') and libname="&datadir" and memname="&list";
quit;

%if &sqlobs ne 0 %then %do;
 proc freq data=&list;
 table avisit*&frqnames/list missing nopercent nocum;
 run;
%end;

 6

Example 4: *GRy
Using Perl regular expression to find variable names in a certain pattern. In the example below, variable names
ending with both GRy and GRyN will be located and listed by studyid.

proc sql noprint;
 select name into :frqnames separated by ' studyid*'
 from dictionary.columns
 where prxmatch("/[gG][rR][1-9]/",name) and libname="&datadir" and memname="&list";
quit;

%if &sqlobs ne 0 %then %do;
 proc freq data=&list;
 table studyid*&frqnames/list missing nopercent nocum;
 run;
%end;

As shown above, with the use of PROC SQL, SAS DICTIONARY tables, standardized ADaM structure/naming, and
Perl regular expression, a workbook, that contains the metadata information for all ADaM datasets located in a

 7

directory, can be created with minimal code. This workbook is very helpful in data validation during the development
process. The code can be re-used for any study that follows the ADaM standards. Customizations can also be done
for study specific variables.

SUMMARY

Standardized analysis dataset structures allow the development of standard software tools that will facilitate the
access, manipulation, and viewing of the analysis datasets. CDISC standardized naming conventions promote
understanding and facilitate programming and analysis. By naming variables in a certain pattern, we promote more
rapid comprehension of the meaning of variables in new studies. Data validation can be supported based on such
predicted patterns and can be re-used from one study to another. Standards are good to have as they ultimately
shorten development timelines, speed-up learning curves and save costs in resources.

REFERENCES

CDISC Analysis Data Model Version 2.1 http://www.cdisc.org/adam

ADaM Implementation Guide, Version 1.0 (ADaMIG v1.0) http://www.cdisc.org/adam

SAS Knowledge Base http://support.sas.com/rnd/base/ods/odsmarkup/

A Data Step in SAS 9: What's New by Jason Secosky, SAS, Cary, NC.
http://support.sas.com/rnd/base/datastep/dsv9-sugi-v3.pdf

SAS Macro Language: Reference

SAS SQL Procedure User’s Guide

SAS Language Reference Dictionary

ACKNOWLEGEMENTS

The author would like to thank the management team for their encouragement and review of this paper.

TRADEMARKS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks of their respective companies.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Christine Teng
Merck Sharp & Dohme Corp
Rahway, NJ 07065
christine_teng@merck.com

 8

APPENDIX

Table – 1 (Available Style Templates in SAS®9)

