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ABSTRACT 
The ease of understanding any SAS program written by a programmer depends on parameters like 
Indentation of the SAS code, amount of commenting used and so on. Though, usage of proper comments in 
the program is highly essential, proper indentation also plays an equally important role to make the code 
look comfortable and unambiguous to understand in less time by the reviewer. This paper will provide an 
open code for any SAS programmer across domains, to use it as a tool to indent the un-indented program, 
thus making it reviewer-friendly.  

 
 INTRODUCTION 
This macro was programmed out of necessary and I think lot of us would have faced the situation  of 
reviewing and/or  modifying SAS programs/macros written by some other programmer  which are not 
formatted well and not indented well. This issue becomes serious when the program spans for couple of 
hundred pages especially if the programs being modified are standard macros. 
 
I was caught in a similar situation when I was supposed to review and then modify a complex standard 
reporting macro which spanned for more than couple of hundred pages and I was in a real shock when I 
tried to debug and understand the program because the program was in free style i.e no proper 
commenting, no step boundaries, no indentation. To make the situation more interesting the program had 
many nested DO loops.  
 
I had two options to proceed further to understand the program and modify as required. First one, being 
manually editing the program to indent the compound do loops and insert blank lines between each data 
step or new procedure or new macro definition or call, tedious and very time consuming. I opted for the 
second option to write a macro which would automatically indent and insert the appropriate blank lines etc .. 
for readability. Once the macro successfully performs indentation I should be able to review and understand 
the program easily when compared to reviewing the un-indented program. This macro helped me finish the 
review and modification of the program in much less time than expected. 

 
FUNCTIONALITY OF %INDENT MACRO  

 Incorporate 3 blank lines between the step boundary and the new Data step or new PROC or new 
Macro 

 Incorporate 1 blank lines between the DO statement and the previous statement 

 Incorporate 2 blank lines between the END statement and the next statement 

 Insert 4 blanks spaces for the body of any DO Block 

 Insert comment to the END statement for additional readability to explain the user which DOES 
loop or which IF condition this END statement corresponds to 
 

 FUTURE ENHANCEMENTS 
 Indent macro can be updated to read any program and list all the local and global macros that are 

being used in any program  

 All the keywords and variables can be upcased 

 
%INDENT MACRO ALGORITHM 
Last in First Out (LIFO) algorithm is used for the counters. Counter gets incremented for each new DO Loop 
and the corresponding DO Block gets shifted by 4 spaces.  
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EXAMPLE TO THE%INDENT MACRO  
The following un-indented code from the input program needs to be fed into the %INDENT Macro and the 
sample partial input code is as follows 
 
INPUT TO THE %INDENT MACRO 
data new ;  

set old ;  

if a > 1 then do ;  

result = 'a > 1' ;  

output ;  

end ;  

if b > 3 then do ; 

result = 'b > 3' ; 

output ; 

end ; 

do while (x>100) ; 

result = 'x > 100' ; 

output ; 

if b > 30 then do ; 

result = 'b > 30' ; 

if b > 300 then do ; 

result = 'b > 300' ; 

output ; 

end ; 

output ; 

end ; 

end ; 

run ;  

 
 
 
%INDENT SAMPLE MACRO CALL 

 
%indent(pgm_in=%str(C:\Documents and Settings\sree\My 

Documents\Papers\INDENT\test.sas), 

        pgm_out=%str(C:\Documents and Settings\sree\My 

Documents\Papers\INDENT\test_out.sas)) ; 

 

OUTPUT TO THE %INDENT MACRO  

     
data new ; 

   set old ; 

 

   if a > 1 then do ; 

       result = 'a > 1' ; 

       output ; 

   end ; /*if a > 1 then do ; */ 

 

 

   if b > 3 then do ; 

       result = 'b > 3' ; 

       output ; 

   end ; /*if b > 3 then do ; */ 

 

 

   do while (x>100) ; 

       result = 'x > 100' ; 

       output ; 

 

       if b > 30 then do ; 

           result = 'b > 30' ; 
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           if b > 300 then do ; 

               result = 'b > 300' ; 

               output ; 

           end ; /*if b > 300 then do ;*/ 

 

           output ; 

       end ; /*if b > 30 then do ; */ 

 

   end ; /*do while (x>100) ; */ 

 

   run ; 

 

%INDENT MACRO CODE 

 
/******************************************************************************

************* 

PROTOCOL NAME  : XXXXXXXXX 

PROGRAM NAME  : INDENT.SAS 

AUTHOR    : Sreekanth Middela 

DATE    : 20OCT2010 

SAS VERSION  : V.8.2 

OPERATING 

SYSTEM    : Win XP 

PURPOSE   : This macro indents an un-indented program  

INPUT MACRO PARAMETERS : 

PGM_IN   : Input program name that needs to be indented along with the 

path and extension 

PGM_OUT   : Output program name that needs to be created along with the 

path and extension 

COMMENT : 

Sample macro call : 

%indent(pgm_in=%str(C:\Documents and Settings\jyothsna\My 

Documents\Papers\INDENT\test.sas), 

        pgm_out=%str(C:\Documents and Settings\jyothsna\My 

Documents\Papers\INDENT\test_out.sas)) ; 

 

*******************************************************************************

************/; 

 

 

%macro indent(pgm_in=,pgm_out=) ; 

 

%let name1 = &pgm_in. ; 

%let name2=  &pgm_out. ; 

 

 

********************************* 

Read the input program 

Create counters for DO loops 

For every DO loop start the flag doend set to 1 

For every END (End Of Do Loop) doend flag is set 2 

For everything else doend flag is set to missing 

*********************************; 

data indent1 (keep = name name1 doend); 

  infile "&name1"   truncover ; 

  input name $ 300. ; 

  name1 = name ; 

  name = upcase(left(trim(name))) ; 

 

  i = 1 ; 

  do while(scan(name,i) ne ' '  ) ; 

   temp = scan(name,i) ; 

   if temp = 'DO' or temp = '%DO' then  doend = 1 ;  
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   i = i + 1 ; 

  end ; 

 

  i = 1 ; 

  do while(scan(name,i) ne ' ' ) ; 

   temp = scan(name,i) ; 

   if temp = 'END' or temp = '%END' then  doend = 2 ;  

   i = i + 1 ; 

  end ; 

 

run ; 

 

/*title 'Only doend flags' ;*/ 

/*proc print ;*/ 

/*  run;*/ 

 

 

*********************************** 

Creating the do loop counter docnt,  

 

Line value is also set. If a DATA or PROC or MACRO stats the ln value is set to 

1 

  otherwise ln value is set to 4 (pushing this code 4 spaces inside) 

 

 

  docnt = 1 from 1st do loop start to until it reaches 1 2nd do loop. Once it 

reaches the 2nd do loop docnt value is  

  incremented by 1 and so on .. Once the nth do loop starts docnt value will be 

n.  

  When the nth do loop ends with an END statement the value of docnt is 

decremented by 1 and so on .. 

 

***********************************; 

 

data indent2 ; 

  set indent1 ; 

 

 if indexw(upcase(name),'DATA') or indexw(upcase(name),'PROC') or  

       indexw(upcase(name),'%MACRO')  then do ; 

    dpm = 1 ; 

    ln = 1 ; 

    end ; 

 else ln = 4 ; 

 

   

 if doend = 1 then  do ; 

    docnt+1 ; 

 end ; 

 

 

 if doend = 2 then  do ; 

       docnt = docnt - 1 ; 

 end ; 

 

run ; 

 

/*title 'Only docnt (do loop counters) doend flag and ln values' ;*/ 

/*proc print ;*/ 

/*  var name docnt doend ln;*/ 

/*  run;*/ 

 

 

************************ 
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As the start of DO loop needs to start from the same line as previous 

statement, 

  we need to re-adjust the do loop counter docnt to docnt - 1 for the do loop 

start statement 

Adjusting the counters 

***********************; 

data indent3 ; 

  set indent2 ; 

   

 if doend = 1 then  do ; 

  docnt = docnt - 1 ; 

 end ; 

 

 run ; 

 

 

/*title 'Do loop counters re-adjusted for the start of each DO loop' ;*/ 

/*proc print ;*/ 

/*  run;*/ 

 

************************ 

*** LOCF the docnt values to docnt2 for the purpose of creating segments, 

segmnt variable  ***; 

************************; 

data indent4 ; 

  set indent3 ; 

  docnt2 = lag(docnt) ; 

  run ; 

 

/*title 'Do loop counters re-adjusted for the start of each DO loop' ;*/ 

/*proc print ;*/ 

/*  run;*/ 

 

 

************************ 

*** Segments 

*** Segment gets a value of 1 until it reached the begining of the Do loop. 

    from the next observation onwards Segment's value is incremented by 1 until 

a next DO loop or END statement is encounted. 

    and then from the next observation onwards Segment's value is incremented 

by 1 until a next DO loop or END 

    and so on ... So now the input program is devided into segments along with 

docnt and ln value ***; 

************************; 

data indent5 ; 

  retain segmnt  ; 

  set indent4 ; 

 

  if _n_ = 1 then segmnt = 1 ; 

 

  else do ; 

   if docnt - docnt2 ne 0 then segmnt + 1 ; 

  end ; 

 

  recnum = _n_ ; 

 

  if docnt < 0 then docnt = 0 ; 

 

 

  run ; 

 

/*title 'Do loop counters re-adjusted for the start of each DO loop' ;*/ 

/*proc print ;*/ 
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/*  run;*/ 

 

 

************************ 

End of - Adjusting the counters 

***********************; 

 

 

proc sort data = indent5 ; 

  by segmnt recnum ; 

  run ; 

 

proc sql noprint ; 

  select max(docnt) into :num  

  from indent5 ; 

  quit ; 

 

%let num = &num ; 

%let num1 = %eval(&num + 1) ; 

%put num1 = &num1 ; 

 

********************************** 

Implmenting the LIFO Algorithm 

LIFO - Last In First Out 

**********************************; 

 

**********************************; 

*** Attach the automatically generated Comment(begining of the Do Loop) along 

with the END statement ***; 

*** Remember the last.segmnt has DO statements and first.segmnt has END 

statements ***; 

*** at the begining of every DO loop, assign the compleet statement to the 

Array(docnt+1), in order to  

    auto generate the comment at the end of the Do loop i.e at the END statment 

***; 

**********************************; 

 

data indent6 (drop = r:) ; 

  length  r0 - r&num. temp $ 20 ; 

  set indent5 ; 

  array  r(&num1.) $ r0 - r&num. ; 

  retain r:  ; 

  by segmnt ; 

 

  if _n_ ne 1 then do ; 

 

   if last.segmnt then do ; 

 

    i = 1 ; 

    do while(scan(name,i) ne ' '  ) ; 

     temp = scan(name,i) ; 

     if temp = 'DO' or temp = '%DO' then  doend = 1 ;  

     i = i + 1 ; 

    end ; 

 

    if doend = 1 then do ; 

               r(docnt+1) = name1 ; 

             *put _all_ ; 

          end ; 

       

   end ; 

 

   if first.segmnt then do ; 
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    i = 1 ; 

    do while(scan(name,i) ne ' '  ) ; 

     temp = scan(name,i) ; 

     if temp = 'END' or temp = '%END' then  doend = 2 ;  

     i = i + 1 ; 

    end ; 

 

    temp = r(docnt+1 ) ; 

    if doend = 2 then do ; 

               name1 = compbl (name1 || '/*' || temp  || '*/')  ; 

             *put _all_ ; 

      end ; 

      

   end ; 

 

  end ; 

 

  run ; 

 

 

/*title 'Auto Generate Comments' ;*/ 

/*proc print ;*/ 

/*  run;*/ 

 

**********************************; 

*** using the docnt and the ln values to determine the line number values to 

write the output file ***; 

**********************************; 

data indent7 ; 

  set indent6 ; 

  ln = ln +  4 * docnt ; 

  run ; 

 

 

/**proc print ;*/ 

/*  run;*/ 

 

 

************************ 

Writing the Output file  

***********************; 

 

 

data _null_ ; 

  set indent7 ; 

 * file print ; 

  file "&name2" ; 

  if doend = 1 or dpm = 1 then do ; 

    if dpm = 1 and _n_ ne 1 then do ; 

  put ; 

  put ; 

 end ; 

 put ; 

    put @ln  name1 ; 

  end ; 

 

else if doend = 2 then do ; 

 put @ln  name1 ; 

 put ; 

end ; 

 

else put @ln  name1 ; 
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  run ; 

 

 

%mend indent ; 

 
%INDENT MACRO CALL 

 
%indent(pgm_in=%str(C:\Documents and Settings\Jyo\My 

Documents\Sree\Papers\INDENT\21022011\test.sas), 

        pgm_out=%str(C:\Documents and Settings\Jyo\My 

Documents\Sree\Papers\INDENT\21022011\test_out.sas)) ; 

 
CONCLUSION 

 The Indent macro was designed on SAS v8.2.  As expected the macro meets the expected functionality to 
indent the un-indented program automatically and inserting blank lines where needed thus not only 
improving the readability but also the saving the time. 
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