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Abstract
The author is demonstrating formulas for point estimates, effect modification algorithms, and confounding

inferences that may have bias and inferences of causality with new formulas, that involves PROC LOGISTIC, PROC

IML, and PROC MIXED (SAS TM) algorithms. The death penalty and a sample randomized clinical trial is given for

bivariate and multivariate applications of the formulas. The Cochran Mantel Haenszel Test is compared with new

Agravat’s formulas using novel codes of “R” from the author for strength of association. Logistic regression and

Cochran Mantel Haenszel test are compared for confounding. In addition, an algorithm for hyper-geometric

distribution is shown for myocardial infarction that did not exist before for effect modification. A new probability

formula, hazard ratio, and logits are shown to explain head neck cancer (INHANCE) for one exposure no drinking,

along with Agravat series which is hyper-geometric. A new algorithm and distribution is introduced to deal with the

probability of events for discussion called Agravat’s distribution and probability algorithm. Agravat series is displayed

and involves features for special relativity of Einstein, Poincaire` conjecture which is given graphically, Bose’s work,

and Dirac’s comments are discussed.
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1 INTRODUCTION

The problem of point estimates when controlling for both confounding and explanatory variables is not possible
for some statistics with the standard method (Cochran Mantel Haenszel Test) for data with conflicting risks. The risk
may be greater or lesser than the risk whose variable is in question compared to the confounding statistics alone. The
author proposes a method that calculates a risk statistic which can be utilized to decide if there are significant risks
important for confounding and effect modification based on significant P-values or significant difference that has
causal inference potential. For the effect modification method, a data transformation step is done to modify the count 
data and making a new variable ”fit”, ”zxy”, and ”xzy” whose beta estimates are obtained from the use of R and a 
survival function survreg. Y represents the outcome variable. X represents the explanatory variable. Z represents the
confounding variable. In R YX may be described as the interaction between Y and X; likewise ZY means the
interaction between Z and Y. The author’s new equations are for bivariate explanatory covariates and adjust for
interaction. The data on death penalty is very biased according to results; hence lognormal distribution is used with
the scale values for variables. Normally, the beta estimates used are directly from the output of results. As in the
paper ”A New Effect Modification P Value Test Demonstrated” [Agravat 2009] [Agravat 2008] the survreg function is 
used for beta survival estimates which is parametric because distributions may be chosen. The expectation is to
utilize a distribution with the better P-value for scientific purpose of the study data. The traditional method uses PROC 
FREQ Cochran Mantel Haenszel test for the point estimates or PROC LOGISTIC (SAS TM) for odds ratios and
Breslow Day test. PROC IML will give avenues to calculate effect modification with a program of the author that is
shown to work. Subsequently, the “aem” statistic is shown to follow an asymptotic chi-square and F-statistic
distribution using PROC MIXED (SAS TM) that is multivariate. The odds ratio equation is shown with the proof of the
Cochran Mantel Haenszel Test and assumption. A new algorithm and distribution is shown to exist for predicting
probabilities related to quantum statistics.



2 METHODS
Method for Point Estimates The author will present a new method for calculating point estimates for odds ratio’s
and relative risks 1 and 2 when controlling for the confounder and explanatory variable. The object is to use new type
of formulas similar to logits which incorporates vector math and complex numbers and geometrical coordinate
system. The formulas use R and the survreg function which ordinarily uses time for censored events to obtain betas.
You use the lognormal distribution when using survreg in R because the data is requiring this distribution for cases
where there may be some extreme bias or not found not shown in analysis in studies using other methods to avoid
large beta estimates and avoidable error in the case of death penalty. The new method incorporates the concept of
calculating area under the curve of vectors. The formulas allow the use of complex numbers that result in more area
being calculating for the point estimates. The author will present formulas and outputs for bivariate covariates in this
article. The datasets include death penalty from Florida Law Review by authors Radelet and Pierce from prisoners
who have committed multiple murders in Florida [Radelet and Pierce]. The lognormal distribution is needed for this
data because of extreme bias and log scale is used for beta estimates are required due to likely extreme bias. The
risk estimates are greater if adjusted for over-dispersion.

Table 1: Death Penalty Verdict By Defendant's Race/Victim's Race Regarding Multiple Murders in Florida

Defendant’s Race Victim’s Race Death Penalty(Yes) Death Penalty(No) Percent (Yes)
White White 53 414 11.3

Black 0 16 0.0
Black White 11 37 22.9

Black 4 139 2.8

2.1 Formulas for Point Estimates for Bivariate Levels and Non-normal Data in “R”

deathpenaltyb<-c(0,1,0,1,0,1,0,1)
defrb<-c(1,0,1,0,1,0,1,0)
vicrb<-c(1,0,1,0,1,0,1,0)
countb<-c(16,139,1,4,37,11,53,414)

penaltyb<-data.frame(deathpenaltyb,defrb,vicrb,countb)

penaltyb

bz<-.61
bzx<-.626
byz<-.61
by<-.442
bxz<-.61
sey<-.354
sez<-.344
sezx<-.344
byx<-.923
bx<-.626
seyz<-.344
sez<-.344
stderrz<-.523
n<-8

OR1<-(1-exp(bz+bxz))/(exp(-(bz)))*sqrt(sez)



exp{OR1}

RR1n<--(exp((bz+byx))/(1-exp(bz+byx)))*sqrt(stderrz)

RR1nb<--(exp(bz+byx+by)/(1-exp(bz+byx+by)))*sqrt(stderrz)

(RR1n+RR1nb)/2

exp{RR1}

RR2<-(exp(by+bxz)/(exp(by)))

exp{RR2}

Controlling for Explanatory Variable

OR2<-(1-exp(by+byz))/-(exp(-(by)))*sqrt(sez)

exp{OR2}

RR1<-(exp(-by)/(1-exp(by)))*sqrt(sey)

exp{RR1}

RR2<-(exp(by+byz)/(1-exp(by)))

exp{RR2}

The formulas here are from the author and based on the new use of the exponentiation of natural logarithm
to calculate the area under the curve based on vectors that may be added, subtracted, or multiplied in an equation.
The odds ratios here reflect that there is no interaction based on residuals (figure 2) with parallel residuals. These
new equations for bivarate variables are similar to logits to reflect risks in 3-D of the X, Y, and Z plane.

2.2 Agravat’s Novel “R” Codes and Outputs for survreg

legalyl<-survreg(Surv(count,vicr)~deathpenalty, data=penaltyb, dist="lognormal")

summary(legalyl)

Call:

survreg(formula = Surv(count, vicr) ~ deathpenalty, data = penalty,

dist = "lognormal")

Value Std. Error



(Intercept) 3.686 0.935 3.94324 8.04e-05

deathpenalty 11.223 5486.343 0.00205 9.98e-01 z p

Log(scale) 0.626 0.354 1.76981 7.68e-02

Scale= 1.87

Log Normal distribution

Loglik(model)= -22.9 Loglik(intercept only)= -24.4

Chisq= 2.9 on 1 degrees of freedom, p= 0.089

Number of Newton-Raphson Iterations: 17

n= 8

Figure 1: PROC FREQ (SAS) CMH Test Outputs Defendant / Victim



The codes are using a survival analysis function, survreg from “R” that is novel, and a new use in this application.
Since this is a survival function, the full effect of risks due to censored events may be incorporated. The count is
placed first and then the bivariate exposure next (Agravat 2008, Agravat 2009). P-values are used to pick the
distribution used unless a distribution is already chosen by the study designer.

2.3 Randomized Drug Trial (SAS.com/PROC GENMOD)

data drug;
input drug$ x r n @@;
datalines;

A .1 1 10 A .23 2 12 A .67 1 9
B .2 3 13 B .3 4 15 B .45 5 16
C .04 0 10 C .15 0 11 C .56 1 12
D .34 5 10 D .6 5 9 D .7 8 10
E .2 12 20 E .34 15 20 E .56 13 15
;

2.3.1 Agravat’s R Code for Randomized Clinical Trial Sample Multivariate Data

drug<-c(1,2,3,4,5,1,2,3,4,5,1,2,3,4,5)

x<-c(1,1,1,0,1,1,0,1,0,0,0,0,0,0,0)

r<-c(1,1,1,0,0,1,1,0,0,0,1,0,0,0,0)

count<-c(10,13,10,10,20,12,15,11,9,20,9,16,12,10,15)

ex29_1a<-data.frame(drug,x,r,count)

ex29_1a

ex29b<-survreg(Surv(count,x)~drug, data=ex29_1a, dist="weibull")

summary(ex29b)

ex29d<-survreg(Surv(count,x)~drug:r, data=ex29_1a, dist="weibull")

summary(ex29d)

ex29e<-survreg(Surv(count,x)~r, data=ex29_1a, dist="weibull")

summary(ex29e)

2.3.2 Output for Randomized Clinical Trial (Multivariate)

Call:

survreg(formula = Surv(count, x) ~ drug, data = ex29_1a, dist = "weibull")

Value Std. Error z p

(Intercept) 2.407 0.1547 15.55 1.53e-54

drug 0.139 0.0552 2.52 1.17e-02

Log(scale) -1.704 0.3157 -5.40 6.80e-08



Scale= 0.182

Weibull distribution

Loglik(model)= -19 Loglik(intercept only)= -21.8

Chisq= 5.74 on 1 degrees of freedom, p= 0.017

Number of Newton-Raphson Iterations: 6

n= 15

Call:

survreg(formula = Surv(count, x) ~ drug:r, data = ex29_1a, dist = "weibull")

Value Std. Error z p

(Intercept) 3.009 0.1275 23.60 4.12e-123

drug:r -0.200 0.0774 -2.59 9.70e-03

Log(scale) -1.587 0.3162 -5.02 5.24e-07

Scale= 0.205

Weibull distribution

Loglik(model)= -19.4 Loglik(intercept only)= -21.8

Chisq= 4.9 on 1 degrees of freedom, p= 0.027

Number of Newton-Raphson Iterations: 6

n= 15

Call:

survreg(formula = Surv(count, x) ~ r, data = ex29_1a, dist = "weibull")

Value Std. Error z p

(Intercept) 3.049 0.137 22.18 4.85e-109

r -0.465 0.165 -2.81 4.96e-03

Log(scale) -1.690 0.312 -5.41 6.32e-08

Scale= 0.185



Weibull distribution

Loglik(model)= -18.4 Loglik(intercept only)= -21.8

Chisq= 6.8 on 1 degrees of freedom, p= 0.0091

Number of Newton-Raphson Iterations: 6

n= 15

2.3.3 Results and New Formulas for Sample RCT:

“X” is coded 0 for concentrations above .2 for the drugs. R is 0 for “R” 5 and greater. R corresponds to

Randomization and N is the count variable.

> bz<-.139
> byz<--.200
> by<--.465
> bxz<--.0641
> bxy<--.567
> bx<--6.59
> sez<-.1547
> seyz<-.1275
> sey<-.137
> sexz<-.2140
> seyx<-.101
> sez<-.12

OR1<-(exp(bz+bxz+by)/(1-exp(bz+bxz+by)))*sqrt(sez)

RR1at<-(exp(-(bz))/(1-exp((bz+bxz+by))))*sqrt(sez)

RR1bt<-(-(exp(bz)))*(exp(-(bz)))*sqrt(sez)

RR1t<-(RR1at+RR1bt)*.5

RR2<-(exp(by+bxz)/(exp(by)))

Percent_attributable_risk_z<-(RR1-RR2)/RR1=-224%

Attributable_risk_z<-RR1-RR2=-65%

Efficacy_z<-(RR2-RR1)/RR2=69.1 %

Control for x

OR2<-((exp(bz+bxz+by))/(exp(bz)))

RR1a<-(exp(-(by))/(1-exp(by)))*sqrt(sey)

RR1b<-exp(-(by))*(-(exp(by)))*sqrt(sey)

RR1x<-(RR1a+RR1b)*.5



RR2a<-(exp(by+byz)/(1-exp(by)))

RR2b<-(exp(by+byz))*(exp(-(by+byz)))*sqrt(sexz)

RR2x<-(RR2a+RR2b)*.5

Percent_attributable_risk_x<-(RR1-RR2)/RR1=-126.2%

Attributable_risk_x<-RR1-RR2=-77%

Efficacy_x<-(RR2-RR1)/RR2=55.8%

The odds ratio when controlling for drugs or a possible interaction term for this sample study is .72 which
means that the odds for outcome of a randomization due to no exposures of concentrations over .2 is .72 times
based on drugs with statistically significant 95 % confidence intervals (.77,.67). The relative risk 1 is .29 which shows
there is a 71 % protective effect due to the drugs being given for outcome that is also statistically significant (.31,.27).
Relative risk 2 is not significant for not getting the outcome. Controlling for the explanatory variable is also showing
statistically significant risk statistics for odds ratio, and relative risks as shown in table 2.

The efficacy when controlling for confounder or effect modifier is 69.1 %. When controlling for the
explanatory variable, the efficacy is significant 69.1 % and the odds ratio is also significant .59 with 95 % confidence
interval of .63 and .55. This may mean that the concentration has a significant effect, and that concentration above .2,
relatively speaking with regards to the study and units, shows significant difference for the outcome with the
randomization due to 95 % confidence interval and relative risk 1: .61, with 95 % CI of .62 and .56 there is a 39 %
less risk of outcome due to exposure. Based on the side effects, this drug may or may be useful for the potential
problem because both the presence and concentration are statistically significant. The drug itself may have an effect
worth noting due to its protective effect of 71 % and 39 % due to its concentration showing consistency a causal
criterion of Hill. Expect more requirements for inferences to be demonstrated further and supported in the future for
this hypothetical randomized clinical trial to know what dose and side effects are shown and necessary for possible
side effects.

Table 2: Randomized Clinical Trial Sample Agravat’s Statistics Overall Risks for Multivariate Risk Estimates

Figure 2: Residuals of Randomized Clinical Trial Plot

The plot of the residuals above using glm in “R” shows that the residuals are not interacting because the residuals are
parallel. Interaction does not need to be taken into count here to calculate the risk statistics.

Risk Statistic Risk-z 95 % C. I. Risk-x 95 % C. I.
Odds Ratio .72 (.77, .67) .59 (.63, .55)
Rel. Risk 1 .29 (.31, .27) .61 (.62 .56)
Rel. Risk 2 .94 (1.01,.87) 1.38 (1.49,1.28)



Table 3: Outputs Using Agravat’s
Method in “R” and New Formulas
Black victims whose victim s were black

had odds ratio of 5.48.

2.4 Proc Logistic and Death

Penalty Outputs

The existing method for confounding

and point estimates utilizes the Cochran

Mantel Haenszel Method (CMH) and

logistic regression. The point estimates

come from PROC FREQ CMH option

(SAS TM) CMH test which do not work

well for point estimates when data has

conflicting risks. The non-zero correlation P-value method is the test for independence for the CMH test giving 

P<.0001 and P <.034 when controlling for defendant and victim’s race. Often the CMH test does not work for other

distributions when conflicting risks exist such as in non-normal data. PROC LOGISTIC is often also used to check for 

confounding by determining if the beta estimates with and without confounder have a greater than 10 percent

change but in this case.

Assumptions for Non-normal Distributions The assumptions of the death penalty dataset, shows that the
Shapiro-Wilks P- value test, represents non-normal data with P <.0009. The Durbin Watson Statistic DW =2.28
indicating data is not auto correlated.

2.4 Results from Agravat’s Method for Point Estimates for Death Penalty

The distribution chosen here is lognormal for this parametric method. Black was coded”1” (controlling for
defendant’s race) first in table 3. While whites were code as”0” and death penalty was coded as”1” for the first half of
the analysis and reversed for defendant and victim’s race in the second half. For this special situation and use of
lognormal distribution and case of extreme bias, the odds are obtained by exponentiation of the output from the
formulas for lognormal. The odds ratio for controlling for defendants race is .076 which means that for black
defendants whose victims were black the odds of death penalty is .076 for victim’s race being black [KCobb]. The 95
percent confidence interval is significant (.088,.066). hence there is evidence for bias due to significance and 
increased risks .076, especially since the odds ratio and relative risks are different .076 vs. 2.41 for defendant’s race
as confounder (see table 3) and .40 vs 5.14 when controlling for the other variable The risk for death penalty
controlling for defendant’s race is 2.41, meaning black defendants had a 2.41 times increased risk for death penalty
vs. white defendants. The RR2 is 6.3 meaning the risk of not getting the death penalty for white defendants is 6.3.
The RR2 is .006 for victims race controlled so the risk of not getting the death penalty if victim is black is 99.4% less.

There is evidence for interaction between defendant’s race and victims’ race for death penalty. The risk for
not getting death penalty, when black vs. whites is .006 (R.R. 2) when controlling for victims race with defendant’s
race as confounder (see table 3). The new statistics show that the odds ratio when controlling for defendant’s race
and victims race, they differ by 81% (.076 vs .40) respectively and both statistically significant. The explanatory
variable when controlled for victim’s race and defendant’s race is also showing a greater than 69.5 % (5.48 vs. 1.67)
difference. This shows bias or is it double jeopardy based on race or another personal factor? (This new risk is not
available with the PROC FREQ CMH option.) These risks were reported without adjustment for over-dispersion.

Risk
Defendant’s Race

Confounder
95 CI Victim’s

Race
95 CI

Odds Ratio .076 (.088,
.066)

5.48 (6.54,
4.59)

Relative
Risk 1

2.41 (2,88,
2.02)

.50 (.60 .42)

Relative
Risk 2

6.30 (7.52,5.28) .006 (.007,
.005)

Risk Victim’s Race
Confounder

95 CI Defendant’s
Race

95 CI

Odds Ratio .40 (.46, .35) 1.67 (1.99,
1.39)

Relative
Risk 1

5.14 (6.14,
4.29)

.63 (.76.,.53)

Relative
Risk 2

6.30 (7.53,5.27) .06 (.07,.05)



SAS Code 1a. Standard CMH SAS code for Death Penalty

data dpl;
input victim $ defend $ penalty $ count ;
cards;
1 1 1 53
1 0 1 11
0 1 1 0
1 1 1 4
1 1 0 414
1 0 0 37
0 1 0 16
0 0 0 139
;

Run;
Proc freq data=dpl;
weight count;
tables victim*defend*penalty/cmh;
Run;

SAS Code 1b. Death Penalty PROC LOGISTIC

data dpl;
input victim $ defend $ penalty $ count;
cards;
1 1 1 53
1 0 1 11
0 1 1 0
1 1 1 4
1 1 0 414
1 0 0 37
0 1 0 16
0 0 0 139
;
proc logistic data=dpl descending;
class defend victim penalty;
weight count;
model penalty=defend victim;
run;
proc logistic data=dpl descending;
class defend penalty;
weight count;
model penalty=defend ;
run;
proc logistic data=dpl descending;
class victim penalty;
weight count;
model penalty= victim;
run;



PROC LOGISTIC (SAS) Outputs

for Death Penalty

The new odds ratio when
controlling for victim is .076 meaning that black victims whose defendants are black the odds for death penalty is .076
for black defendants (see table 3). The risk for death penalty when victim’s race is black is 2.4 with black coded as 1
and 1.67 when black is coded as 0 for defendant. So when controlling for explanatory variable, victims who were
white had a .40 odds ratio meaning that white defendants whose victims are white had a .40 chance of death penalty.
White defendants whose victims were black had a 6.30 increased risk for not getting death penalty.

The Cochran Mantel Haenszel test did not work well for this death penalty dataset for point estimates when
defendant was seen as confounder. The distribution assumption may not have been easily compatible with PROC
FREQ and CMH test or there may have been conflicting risks (see figure 1).  

Only the non-zero correlation showed that P <.0001 and P <.034 (see figure 1), hence there was
independence or confounding was suspected when controlling for defendant’s race and victim’s race. The PROC
LOGISTIC shows that for victim’s race there is no confounding for victim’s race because the beta does not change by
10 percent or more (3.6 %). The defendant’s race shows there is confounding because the betas change over 10
percent. The signs are reversed for the betas and estimates nearly same. The standard errors are high though same
when individual parameters are measured alone. Logistic regression requires equal variance which is not met for the
full model because standard errors differ.

2.5 Hyper geometric Distribution Birth Control and Myocardial Infarction

Hyper geometric Distribution Code Agravat’s method for hyper-geometric distribution works well for the typical
groups of data that involves time and age. Hyper-geometric distribution is involved with the number of successes of
drawing from a population without replacement. Often the studies involve the term total, referring to total number in
sample size. One category is count and may involve the number in time or age stratum like this example of
myocardial infarction with exposures including birth control. The grouping of data to analyze variables still involves
outcome variables first include the frequency of that outcome. The outcome variable for this code with PROC MIXED 
involves bivariate outcomes for grouped data that can be set by the individual and used to test per selected category
for effect modification with “lAEM” variable log of “aem”. Fit variable is still used with the same procedure described 
for lung cancer data (Agravat 2009). There is also a fit variable called “fitrawz” where the raw count is kept for the 
effect modifier level group. There may be a variable for count of number of cases with exposure “-z” or effect modifier 

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate

Standard

Error

Wald

Chi-Square Pr > ChiSq

Intercept 1 -10.1285 384.0 0.0007 0.9790

defend 0 1 0.3849 0.1857 4.2973 0.0382

victim 0 1 -8.5306 384.0 0.0005 0.9823

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate

Standard

Error

Wald

Chi-Square Pr > ChiSq

Intercept 1 -2.3967 0.1706 197.2866 <.0001

defend 0 1 -0.3759 0.1706 4.8537 0.0276

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate

Standard

Error

Wald

Chi-Square Pr > ChiSq

Intercept 1 -10.1245 389.0 0.0007 0.9792

victim 0 1 -8.2326 389.0 0.0004 0.9831



variable and number with exposure including age or time strata. When the weight is ’n’ the result is that there is a
significant difference in risk for outcome of age category for exposure birth control use which includes the number in
level of birth control adjusted for cases involving that category because P <.0001 (at alpha = .05) that is asymptotic
chi- square with “1” for age being a categorical variable which is selected by the study designer is between 35-49
years old.In this type of study the log may be used as shown in the SAS code showing that “laem” or the logo of
“aem” follows an asymptotic chi square distribution for large sample size Other methods do not exist or give results
for hyper-geometric data (Zelterman: (samples/a57496)). The “AEM” variable is calculated by PROC IML and placed
in each row for the data calculated based on the O statistic as shown in example 4a and 4b for the separate data in
section 2.8 give P<0 which is statistically significant for chi square test value of 12.80 and one may reject the null of
homogeneous odds for the null of no association.

The use of birth control and risk for myocardial infarction for older ages over 35 is supported by
(womenshealth.gov). The Mayo clinic suggests that birth control use such as patches, vaginal rings, and pills may
increase risk of high blood pressure (Mayo Clinic). Side effects increase for women who smoke and take birth control
and these side effects are: heart failure, diabetes, stroke, clots, high blood pressure, liver tumors, gallstones and
jaundice (ehow.com) as they are older. Women who are obese and have other risk factors for cardiovascular disease
with birth control are more strongly advised not to smoke and take birth control (womenshealth.gov). For the age
specific question, the criteria of total population versus age category variable, the significant results may show 
Agravat’s method as having better causal inference potentials because the time variable can be included in terms of
age categorized in bivariate terms. Cases of cardiovascular heart disease (CHD) have significant relationships with
respect to using birth control for older ages, 35 and older, coded “1”. Ages vary from 25-49 in 5 categories originally
but coded “0” for ages less than 35. Further studies may be needed to test if birth control is conditionally a risk for
CHD and if at all under what terms and which risk factors. The PROC IML code is shown to give the “AEM” values
from the data transformation method of the author. AEM is calculated from the O statistic which is then put into the
PROC IML code of the author, and then the AEM or the O statistic is placed into the SAS code for PROC MIXED.
The observed minus observed mean determinants squared divided by observed mean is divided to calculate “aem”
through the O statistic.

SAS CODE 2: Agravat’s Method for Myocardial Infarction for Hyper-geometric Data

proc iml;
* Read data into IML ;
use micasesHo;
read all ;

* combine x0 x1 x2 into a matrix X ;
var = zxy || xzy||n;

var2 = age || fit ;
newvar=var*var2;

varC1={
1 1 6,
1 1 21};

varC2={
598874 11363 37,
898311 5601 71,
1 1 99};

V1={.3 .3 1.5,
.8 .8 .7};

O1={1 1 6,
1 1 21};

deter1=(V1);

print deter1;



deterO1=(O1);

D1=(deterO1-deter1)#(deterO1-deter1)#1/deterO1;

print D1;
D1new={

0.49 0.49 3.375
0.04 0.04 0.845};

ars=D1new[,+];

print ars;

print D1;

aem1=ars[+,];

print aem1;(5.28)

V2={
247541 15,
531279 42.2,
.01 .01};

O2={
610274 37,
894043 71,
101 99};

deter2=(V2);

print deter2;

deterO2=(O2);

D2=(deterO2-deter2)#(deterO2-deter2)#1/deterO2;

print D2;
D2new={

215600.25 13.081081
147193.95 11.682254
100.98 98.980001};

ars=D2new[,+];

print ars;

print D2;

aem2=ars[+,];

print aem2; (363024.2)

Ot=sum(aem1+aem2);

print Ot;

/***3130534



*/
P=PROBCHI(363042.98
, 5, 0)=.95 ;
print P; /****P<0 **/

print p;

lOt=log(Ot);
print lOt;

P=PROBCHI(12.80
, 5, 0)=.95 ;
print P; '(P<0)'

SAS CODE 2b: Hyper-geometric Code

data micasesHoaemnewD;
input n age fit fitrawz lcwocz locusex total laem ;
label
fitrawz = 'fit with the raw count for confounder z'
cwoc = 'cases with oc use'
lcwocz = log of 'cases with oc use adjuste for confounder'
locusex =log of '# in age stratum using oc''s adjusted for explanatory'
n = '# of cases in age stratum'
ltotal =log of 'sample size in this age stratum'
laem='log(aem)';
;
datalines;
6 0 1 2 1 1 292 .72
21 0 1 9 1 1 444 1
37 1 0 4 5.77 4.06 393 1
71 1 0 6 5.95 3.75 442 1
99 1 1 6 1 1 405 5.56
;
run;
proc mixed data=micasesHoaemnewD;
weight total; class lcwocz ;
model age= lcwocz laem /solution ddfm=satterth covb chisq ;
run;

Fit Statistics

-2 Res Log Likelihood -18E307

AIC (smaller is better) -18E307

AICC (smaller is better) -18E307

BIC (smaller is better) -18E307



Solution for Fixed Effects

Effect

log of cases

with oc use

adjuste for

confounder Estimate

Standard

Error DF t Value Pr > |t|

Intercept 0.7864 0.03923 1 20.05 0.0317

lcwocz 1 -0.9754 0.04740 1 -20.58 0.0309

lcwocz 5.77 -132E-18 0.05509 1 -0.00 1.0000

lcwocz 5.95 0 . . . .

laem 0.2136 0.01051 1 20.32 0.0313

Type 3 Tests of Fixed Effects

Effect Num DF

Den

DF Chi-Square F Value Pr > ChiSq Pr > F

lcwocz 2 1 604.47 302.23 <.0001 0.0406

laem 1 1 412.74 412.74 <.0001 0.0313

SAS Code 2c with AEM and PROC MIXED for Myocardial Infarction

proc mixed data=micasesHoaemnewA;
weight n; class aem cwocz ;
model age= cwocz aem /solution ddfm=satterth covb chisq ;
run;

Fit Statistics

-2 Res Log Likelihood -18E307

AIC (smaller is better) -18E307

AICC (smaller is better) -18E307

BIC (smaller is better) -18E307

Solution for Fixed Effects

Effect aem

cases with

oc use

adjuste for

confounder Estimate

Standard

Error DF t Value Pr > |t|

Intercept 1.0000 0 1 Infty <.0001

cwocz 1 1.39E-16 . . . .

cwocz 598874 1.05E-16 . . . .

cwocz 898311 0 . . . .

aem 24.058333 -1.0000 0 1 -Infty <.0001

aem 363018.92 0 . . . .



Fit Statistics

-2 Res Log Likelihood -18E307

AIC (smaller is better) -18E307

AICC (smaller is better) -18E307

BIC (smaller is better) -18E307

2.6 New Method for Effect Modification of Head/Neck Cancer Data: Results of Head Neck Cancer Study
INHANCE and the category of never drinkers vs. never smokers were previously too small to be valid statistically
according to Mia Hashibe. Thus a larger category of this pool was added to study head neck cancer which is normally
casually linked to cigarette smoking and drinking alcohol 75 percent [Mia Hashibe, et. al., 2007]. According to the
check on assumptions for data distribution of head cancer from nondrinkers/nonsmokers (comprising 15.6 and 26.6
percent respectively of cases and controls for non-drinkers versus 10.5 and 37.9 percent of cases and controls for
non-smokers from the pool from the study) and according to race coded: 1 for non-Hispanic, 2 for black, and 3 for
Hispanic, the chi-square is P <.0001 meaning that a random variable is likely (zxy for race) [Mia Hashibe et. al.,
2007]. The non-drinkers were mostly below the age of 40 years or older than 75 years and were female. Likewise for
the non-smokers, subjects were more educated. Shapiro-Wilk’s test is indicating that a non-normal distribution with P
<.0003 from PROC UNIVARIATE (SAS) exists. The PROC AUTOREG (SAS) shows that the Durbin Watson Statistic
is 3.23 indicating negative autocorrelation, hence the data is non-normal and involves random effects model.
Heterogeneity is expected in this study, and regression may not be fixed or linear as a result. One is coded never 
drinkers versus 0 never smokers for xzy. Effect modification is expected to exist for the outcome head/neck cancer
for the level of race from the exposure of never drinking/never smoking based on P <.0001 statistic. The risks for
head/neck cancer for the three races (non-Hispanic, black, and Hispanic) vary by more than 10 percent for never
drinkers vs. never smokers. The C statistic is .799 indicating a very good confidence for the results. The data is fairly 
large, over 11,500, and the Likelihood assumption, Score test, and Wald test are all valid for the global null so the
results may be valid for a large population approximation. The algorithm for effect modification program converged as 
indicated. The P <.0001 hence there is reason to believe that there is statistical significance for interaction of the risk 
of head/ neck cancer from never drinking alcohol and never smoking according to races being non-Hispanic, black,
and Hispanic to be different by more than 10 percent in this study of the International Head and Neck Cancer
Epidemiology (INHANCE), a multinational study conducted by France, in Europe, United States, India, and around
the world. The effect modification test shows that there is a difference for head/neck cancer by race and the exposure
in question of no drinking/ no smoking (INHANCE) due to P<.0001. The C statistic is .788 which gives a good deal of
confidence in the test.

SAS CODE 3 Head Neck Cancer INHANCE Study

data smtobAEM;
input cases fit zxy xzy count;
datalines;
1 1 1 1 795
0 1 1 1 2586
1 0 332 569 763
0 0 1913 3279 4397
1 1 1 1 111
0 1 1 1 233
1 0 27 46 62
0 0 104 178 238
1 1 1 1 40
0 1 1 1 152
1 0 20 34 45

Type 3 Tests of Fixed Effects

Effect

Num

DF

Den

DF Chi-Square F Value Pr > ChiSq Pr > F

cwocz 2 1 0.00 0.00 1.0000 1.0000

aem 1 1 2.99E15 2.99E15 <.0001 <.0001



0 0 74 127 170
;
run;
proc logistic data=smtobAEM descending;
freq count;
class cases fit;
model cases= xzy zxy /lackfit rsq ;
run;

c 0.856

Partition for the Hosmer and Lemeshow Test

cases = 1 cases = 0
Group Total Observed Expected Observed Expected
1 4397 0 42.84 4397 4354.16
2 3917 946 975.58 2971 2941.42
3 1278 870 797.59 408 480.41

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

61.9428 1 <.0001

The R square for PROC MIXED AEM OUTPUT

R-Square 0.5070 Max-rescaled R-Square 0.8163

PROC LOGISTIC OUTPUT for Standard Count Data

R-Square 0.2536 Max-rescaled R-Square 0.4083

SAS Code 3b: PROC IML and PROC MIXED SAS CODES of AEM Chi-square for Effect Modification

proc iml;
* Read data into IML ;
use smtobAEM;
read all ;

* combine x0 x1 x2 into a matrix X ;
var = zxy || xzy||n;

var2 = cases || fit ;
newvar=var*var2;
varB1={

1 1,



0 1};
varB2={
1 0,
0 0};
varB3={
1 1,
0 1};
varB4={
1 0,
0 0};
varB5={
1 1,
0 1};
varB6={
1 0,
0 0};
varC1={
1 1 795,
1 1 2586};
varC2={
332 569 763,
1913 3279 4397};
varC3={
1 1 111,
1 1 233};
varC4={
27 46 62,
99 178 238};
varC5={
1 1 40,
1 1 152};
varC6={
20 34 45,
74 127 170};
varA1=varB1*varC1;
varA2=varB2*varC2;
varA3=varB3*varC3;
varA4=varB4*varC4;
varA5=varB5*varC5;
varA6=varB6*varC6;
print varA1;
print varA2;
print varA3;
print varA4;
print varA5;
print varA6;
V1={
1.0 1.0 1916,
0.4 0.4 1120};
O1={
2 2 3385,
1 1 2586};
deter1=(V1);
print deter1;
deterO1=(O1);
D1=(deterO1-deter1)#(deterO1-deter1)#1/deterO1;
print D1;
D1new={

0.50 0.50 637.50,
0.36 0.36 831.07};

ars=D1new[,+];
print ars;



print D1;
aem1=ars[+,];
print aem1;
/******/
print varA2;
V2={
316 569 763,
0 0 0};
O2={
332 569 763,
0 0 0};
deter2=(V2);
print deter2;
deterO2=(O2);
D2=(deterO2-deter2)#(deterO2-deter2)#1/deterO2;
print D2;
D2new={
0 0 0,
0 0 0};
ars=D2new[,+];
print ars;
print D2;
aem2=ars[+,];
print aem2;
/***********/
print varA3;
V3={
1.2 1.2 205,
.4 .4 93.9};
O3={
2 2 344,
1 1 233};
deter3=(V3);
print deter3;
deterO3=(O3);
D3=(deterO3-deter3)#(deterO3-deter3)#1/deterO3;
D3new={
0.32 0.32 56.165698,
0.36 0.36 83.042103};
ars=D3new[,+];
print ars;
print D3;
aem3=ars[+,];
print aem3;
/***************/
print varA4;
V4={
27 46 62,
0 0 0};
O4={
27 46 62,
0 0 0};
deter4=(V4);
print deter4;
deterO4=(O4);
D4=(deterO4-deter4)#(deterO4-deter4)#1/deterO4;
print D4;
D4new={
0 0 0,
0. 0. 0.};
ars=D4new[,+];
print ars;



print D4;
aem4=ars[+,];
print aem4;
V5={
1.1 1.1 108.1,
.4 .4 65.5};
O5={
2 2 192,
1 1 150};
deter5=(V5);
print deter5;
deterO5=(O3);
D5=(deterO5-deter5)#(deterO5-deter5)#1/deterO5;
print D5;
D5new={
0.41 0.405 161.7698,
0.36 0.36 120.41309};
ars=D5new[,+];
print ars;
print D3;
aem5=ars[+,];
print aem5;
/***************/
print varA6;
V6={
20 34 45,
0 0 0};
O6={
20 34 45,
0 0 0};
deter6=(V6);
print deter6;
deterO6=(O6);
D6=(deterO6-deter6)#(deterO6-deter6)#1/deterO6;
print D6;
D6new={
0 0 0,
0. 0. 0.};
ars=D6new[,+];
print ars;
print D4;
aem6=ars[+,];
print aem6;
Ot=sum(aem1+aem2 +aem3+aem4+aem5+aem6);
print Ot;
P=PROBCHI(1894.5757, 12, 0)=.95 ;
print P;/******P<0 ******/

SAS Code 3c. AEM CODE with PROC MIXED
data smtobAEMmixed;
input cases fit zxy xzy aem count;
datalines;
1 1 1 1 1470.29 795
0 1 1 1 1 2586
1 0 332 569 1 763
0 0 1913 3279 1 4397
1 1 1 1 140.5678 111
0 1 1 1 1 233
1 0 27 46 1 62



0 0 104 178 1 238
1 1 1 1 283.71789 40
0 1 1 1 1 152
1 0 20 34 1 45
0 0 74 127 1 170
;
run;

proc mixed data=smtobAEMmixed;
weight count;
class zxy ;
model cases= zxy aem /solution ddfm=satterth covb chisq ;
run;

Fit Statistics

-2 Res Log Likelihood 20.6

AIC (smaller is better) 22.6

AICC (smaller is better) 24.6

BIC (smaller is better) 22.0

Solution for Fixed Effects

Effect zxy Estimate

Standard

Error DF t Value Pr > |t|

Intercept -0.00067 0.07990 4 -0.01 0.9937

zxy 1 0.03779 0.1244 4 0.30 0.7764

zxy 20 1.0000 0.7938 4 1.26 0.2763

zxy 27 1.0000 0.6776 4 1.48 0.2140

zxy 74 4.48E-17 0.4141 4 0.00 1.0000

zxy 104 -429E-19 0.3526 4 -0.00 1.0000

zxy 332 1.0000 0.2078 4 4.81 0.0086

zxy 1913 0 . . . .

aem 0.000668 0.000144 4 4.64 0.0097

Covariance Matrix for Fixed Effects

Row Effect zxy Col1 Col2 Col3 Col4 Col5 Col6 Col7

C

o

l

8 Col9

1 Intercept 0.006384 -0.00638 -0.00638 -0.00638 -0.00638 -0.00638 -0.00638 -2.07E-8

2 zxy 1 -0.00638 0.01547 0.006384 0.006384 0.006384 0.006384 0.006384 -6.31E-6

3 zxy 20 -0.00638 0.006384 0.6302 0.006384 0.006384 0.006384 0.006384

4 zxy 27 -0.00638 0.006384 0.006384 0.4591 0.006384 0.006384 0.006384

5 zxy 74 -0.00638 0.006384 0.006384 0.006384 0.1715 0.006384 0.006384

6 zxy 104 -0.00638 0.006384 0.006384 0.006384 0.006384 0.1243 0.006384

7 zxy 332 -0.00638 0.006384 0.006384 0.006384 0.006384 0.006384 0.04317

8 zxy 1913

9 aem -2.07E-8 -6.31E-6 2.068E-8



Type 3 Tests of Fixed Effects

Effect

Num

DF

Den

DF Chi-Square F Value Pr > ChiSq Pr > F

zxy 6 4 27.19 4.53 0.0001 0.0826

aem 1 4 21.56 21.56 <.0001 0.0097

The PROC MIXED and PROC IML code shows evidence again for effect modification by the significant chi-square for

“AEM”. Also the F-statistic, F <21.56, and Chi-square, Χ
2

<21.56, are identical with different P-values. The t value has

P 0.0097 for “aem”. PROC IML yields P< 0 for the data set indicating statistically significant evidence to reject the null

of homogeneous odds for head/neck cancer due to no drinking for level of race.

2. 7 Probability Equation from the Author for z=3 and Hazard Ratio

The probability of three events for confounder/effect modifier can be described by (Agravat 2009 (unpublished),
Agravat 2009)):
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The P(z)new equation shows that the probability follows that CMH test assumption if Beta=0 or not!

This probability equation from the author gives much more insights into probability not possible before when the level

of z=3. In the case of head/neck cancer, the beta values are: By=-1.527; Bz -1.548 giving:

P (z) new = 4.74-.2171/1-.2171=5.726 There is no assumption of Beta=0 or no harm as is in logistic regression or

linear regression for this new method by the author. The author is expecting non linear regression or interaction to be

expected for the sample data. The author’s formulas however follow the Cochran Mantel Haenszel test assumption

for common conditional odds equal to one. The formulas for probability and hazard ratio used were from the author

are:
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, which is 1/OR1 (Agravat 2009 (unpublished)). When solved for odds ratio

the new odds (z) is:

If Bz and By =0, then the Cochran Mantle Haenszel test assumption holds for the reciprocal of odds ratio equation

presented by the author. Utilizing the new probability equation, the odds (z) is described as follows which is:

1) If Bz and By both are ≠ to 0 then P (z) new exists.

2) If Bz and By both are ≠ to 0 then odds (z) new exists.
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5) If Bz and By both are =to 0 then P (z) new does not exist

6) If Bz and By both are = to 0 then (z) new does not exist

7) However, if both Bz and By are = 0 then the CMH assumption holds but no probability exists.

The (z) new statistic in terms of odds ratio new is based on the inverse of the probability P (z) new equation solved
(Agravat 2007 (unpublished)).
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Hazard Ratio new or HR (z)p equals .213 and shows increased risk by .213 times for outcome of death due to the

group in question by 1 unit of time without assuming bz =0 and by =0 or no harm because. The normal hazard ratio of

“z” is exp (z)=.213. The (z)new has ramifications: 1) inverse and 2) negative of the inverse from (z) new equation does

not prove to be correct using standard definitions of probability and odds because then 0=1 which is not true if implicit

derivatives of the new equation (z) new
z

y




or

y

z




are done to the equation. The moral of this lesson (3) is never

assume the outcome has no harm and vary the other covariate! Hazard ratios may also utilize a logit similar to logistic

regression however the assumptions differ.

New Probability and P-value for this algorithm of probability by the author for the head neck cancer problem

(INHANCE) shows:
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This P-value for the odds of outcome for this odds is not significant P<.0612.
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Is new from the author for odds of outcome of head neck cancer from data (INHANCE) with

exposure no drinking / no smoking based on race with three levels using the novel code from R. The new log odds is:

5571.)277log(.  . The anti-logit involving non-normal data without assuming Beta=0 from binomial or logistic
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.The new logit is -.5568 for head neck cancer from the model (Agresti, 1996) from

the author.

The interpretation of the hazard ratio risk statistic is that the risk of death is .213 times less for no drinking as

exposure which is without assuming other factors in consideration. One expects a less harmful prognosis due to this

hazard ratio for head neck cancer from no drinking. The exposure for the head neck cancer has no drinking as

exposure and no smoking as referent for exposure according to the 1) nonhispanic, 2) black, 3) Hispanic race.

2.8 The
^

O Stat Method and AEM Chi-square for Effect Modification

The

^

O Stat Method works by utilizing the data transformed values that come from the data transformation shown in
the SAS code and making matrices from “A New Effect Modification P Value Test Demonstrated” by the author. The
first two rows and 2x2 matrixes are multiplied by the 2x3 matrix for the next columns. This yields an observed table
3a and expected table is calculated by the O statistic. Next, calculate the expected matrix by first estimating the
expected 2x3 table. The observed is obtained by getting the first two rows and all columns of data with variables
“cases”, “fit”, “zxy”, and “xzy”. Then the 2x3 table is multiplied by the 2x2 table giving a 2x3 table. The new expected
table is a type of mean estimate of observed values calculated by multiplying the observed value by row total, then
divided by sum total. The {O} statistic is calculated obtaining through matrices. Sum the {O} statistic of each set of

these products of matrices for first step

^

O has DF 2. The above matrix gives a 2x3 matrix. The same procedure is
repeated for the next set and this is shown in tables for rows 3 and 4 of the data transformation. This step yields
several 0 values for the observed and the expected values for the 2x3 table for both the observed and the expected
hence this may indicate characteristics of singularity. This procedure is repeated in SAS/IML (TM).The method of the
“AEM” or the O stat comes from the formula of:
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______

^

Obs

ObsObs
O


 The matrix calculation is depicted below. This pattern continues in pairs of rows of the data

transformational method’s procedure.

Observed O stat Matrix

Observed O stat Matrix:
258622

338122

Expected O stat Matrix

11204.4.

19161.11.1

258611

79511
*

10

11



The above matrices are from the head/neck cancer example (INHANCE study).The properties of matrices include
commutative properties regarding rings and for multiplication. If E1 is nonsingular, then k*E1 is non-singular (
invertible matrix (Wikipedia)). For a square matrix, which is also possible, for the matrices the commutative property
of multiplication shows that if E1 or E2 are singular when 0 is a possible determinant when dealing with the O
statistics determinants of certain elements, then if E1 and E2 are singular then concentric rings are possible which
may be related to how the matrices shown demonstrates the involvement of complex and real numbers which shows
properties of being both nonsingular and singular because of nonzero values and being square and having 0 values.
Thus the allowance of complex numbers allows more calculations with than without them.

Table 4a: O Stat Matrix Values Observed

2x2 Observed
^

O
Col1 Col2 Col3 Total

2 2 3381 3385

1 1 2586 2588

Total 3 3 6967 6973

2x2 Mean
^

O
Col1 Col2 Col3 Total

1.1 1.1 1916 1918.2

.4 .4 1120 1120.8

Total 1.5 1.5 3036 3039

Table 7b: O Stat Matrix Values Mean

The columns of the O stat are column totals from the PROC IML code. The sum of the O stat from the
columns of Each matrix multiplication is summed for each pair of rows of the data transformational code and summed
with a P-value outputted by the SAS code in PROC IML and the O stat total can be calculated to give the chi square
P-value of the “aem” which is the from the O stat calculated by the formula above. The mean O stat is calculated by
the value times the row total divided by overall total. The alternating matrix calculations give O statistics that are used
as “aem” for the PROC MIXED calculations. Each set of calculations will give a number value followed by a 0 for the
“0” level fit variable which were adjusted for by beta estimates. The number 1 is put for the column of first O statistic
and “aem” value that includes the “0” fit variable continued throughout. Deter01 represents observed values and
deter1 represents observed mean in the PROC IML SAS code. AEM is another name for the O stat for that matrix
calculation. The zeros are ignored in the matrix calculation.

The sum of the “aem” or the O stats after all the matrix calculations give is 1894.5757 with 12 degrees of
freedom for the data with a P-value from PROC IML of 0 and P<.0001 for chi-square for aem from PROC MIXED for
the same variable “aem” that are statistically significant. You may then reject the null of homogeneous odds. You may
then reject the null of homogeneous odds for head/neck cancer and no drinking as exposure and the level of races
(Non-Hispanic, black, and Hispanic) of the INHANCE study population. You may generalize that there may be a
difference by race for head/neck cancer for no drinking as exposure. The interaction may be less due to protection
which is possible. The hazard ratio is .213 which indicates less harm for the outcome head/neck cancer and exposure
no drinking based on level of race. The PROC MIXED SAS code shows that the corresponding AEM values in the
program created by the author is significant for chi-square and P-value of 21.56 and P<.0001. The “aem” is also
significant by the F-statistic, which is for multivariate analysis, rejecting the difference for all groups 21.56 and
P<.0001. Hence the SAS code for the data transformational method follows an asymptotic chi square statistic. The
zxy” variable has a significant P<0.0001 that is chi-square. ZXY is the effect modified transformed variable. You may
conclude therefore that, the effect modifier variable is giving significant evidence to reject effect modification null of
homogeneous odds (Agravat 2010 unpublished).



3 CONCLUSIONS

Agravat’s method for point estimates of this type of non-normal data with these new risk formulas,
indicate that for the outcome of death penalty based on defendant’s race, there may be bias due to difference of risks
which is over 81 % difference when controlling for potential confounder as black vs white being coded “1”. The risk is
different by 81 percent for categories when one stratum may be different or lie outside the other. However, white
defendants whose victims were black had a 6.30 times increased risk for not getting death penalty which shows
tremendous bias. What also is true is that, all other strata when controlling for victim’s race with defendant as
confounder, were significant. This indicates that there is gross ”injustice” or unbalanced scales in the cases of death 
penalty for black defendants by race in Florida according to this dataset of Radelet and Pierce from the Florida Law
Review even without adjusting for over-dispersion. It is not necessarily the size of one strata being huge, but since so
many strata’s are significant in the side of bias and there is obvious confounding in cases of black defendants where 
they are statistically significant from confidence intervals where there may be injustice. The justice system may be 
overly punitive in Florida. The Cochran Mantel Haenszel test shows fewer point estimates because there may be a
problem with strata’s that have conflict with each other in terms of size of risk differences or are not in the same
direction. There is indication of confounding for defendants race by non-zero correlation P-value but no risks
produced for this data from the standard method.

The odds ratio of .46 and relative risk of .53 might indicate small difference hence no confounding may be
present for controlling from the PROC FREQ CMH test and PROC LOGISTIC. Point estimates alone based on risk
the standard risk statistic are not enough, but the difference with Agravat’s method is larger scope of risk estimates
for visible inferences, e.g. .076 to .066 for odds ratio when controlling for defendant’ race and victim’s race first which
may indicate that there is bias while the standard test does not offer odds ratios due to conflicting risks with PROC 
FREQ. The other advantage for this new method is that when trying to calculate defendant’s race as confounder (all
the point estimates are seen in table 2) most of the categories have significant confidence intervals. Also this method 
is parametric, using “R” for the many choices of distributions available that may be scientifically chosen. For the
Cochran Mantel Haenszel Test, the CMH estimates are not available when controlling for the defendant’s race which
is the question of the analysis. As for inferences, in this case if defendant’s race is the confounder and victim’s race is
the exposure, there are no point estimates with CMH test. For sake of inferences, the Agravat’s method for point
estimates allow a newer viewpoint showing that when controlling for the explanatory variable, risk is 5.48 and
statistically significant not limited by conflicting risks. The advantage of having both point estimates is important and 
needed for statistical inferences for the future. If this set of conclusions were true consistently over other data sets,
you may conclude infer that bias is statistically significant and likely. The results indicate a greater difference for bias
in the case for defendant’s race being black. The author believes that while most people say “where there is a will
there is a way”, the author states “ where society has a will there’s a way”, in a responsible society.

Distributions such as Rayleigh and Weibull are available based on the type of data or study given when bias
may not be so strong and data follows different patterns. The standard chi-square of R.A. Fisher is defined by:
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PROC LOGISTIC shows that for confounding, the chance for confounding is small for victim’s race and
probable for defendant’s race though only the defendant's race has significant P-values P<.038 and <.0276. The
author’s formulas show significant risks for both the defendant’s race and victim’s race (see table 3) based on
confidence intervals. Confounding must have the outcome dependent on both the explanatory variable and possible
confounder. For victim’s race there is no significant evidence for the given data from PROC LOGISTIC (SAS) but by
the author’s formulas proof is given for confounding.

Effect Modification Results The results for risk of head neck cancer for races is different showing that there are
statistically significant results P <.0001 for never drinkers  may be generalizable for this study of random effects
modeled data for the outcome by both the Lackfit option that is chi-square and “AEM” variable proving to be
asymptotic chi-square. There may be interaction P <.0001, however based on hazard ratio .213, the effect may be
protective and less for the INHANCE study. Despite the exposure never drinkers and never smokers from that pool of
data, the risks for head neck cancer are still different by more than 10 percent indicating further investigations are
needed because the risk may be explained by indicating that heterogeneity exists for this data and may be helpful in
addition to other statistics such as likelihood ratio tests for randomness. The possible interaction as represented by



difference in risks across strata gives evidence that without ignoring this question of data correlation by covariates
toward the outcome and without fixing the intercept to 0, there is evidence of significant risk differences for head/neck
cancer for race, the effect modifier, that the exposure not smoking and not drinking, is different and statistically
significant. This generalization may be a topic of inquiry that may not be ignored for further studies of head neck
cancer and race. This is evidence that provides the answer for inferences and without this statistic of risk interaction
the question of difference of head neck cancer with regards to race may not be available for consideration. This new
effect modification test’s P-value allows one to have a statistic to compare between subject heterogeneity. Many tests 
allow inferences of effect for estimates for fixed effects in non-normal models in longitudinal data analysis where
random and fixed effects are incorporated, but this comparison test of risk statistic for P-value being different across
strata is useful for many types of data including head neck cancer and race. The new method is known to work on
non-normal tests and potentially works on models with low correlations as well in contrast to the correlated data often
involved with random effects models. The numbers of strata for potential effect modifier can be multivariate and large 
in sample size too as seen with the head/neck cancer data. Baseline data may need to be examined further in a
newer study of risks and other factors that are also causal.

Effect Modification of Lung Cancer
The author wants to amend the results for lung cancer and passive smoke exposure for countries for “A New

Effect Modification P Value Test Demonstrated.” The algorithm works but the method used for significant results is
given by testing more possibilities for significant p values:

proc logistic data=passlungexp5d descending;
Weight count;
class xzy fit cases;
model cases= fit zxy xzy / rsq lackfit;
run;

Hosmer and Lemeshow Goodness-of-Fit Test SAS ®

Chi-Square DF Pr > ChiSq
8.6778 5 0.0003

Therefore one concludes that passive smoke exposure or spouse smoking risks are different for lung cancer based
on level of countries United States, Great Britain, and Japan. Hence, effect modification is exists for lung cancer from
spouse smoking and counties of United States, Great Britain, and Japan and the null of homogeneous odds is
rejected. The author’s research for the same data give odds ratios of 1.38 and 1.10 when controlling for confounder
and explanatory variable countries and spouse smoking (Agravat 2011) for lung cancer in the same dataset.

Discussion of Randomized Clinical Trial “X” is coded 0 for concentrations above .2 for the drugs. R is 0 for “R” 5
and greater. R corresponds to randomization number. N is the count variable. OR=.72 for “drug” means that the ratio
of odds for no positive response by exposure “x” controlling for ‘drugs’ is .72 times odds of positive response
without “x” controlling for “drugs”. The relative risk 1 for non-positive response states that the proportion of non-
positive response to drugs is 71 % lower for those taking drugs controlling for “z” and 39 % lower due to “x”. When
controlling for “x”, the OR is .59 meaning ratio of odds for no positive response for ‘drugs’ controlling for “x” is .59
times odds of positive response without “drugs” controlling for “x”’. The relative risk 2 is 1.38 for those with exposure
“x” when controlling for “x”. One is not able to report attributable risk due to non-causality inferences for the drug as
confounder. The efficacy when controlling for drug is 69.1%. This efficacy explains that the no positive response that
can be removed due to this drug is 69.1 %. The amount of no positive response that can be removed if the exposure
“x” is removed is 55.8 % when controlling for “x” and is statistically significant based on confidence intervals (1.28,
1.49) because causality inference may have support in this trial for the drugs’ concentration here due to statistical
significance. Levels of toxicity, safety, and effectiveness have to be measured and met according to criteria for a drug
to be allowed for public utilization.

Agravat’s probability algorithm and Agravat’s distribution is included for discussion because it allows
you to deal with the probability of events as in the case of the data taken 1 at a time for three variables for example
for the probability of outcome.
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For the last condition,

1) For n=3 and i=0:

The derivation below explains the checking of the answers for the above algorithm that addresses a general question

that if there are three possibilities to start, and there exist i different possibilities, what is the probability of outcome? In

the case of P (3|2) inspections leads one to conclude the answer is 0, but the answer is supported by the derivation

below. The probability of P (3|3) is given below as well. This algorithm may work to calculate essential or important

probabilities more than demonstrated.

Ln(P(n|i=0))=

Ln(n-i)+ Ln(n-i)- nLn(n-i)-ln1/3+

Ln(n-i)+ Ln(n-i)- nLn(n-i)-ln1/2+

Ln(n-i)+ Ln(n-i)- nLn(n-i)-ln1+

Ln(n-i)+ Ln(n-i)- nLn(n-i)-ln1/6+

=8ln (n-i)-4n*ln (n-i)-ln2

8/4n*2=1/n>>n=3 so P(n|i=0) =1/3

*>>Ln(P(n|i=2))=

Ln(n-i)+ Ln(n-i)- nLn(n-i)-ln1+

Ln(n-i)!+ Ln(n!)- ln1/6=0
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(data.Princeton). The distribution is similar to the binomial or exponential distributon with mean and variance like the

gamma distribution due to proportions.

The denominator of 1 in Agravat distribution is similar to problems in quantum statistics in the denominator of

dx
e

x
x

n


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
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1
solved with the Riemann Zeta function as well because it also depends on a binomial distribution like

probability. The probability algorithm when tested for autocorrelation for the resultant value from Agravat’s distribution

shows that the intercept and 1-prob are equal but have opposite sign values and has equal standard errors for the

two variables intercept and “omp” (1 –Pr) for sample data. The value n if plotted is linear (figure 4a) with the value for

Agravat distribution. Figure 4b shows that probability is increasing with “i” for sample data. N and f(i) are independent

with the chi-square test with P<4E-7 to P<.000457. Probability is not independent of n P<.2270 or f(i) and they have

identical PROC FREQ values for chi-square test. A PROC MIXED test of REML and COVTEST shows that intercept

is equal to i=0 value except opposite sign for the “smoktobdev” dataset of sample data (Verbeke and Molenberghs)

with residual equal to 0. The subsequent probability shows that probability calculated from Agravat’s algorithm

follows the t, F, and Chi square distribution as can be seen below from the sample dataset with converging values

and are statically significant. The Durbin Watson statistic of 2.44 indicates no autocorrelation for the Algorithm

probability and distribution value of f(i). In figure 4 the distribution shows ability to calculate the important electron

orbital levels for example for level 9 and 6 orbits equaling to 84-54=30 levels that are important.

Figure 4. Sample Probability Dataset

data SMOKTOBDEV ;
input pr ni n i omp fi;

datalines;

0.00000021 1 9 0 0.99999970 0.00000029
0.00000048 9 9 1 0.99999950 -11.68000000
0.00000121 36 9 2 0.99999870 -22.43
0.00000357 84 9 3 0.99999600 -24.759
0.00001280 126 9 4 0.99993800 -37
0.00006100 125 9 5 0.99993800 -40.04
0.00045700 84 9 6 0.99954000 -38.157



;
run;

proc autoreg data=smoktobdev;
model fi=pr n i omp/dw=2 dwprob;
run;

Durbin-Watson

Statistics

Order DW

1 2.1620

2 2.4403

n = 8.99999 * Intercept + 5.4E-6 * pr - 301E-13 * i - 5.73E-6 * omp

Regress R-Square 0.9802

Standard Approx

Variable DF Estimate Error t Value Pr > |t|

Intercept B -55867 75103 -0.74 0.5109

pr B 83751 71443 1.17 0.3257

n 0 0 . . .

i B -8.0119 0.8701 -9.21 0.0027

omp B 55865 75103 0.74 0.5109

Figure 4a. Plot of “n” with Pr from Agravat’s distribution and Agravat’s Probability Algorithm
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Figure 4b. Plot of Probability with “i” in P(n|i)
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Figure 4c. Statistics of Agravat distribution f(i) and Probability form Agravat’s Algortihm and Other Variables



The SAS System

The Mixed Procedure

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

pr 31122 9339.31 4 3.33 0.0290

Covariance Matrix for Fixed Effects

Row Effect Col1 Col2 Col3 Col4

1 Intercept 4.3063 -1.2456 7363.85

2 n

3 i -1.2456 0.5348 -4682.00

4 pr 7363.85 -4682.00 87222797

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

n 0 . . . . .

i 1 4 128.98 128.98 <.0001 0.0003

pr 1 4 11.10 11.10 0.0009 0.0290

proc mixed data=smoktobdev method=reml covtest;
model fi=n i pr/ solution ddfm=satterth covb chisq;
run;

Comparison of the analysis of Agravat’s distribution and Agravat algorithm
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As denominator of F-statistic goes to infinity, i and probability converge to chi-square statistic of the Agravat



distribution and algorithm for probability as in O statistics which use mean values. The probability distribution and

algorithm shows that significance for the t and Chi-square distribution (Basu’s Theorem):
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SIGNIFICANCE of PROC IML and PROC MIXED both yield significant results with a new method that is
showing how that data transformation method of Agravat’s algorithm works. The procedure may work for any
produced transformation of the data in PROC IML. PROC MIXED also gives accurate results that include the “AEM”
variable for the O stat calculated by the method shown from the author when introduced into the author’s algorithm
that is asymptotic chi-square. The O stat is a distinct type of formula from the standard statistic for effect modification
because it has observed value minus observed mean value squared divided by observed value. Normally, chi-square
is observed minus expected squared divided by expected. According to the author, the data transformational method
of the author is asymptotic chi-square and the statistics of the P-values follows the asymptotic chi–square distribution.
PROC MIXED and “AEM” is asympototic chi-square and the PROC IML algorithm in SAS can be used to calculate
the P-value for effect modification as an alternative and log of the “”aem” can be used to simplify calculations.

Since statistic and F-statistic squared which is also the ratio off two chi-squares squared, one may safely
conclude that one measure is going towards infinity. At the same time, the lcwocz variable for effect
modifier/confounder is P < .0001. This statistic has the range of -  to +  as in intercept and AEM variable in the
hyper-geometric distribution data example. For hyper-geometric distributions for n values that are fixed, while N
approaches positive infinity (Wackerly, Mendenhall, and Scheaffer). However for the data on myocardial infarction,
the values for t-distribution are positive or negative infinity for intercept in “aem” with estimates of 1 and -1
respectively. There is an anomaly here because t~ (F)

2
which is normally positive however t can be negative. The

estimate of the intercept is 1 and value is infinity. Since the F test can have high variance in numerator that is
negative for between effects which is fixed the value can approach infinity as long as the numerator is small. The
denominator may have values of within variance that is small while accounting for randomness. Still the t value may
approach negative infinity. There may be sometimes mixed effects for when the within variance is small and
numerator or between variance is negative and tends toward negative infinity which may also produce negative
infinity values involving the t -distribution.

“Generalized Linear Models”, (Nelder and McCullough 1989), stated that in large samples give the
approximate distribution for χ2. With normality, there may be exact results. As n approaches  , the degrees of
freedom, in the denominator approaches infinity, and the F-statistic is equivalent to χ2. However, the author’s method 
is able to produce this convergence with non-normal data and small sample size, as in hyper-geometric data set
regarding myocardial infarction, as well as in large samples as in the case of head/neck cancer. The author’s
methods with the matrices, algorithm, aem, and PROC IML with PROC MIXED produces, asymptotic chi-squares in
the case of effect modification.

In pharmacokinetics, the question of steady state chemistry as well as the physics of energy does become a
factor in the metabolism of drugs. Drugs being broken down related to their patho-physiology of the condition may
give more insights. This question concerns thermodynamics and thermo-kinetics as well and “first pass effect” in
metabolism. Drugs with problems with steady state may present a problem in the human body and may have risks!
Many drugs are known to have side effects, but the doctor must choose which drug is best and related to the
condition of the patient and according to factors for prognosis due to the stage of the disease for complicated cases.

The analysis and study of drugs and different phases may utilize these formulas for inferences that include
causality criteria. In phase I, when the drugs are tested for pharmacokinetics, dosage is a key issue at what
concentration the effect is seen. For this trial, after dose .2 units, there is a significant effect statistically with
randomization. In phase II, toxicity is important at that stage and safety. If a drug has significant risks then there will
be a higher risk that can be seen with the formulas of the author. The therapeutics can be analyzed for long term
efficacy in phase III supported for when controlling for the concentration. Finally, phase IV will involve the study of
side effects before a drug is found to be safe and goes to the market.

The probability equation given by the author further derives the Agravat series when the third, fourth, and
fifth implicit derivative is done to the odds ratio equation when the reciprocal of OR 1 equation is equal to z/y and



solved. These equations are hyper-geometric because they are non-factorable and negative. This equation has z with
three levels. The odds ratio equation also has three levels.

 Agravat’s Proof of Cochran Mantel Haenszel Test Assumption of Θ=1 
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The author just proved above that using the author’s background information for odds ratio, and setting the reciprocal
of the odds ratio to z/y, the author is able to prove that the common conditional odds ratio is 1. The assumption is Bz
is = 0 and By is shown to be 0. Hence, z/y=1/1 or that the common conditional odds ratio equals 1 as suggested by
the COCHRAN MANTEL HAENSZEL test assumption and this author’s proof as support for the assumption.

The matrix math, described by observed, mean observed tables, coming from the O statistic and the code
and the PROC IML code, give statistics that may yield equal values for the F-statistic and the chi-square for the AEM
variable. The t statistic normally requires the normal distribution; however the data is fitting the hyper-geometric
distribution and gives negative and positive . For the non-normal data, these equations give more area that can be
quantified and explain graphing the three body problem of Poincaire΄ (figure 6). The Poincaire΄ conjecture (Figure 6) 
has implications in algebraic topology where f(x, y, z) = (0) can exist and have complex numbers as coordinates as
shown in the 3- d sphere at the vertex. The author’s hyper-geometric series, Agravat series, allows complex
numbers that the author believes may be a factor in accounting for time at least partly. The beta estimates and the
use of the formulas from the author allow the vectors and multidimensional mathematics utilized in calculating risks.

Agravat Series The proof behind the Agravat series is as follows:
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(Expressions 2 and 3 come from the implicit derivative of the previous expression).

Figure 5. Agravat Series Plot of Data Only

Agravat series shows a similar relation to the problem of Poincair`e, three body problem, dealing with the sun, moon,
and earth’s space. The description of the matter of particles may be better described by the hyper-geometric Agravat
series for steady state. According to Paul Dirac “Some time before the discovery of quantum mechanics people
realized that the connection between light waves and photons must be of a statistical character” (Dirac, 1958).The
author believes this link may be hyper-geometric. The 3-D spheres as shown by the author’s Agravat series involve
the polarization of light (Baym). In addition, the probability of a photon is described by Maxwell’s equations. In
addition, the author states that the order of these equations may be related to special relativity of Einstein but you
may not ignore Heisenberg’s uncertainty principle! Heisenberg states in matrix math that his matrices for position and
displacement were not commutative (Werner Heisenberg: (wikipedia)),which is important for the steady state but
Agravat’s O statistic and matrices are commutative (Agravat, 2010 (unpublished)) and also agree that time must be a



factor in complex numbers which can be described by the Agravat series. For 2mce  , with f (z) =c and m=y, there is

less destruction or steady state that is associated versus the expanding space with m=z. The author believes the
transmutability of mass and energy due to the restriction imposed by the infinite power of destruction possible or may
be limited to other particles by the possibility of mass being described in a way that does not take into the account but
rather of mass in terms of the outcome and mass in terms of another “variable” that can involve a hyper-geometric
function or characteristic to involve transmutability (Theory of Relativity :(wikipedia)) in the.

Figure 6. Radar Plot 2mce  , f (z) =c, and Agravat Series Transformation
, and Delta Function

Figure 6 shows the relationship between 2mce  , and Agravat Series and using f (z) =c where energy is going

beyond the speed of light squared and mass is central in the plot. Einstein states that mass is a manifestation of
energy and a small amount of ass may converted to more energy as shown in figure 6.

Figure 7. Poincaire` Conjecture and Agravat Series

The use of Agravat series better describes the cohesion of particles for that may be having hyper-geometric
properties that can involve the author’s Agravat series meant for level of three variables which can be subatomic to

hold together in steady state not described by 2mce  while speed of light ~ to the f (z) function in the third

expression of Agravat series. According to Einstein and Bose the temperature and particle energy condensate and
behave differently (Bose-Einstein: (hyper physics)). Bose also believed similarly however, the author believes that
Bose assumed that when describing photons behavior, he did not assume independence. The author’s algorithm and
distribution does not assume independence either but the probability algorithm and distribution produce statistically
significant values (4c). The author’s algorithm’s last term is similar to Maxwell-Boltzman distribution which is:
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has a distribution as well to supplement the probability algorithm. The probability algorithm of the author gives better
answers for larger numbers of variables such as P(5|3)=.125 for the author versus if Maxwell Boltzman is used:1/20.
The more precise inferences of the author’s algorithm may be more useful for calculations dealing with the chemistry
of atoms and hence the pharmacokinetics in the long run. For the behavior of condensates, Bose’s assumption may
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be correct, and the author’s algorithm and distribution does work for probability according to Agravat’s distribution.
Bose had been told he made an error, but may have been correct when saying that for behavior of photons the
behavior may not be independent and had a 1/3 chance for P(3|0) for photons. Thus certain particles do condensate
or cluster while others fermions don’t at the subatomic level. The author believes that regarding mutability of matter,
this factor is a characteristic of subatomic behavior that may share hyper-geometric properties. Mass may be
proportional to the y the variable of outcome. If the mass is described by the variable “z”, this may result in
destruction or decreases of energy levels in the system in steady state. Delta function states that the position of a
particle from start is described by this function, however the author believes only when slightly perturbed. The less
perturbed perhaps the motion may follow a hyper-geometric distribution or other type of function in part and in rest
also an extreme stimulation towards destruction with mass dependent on other variables without control.

Figure 8. Bending of light

The figure 8 shows that there may be bending of light’s speed from straight to tangential and reflecting inwards of
energy in terms of direction through the Agravat series transformation involved in special relativity not seen before by
other methods.

Included is a discussion on the relationship of the Agravat probability and Agravat distribution. To begin with:

34224

22

22

2422

2
2

2

2

2

*.).(~)(~**.).)(6

)1(~)5

1

*
~)(~*)4

*.).(~*.).(~)3

~
..

~.).)(2

~~~)1

nesDuxnnes

nnz

n

z
uxn

nesnes

nn

ds
es

nznz
n

z














 








The sas code below summarizes the data of new probabilities and distribution values form the author’s work that
includes value D.



data Sve;
input id se n i Pr omp logfi D;
datalines;
1 0.645 3 0 0.3333 0.667 0.131 4.67
2 0.645 3 1 0.5000 0.5 0.702 4.67
3 0.645 3 2 1.0000 0 1/0 4.67
4 0.645 3 3 0.1667 0.8333 0.33 4.67
5 0.763 5 0 0.0080 0.992 0.00436 42.36
6 0.763 5 1 0.0156 0.9844 -1.31 42.36
7 0.763 5 2 0.0370 0.963 -5.47 42.36
8 0.763 5 3 0.1250 0.875 -3.27 42.36
9 0.763 5 4 1.0000 0 1/0 42.36
10 0.763 5 5 0.0083 0.991700 -17.9 42.36
11 0.95700000 9 0 0.00000021 0.9999997 0.00000029 611.47000000
12 0.95700000 9 1 0.00000048 0.9999995 -11.6800 611.47000000
13 0.95700000 9 2 0.00000121 0.9999987 -22.43 611.47000000
14 0.95700000 9 3 0.00000357 0.9999960 -24.759 611.47000000
15 0.95700000 9 4 0.00001280 0.9999380 -37 611.47000000
16 0.95700000 9 5 0.00006100 0.99993800 -40.04 611.47000000
17 0.95700000 9 6 0.00045700 0.99954000 -38.157 611.47000000
18 0.95700000 9 7 0.00078100 0.99210000 -41.89 611.47000000
19 0.95700000 9 8 1.00000000 0.00000000 1/0 611.47000000
20 0.95700000 9 9 0.00000255 0.99999700 0.00000429 611.47000000

;
run;

proc genmod data=Sve descending;
model logfi= n pr D i/ link=log dist=gamma type3;

ods output type3=te;run;

The SAS System
multivariate data

Prob
Obs Source DF ChiSq ChiSq test power

1 n 1 9.3056 0.0023 3.84146 0.86226
2 Pr 1 9.4812 0.0021 3.84146 0.86847
3 D 1 9.4824 0.0021 3.84146 0.86851
4 i 1 16.127 <.0001 3.84146 0.98010

The UNIVARIATE Procedure
Variable: i

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.931246 Pr < W 0.1632
Kolmogorov-Smirnov D 0.144608 Pr > D >0.1500
Cramer-von Mises W-Sq 0.066713 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.442284 Pr > A-Sq >0.2500

axis1 symbol1 color=black interpol=join value=dot w=.4 l=1;
axis2 symbol2 color=blue interpol=rl value=triangle w=.4 l=2;

proc gplot data=randest3;
plot slope2*(hdest_0-hdest_10)=int/ haxis=axis1 vaxis=axis2;
plot slope1*(hdest_0-hdest_10)=int/ haxis=axis1 vaxis=axis2;
run;

The plots below show a few of the resulting motions and collisions actually predicted by the probability and Agravat’s
distribution values may be applicable to subatomic motion and with increasing slopes. In this case, slope2
corresponds to n=5. The algorithm and distribution can work for a great many number of possibilities to further
knowledge in quantum statistics. In addition, Shapiro Wilk’s test shows that “i” is normal P<.1632.
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PROC MIXED data=Sve METHOD=ml;
CLASS N;
MODEL logfi = n /SOLUTION;
RANDOM INTERCEPT n /SUB=id TYPE=UN G S gcorr solution;

ODS LISTING exclude SOLUTIONR; ODS OUTPUT SOLUTIONR=randestd;
run;

The PROC MIXED code with another code is used to predict slopes and intercepts for the plot of n at 3, 5, and 9.
While



Table 5 Spearman's Rho Test from Agravat’s Algorithm and Distribution in SPSS (TM)

Correlations

D stat n i Pr 1-Pr log(f(i)) standard error

D stat Correlation Coefficient 1.000 1.000** .449* -.743** .744** -.737** 1.000**

Sig. (2-tailed) . . .047 .000 .000 .001 .

N 20 20 20 20 20 17 20

n Correlation Coefficient 1.000** 1.000 .449* -.743** .744** -.737** 1.000**

Sig. (2-tailed) . . .047 .000 .000 .001 .

N 20 20 20 20 20 17 20

i Correlation Coefficient .449* .449* 1.000 .020 -.019 -.596* .449*

Sig. (2-tailed) .047 .047 . .932 .937 .012 .047

N 20 20 20 20 20 17 20

Pr Correlation Coefficient -.743** -.743** .020 1.000 -1.000** .471 -.743**

Sig. (2-tailed) .000 .000 .932 . .000 .057 .000

N 20 20 20 20 20 17 20

1-Pr Correlation Coefficient .744** .744** -.019 -1.000** 1.000 -.473 .744**

Sig. (2-tailed) .000 .000 .937 .000 . .055 .000

N 20 20 20 20 20 17 20

log(f(i)) Correlation Coefficient -.737** -.737** -.596* .471 -.473 1.000 -.737**

Sig. (2-tailed) .001 .001 .012 .057 .055 . .001

N 17 17 17 17 17 17 17

standard error Correlation Coefficient 1.000** 1.000** .449* -.743** .744** -.737** 1.000

Sig. (2-tailed) . . .047 .000 .000 .001 .

N 20 20 20 20 20 17 20



Interpretations of the table of Spearman’s rho shows that D value is statsitcally significant for Pr, 1-Pr,
log(f(i)) with negative correlation of -.737 for log(f(i)) and -.743 correlation with Probability. “I” is significantly
correlated but with factor of.449. “I” has power of 98 % with PROC GENMOD for the Agravat’s distribution.

Appendix of data for relativity figures 7.

Y f(z) exp^f(z) e m=y c^2 f(z)=c a x δ(α) 

0 Ω Ω Ω 0 Ω Ω 0 0 -0.651 

1 -12 6.14E-06 144 1 144 -12 1 1 0.001679

2 -19 5.60E-09 722 2 361 -19 2 2 0.326

2.718 -
57.98

6.60E-26 9135.19 2.718 3361 -57.98 2.718 2.718 0.2339

3 -
105.3

1.86E-46 3.33E+04 3 11094 -105.3 3 3 0.217

0 Ω Ω Ω 0 Ω Ω 0 0 -0.651 

1 -12 6.14E-06 144 1 144 -12 1 1 0.001679

2 -19 5.60E-09 722 2 361 -19 2 2 0.326

2.718 -
57.98

6.60E-26 9135.19 2.718 3361 -57.98 2.718 2.718 0.2339

3 -
105.3

1.86E-46 3.33E+04 3 11094 -105.3 3 3 0.217

0 Ω Ω Ω 0 Ω Ω 0 0 -0.651 

1 -12 6.14E-06 144 1 144 -12 1 1 0.001679

2 -19 5.60E-09 722 2 361 -19 2 2 0.326

2.718 -
57.98

6.60E-26 9135.19 2.718 3361 -57.98 2.718 2.718 0.2339



3 -
105.3

1.86E-46 3.33E+04 3 11094 -105.3 3 3 0.217
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