
Pharmasug 2011 - Paper AD21

Importing Excel ‘Data’ Into SAS Datasets Without Involving SAS
Stephen Hunt, ICON Clinical Research, Redwood City, CA

ABSTRACT
Everyone’s favorite supplimentary data-storage utility isn’t actually a database: Excel™, despite its quirks and
eccentricies, has had no serious competition for ease of use and ubiquity across a host of industries. Therefore, the
neccessity of importing information from Excel into SAS® has spawned literally hundreds of papers on the subject. So
why do we need yet another? In a nutshell, virtually all solutions for moving Excel ‘data’ into SAS fall along a
continuum: The ‘minimalist’ approach assumes it’s best to pull data as pure text and then post-process one’s way out
of any problems that arise. In contrast, the ‘technologist’ approach assumes that either the SAS Import facility is
available and able to import any Excel data via a few mouseclicks, or a SAS map file will be sufficient to import any
workbook saved as an XML Worksheet. However, most approaches seem to have assorted drawbacks. For instance,
many seem to have at least some technical limitations, whether it’s special characters, loss of data as a result of cell
formatting, lack of variable attributes, etc.. Additionally, very few techniques include import-validation to ensure that
incoming data conforms to expected attributes. This paper attempts to address these items by using an entirely
different approach for importing Excel workbooks.

INTRODUCTION
This paper will attempt to demonstrate a simple, 4-step method for transforming Excel data into ready-to-libname,
attribute-full, data sets (as XML) without the benefit of having SAS anywhere present for the transformation. The only
tool necessary is the Microsoft Office suite on a machine running the Windows™ OS. Additionally, the reliability of this
method in comparison with other accepted SAS import techniques will be assessed.

STEP 1: CREATE A SHELL DATABASE (OR IMPORT A SCHEMA) USING MS ACCESS
The most difficult part of this process may be the initial task of defining your own schema (and Microsoft actually
makes this process quite easy). Fortunately, Access™ is more than happy to walk you through the process. To begin,
you need to create an empty ‘shell’ database to represent the attributes of the spreadsheet you’ll eventually import.
For instance, lets say we want to import an Excel sheet with the following rows/columns:

Our first step is to create an Access database that could contain these fields: In other words, to define fields and
attributes in Access that anticIpate the data to be imported. This can be easily done by selecting ‘Create table in
Design view’ in an otherwise empty Access database:

Next, we define all the fields to be imported and their respective attributes:

1 1

For our purposes in this paper, I’ll simplify the attribute definitions my merely focusing on variable type and text
variable length, although Access can apparently handle many more attribute details.

STEP 2: IMPORT YOUR EXCEL DATA INTO THE SHELL ACCESS DATABASE
Once we’ve defined our attributes, we can then import the Excel sheets directly into our newly created table(s). Again,
MS Access’s import ‘Wizard’ makes this process practically painless:

The key to preserving your newly-created attributes in the incoming data is to dump it into your existing shell rather
than allowing Access to create a new table by default:

2 2

This is the stage where Access actually works for us to ‘validate’ the incoming data. For instance, attempting to import
text into Access columns that have already been defined as numeric results in a warning from Access and renders
the cells empty as a result. This is actually desirable behavior, since SAS reacts in a similar fashion when importing
CSV files where input variables have already been defined via length or attribute statements. To demonstrate the
complaint that Access raises when confronted with incompatible data types, we temporarily entered ‘ADSF’ into one
of the cells in the LENGTH column, which had been pre-defined as numeric in our database shell.

STEP 3: EXPORT THE ACCESS DATABASE TO XML
This is yet another task where Access is more than happy to comply. In this case, we don’t really need an Access
schema or stylesheet (although use of a schema can be helpful for repetitive/dynamic importing – more on this later),
so we check the ‘Data’ box to export a well-formed XML document only.

STEP 4: GENERATE A SAS ‘MAP’ FILE USING THE ATTRIBUTES PROVIDED BY AN ADODB.RECORDSET CONNECTION TO
THE ACCESS DATABASE
SAS XML mapper isn’t necessary to create a map file. However, a SAS ‘map’ file is necessary to ensure dataset
attributes are assigned correctly when using XML as SAS data. Fortunately, there are only 3 components that need to
be defined for each variable in a map file:
(1) The node path within the XML document,
(2) The variable type,
(3) The variable length.
As such, although it’s relatively simple to write your own SAS map file manually as a text document, a much more
reliable and efficient method is to use the following short VBScript file, which creates a ADODB.RECORDSET from
the Access database and then uses the variable attributes stored there to dynamically generate a SAS map file.
Using a list of ADODB recordset field properties found here (http://support.microsoft.com/kb/193947), we can actually
translate any and all variable attributes from Access into terms that SAS uses in XML mapper. Here’s the full script for
creating a SAS map file from an Access database:

3 3

http://support.microsoft.com/kb/193947

table_name="RECORD" ' PLUG IN THE ACCESS TABLE NAME HERE.
mdb_file="temp.mdb" ' PLUG IN THE ACCESS DATABASE/FILE NAME HERE. NO FURTHER CHANGES NEEDED AFTER THIS POINT.

dim fso, wshell
set fso=createobject("scripting.filesystemobject")
set wshell=createobject("wscript.shell")

currdir=fso.getfolder(wshell.currentdirectory)
database=currdir & "\" & mdb_file

set conn = createobject("ADODB.Connection")
conn.ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0;" & "Persist Security Info=False;" & "Data Source=" & database
conn.Open

set x = conn.Execute("SELECT * from " & table_name) ' Push the database into a recordset.

function saveschema(x)
 mapname=currdir & "\" & table_name & ".map"
 set mapfile=fso.createtextfile(mapname,true)

 mapfile.writeline "// MAP FILE REQUIRED BY SAS FOR DATA IMPORT OF XML, SINCE SAS DOES NOT KNOW WHAT TO DO WITH XSD SCHEMAS."
 mapfile.writeline "<SXLEMAP version='1.1' name='SAS_MAP'>"
 mapfile.writeline " <TABLE name='" & table_name & "'>"
 mapfile.writeline " <TABLE-PATH>/dataroot/" & table_name & "</TABLE-PATH>"

 numf=x.fields.count-1

 'Translate ADODB field types into SAS variable and data types.
 for i=0 to numf
 fname=ucase(x.fields(i).name)
 if x.fields(i).type=2 or x.fields(i).type=3 or x.fields(i).type=16 or x.fields(i).type=17 or x.fields(i).type=18 or x.fields(i).type=19 or x.fields(i).type=20 or _
 x.fields(i).type=21 or x.fields(i).type=7 or x.fields(i).type=133 or x.fields(i).type=131 then
 ftype="numeric"
 flen=8
 if x.fields(i).type=2 or x.fields(i).type=3 or x.fields(i).type=16 or x.fields(i).type=17 or x.fields(i).type=18 or x.fields(i).type=19 or x.fields(i).type=20 or _
 x.fields(i).type=21 then
 dtype="integer"
 elseif x.fields(i).type=7 or x.fields(i).type=133 then
 dtype="date"
 elseif x.fields(i).type=131 then
 dtype="float"
 end if
 else
 ftype="character"
 dtype="string"
 flen=x.fields(i).definedsize
 if flen>2000 then
 flen=2000 'Access allows for far greater variable lengths than SAS. Adjusting to max of 2000 here.
 end if
 end if

 mapfile.writeline " <COLUMN name='" & fname & "'>"
 mapfile.writeline " <PATH>/dataroot/" & table_name & "/" & fname & "</PATH>"
 mapfile.writeline " <TYPE>" & ftype & "</TYPE>"
 mapfile.writeline " <DATATYPE>" & dtype & "</DATATYPE>"
 mapfile.writeline " <LENGTH>" & flen & "</LENGTH>"
 mapfile.writeline " </COLUMN>"
 next

 mapfile.writeline " </TABLE>"
 mapfile.writeline "</SXLEMAP>"
 mapfile.close
end function
saveschema x

4 4

To reiterate, the above code is to be copied/pasted into a text document and saved with the extension ‘.vbs’ into the
same folder where the Access database is present (.mdb file). By merely modifying the name of the file and the
database name within it in this VBS file (i.e., the first 2 lines of code), you then only need to double-click on the file
(VBS is self-executing) to generate a map file from any Access database.

The last piece of the puzzle, reading the XML file into SAS, is simple and well-covered in a number of other papers,
but is reprinted below for convenience. Here’s how SAS can read in well-formed XML via filename/libname
statements:

filename myxml 'c:\record.xml';
filename sxlemap 'c:\record.map';

libname myxml xml xmlmap=sxlemap;

 data work.myex;
 set myxml.record; *** RECORD IS THE NAME OF THE ORIGINATING ACCESS TABLE.;
 run;

COMPARING RESULTS

So, how does the above approach stack up against the established, SAS-sanctioned methods? For a test, we
compared sheets imported using the technique in this paper against what is likely SAS’s best recommendation of
saving Excel sheets as an XML Worksheet and importing them using their excelxp.map file. The following is a
summary of observed differences:

(1) SAS’s approach doesn’t pre-supply any variable attributes. As with proc import, attributes are detected
automatically by SAS from among a pre-specified number of records. As such, the attributes that SAS applies may
vary between identically structured sheets that just happen to contain differing records. With our approach, variable
attributes are fixed:

5 5

(2) Without any variable attributes to ‘steer’ import validation, the SAS ‘excelxp.map’ method doesn’t give any kind of
note or warning about the artificial difference we created in variable type (recall the ‘ADSF’ entered into one of the
numeric cells mentioned previously). Additionally, variables intended to be a specific length (e.g., SAS label fields for
a define.xml) are allowed to exceed this requirement without qualms using SAS’s method. Field validation, as built in
to Access’s import is preferable in these instances.

(3) Although all special characters that we tested (e.g., tab and carriage returns) were rendered appropriately by both
methods (which certainly isn’t the case for some import methods – e.g., CSV), some formatted text values (e.g.,
strikethoughs and unusual font types or colors, as demonstrated below) ended up being set to missing by the
excelxp.map approach. Our method using Access as an intermediate to XML file kept these values present as they
appeared in the original Excel workbook:

The comment fields for the 2 records above ended up as blank when using the excelxp.map import method.

CONCLUSION
Access is a true database, and as such lends itself well to performing the tasks as an intermediary between Excel and
SAS. As a SAS-server-user using lacking any desktop SAS installation, having a method that allows one to import
Excel files while disconnected from SAS itself (e.g., using a laptop in the airport or other area lacking an internet
connection) can be advantageous. Additionally, reliability is enhanced while allowing for some degree of attribute
validation without requiring SAS to participate directly in the import. Since Access is a scriptable application, a
secondary benefit of the method described in this paper can be derived by automating the entire process. Applying a
schema, importing a multi-sheet workbook, writing out XML from Access and creating a SAS map file can all be
scripted. Such a VBScript has been developed by the author and can be provided upon email request (please see
contact information below).

6 6

REFERENCE
Fairfield-Carter, Brian, Sherman, Tracy, and Hunt, Stephen (2005), ‘Instant SAS® Applications With VBScript, Jscript,
and dHTML’, Proceedings of the 2005 SAS Users Group International Conference.

Vincent DelGobbo (2004), ‘From SAS® to Excel via XML’, Proceedings of the 2004 SAS Users Group International
Conference.

ACKNOWLEDGMENTS
I’d like to thank Brian Fairfield-Carter for his technical expertise as well as my friends in Biostatistics and
Programming at ICON Clinical Research for their consistent inspiration, encouragement and support.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Stephen Hunt
 ICON Clinical Research
 Email: stephen.hunt@iconplc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

7 7

mailto:stephen.hunt@iconplc.com

