
1 

 

PharmaSUG2011 - Paper AD13 

Beyond Double Programming                                                     
----SAS® Programming By Design (PBD) with Soop 

                              Laiju Zhang, MDCI, MA, USA 

Double programming has been the golden standard in the pharmaceutical industry. However, it has 3 inherent vital 
flaws: difficulty in implementation, confrontational working environments, and inefficiency and low productivity. 
Programming By Design, the proposed alternative programming paradigm in the paper, focuses on the systematic 
designing of the initial programming, the consistent testing and checking in the production period, and the repeated 
refactoring of code during the review period. The quality of the SAS programs will be enhanced, the productivity of 
SAS programmers will be increased, not as a result of comparison of two programmers' independent activities, but as 
a cooperation and mutual  learning among programmers, statisticians, and other project  members. Thus achieved is 
a deep understanding of the data in terms of the statistical analysis plan and the more efficient and correct realization 
of the analysis plan.  

The PBD paradigm is illustrated by a systematic tool called Soop (pronounced  as “Soup”), which is a software 
realization of  SAS  Object Oriented Programming  guided by PBD principles. 

Borrowing ideas from Java, C++, and C#, Soop  specifies that a SAS program be organized in terms of methods, 
classes, and  interfaces by using the available SAS macro facilities and by implementing DSL (Domain Specific 
Language) in the backend. With well designed SAS programs, it writes SAS programs based on the programmers' 
specs input via excels (or other interfaces); it then checks the programming rules to be implemented before 
submitting to SAS for processing, and it finally analyzes and summarizes the SAS log files after submission.  

On the language tool level, Soop  is built out of SAS compiled macros, VBScripts, Java, Perl, and Groovy language. 
In practice, the use of the tool only requires the user to know SAS basic and Excel basics. The important message it 
carries is that SAS programming activities can be fun and can be enhanced by learning from the general software 
development industry, not only on the language level, but also in the deep aspect of paradigm change - such as 
Extreme Programming, Programming by Contract, etc.  

Key words: macro, SAS, OOP, Soop 

 PRESENTING MACRO SOOP  

This section presents the SAS macro Soop .  The macro reads an Excel file that carries the instructions for writing a 
specific SAS program.  It  then outputs a complete, ready-to-run SAS program. The output SAS program is no 
different from any regular SAS program.  However, it leaves hooks as a convention  that marks different  steps for 
processing,  implements a chain of tests at each  step which results in either a pass or a fail.  In the background, 
Soop  cooperates with another facility (which can be implemented in SAS or in other languages) to collect the results 
of tests, make decisions about further actions, and  issue commands to carry out these actions by programmatically 
modifying the SAS program.  

The generation of SAS programs can be done either in a single mode, or in a batch mode.  In a single mode, one 
program is generated according to the specification; in the batch mode, a series of SAS program is produced 
according to the instructions from the spreadsheet. 

See %SASWriter. 

BABY STEP (BS) 

Baby Step (BS)  refers to a block of SAS code on which a single test is conducted.  It can be the simplest SAS step.  
But not all SAS steps are qualified BS.  For example, a data step that only merges two datasets can be BS, but the 



2 

 

data step with additional data conversions and manipulations cannot.  This approach may be against traditional 
programming wisdom emphasizing simplicity (less code is always better) and may invite criticism of too much coding 
than necessary.  However, since most of coding is conducted by Soop  automatically, more code does not 
necessarily lead to extra burdens on programmers in practice.  By isolating each task from  a comprehensive, 
overwhelming data step, an automatic test on a BS can be conducted  and  results can be easily analyzed and 
utilized for further code refactoring. 

As one example for illustration, consider the following code snippet: 

data subj_2; 
  set subj_1; 
  if HUNIT=1 then HGT_CM = HGT / 0.3937007874; 
  else  HGT_CM = HGT;  
   
  if WUNIT=1 then WGT_KG =WGT * 0.454 ; 
  else  WGT_KG = WGT; 
 
  label  HGT_CM = "Height (cm)"  
         WGT_KG = "Weight (kg)" 
   ; 
  all = 1; 
  trt = 1; 
 
  rename agerng = agegrp; 

run; 

According to SAS, there is one step involved – data subj_2.  According to Soop, there are 7 steps involed: 1 set 
statement..2  if else statements; 2 assignments; 1 label statement, 1 rename statement.  If we combine each of the 
above mentioned step with data statement, we can form a stand-alone data step.  This is the unit for further testing. 

The job of  macro %SoopBabyStep is to read in the existing SAS file and split into these stand-alone SAS steps, 
ready for testing. 

See %SoopBabyStep. 

KNOWLEDGE ZONE (KZ)  

To understand how Soop conducts its necessary testing, we need to explain the concept Knowledge Zone (KZ). The 
idea is about the general philosophy of establishing the criteria for writing each test.  And it is very simple: pass what 
you know, fail what you do not know.  Take race variable for example, in converting a char variable into a numeric 
variable with a format, you know from aCRF there are a limited number of possible values (“White”, “Black”, ....).  In 
your logic, you let the test pass if the actual data are within the values list; otherwise you fail the test and send the 
results to your test results collector.  This list of known values is called “Knowledge Element”.   In addition to known 
values list, a  knowledge element can be a known pattern.  Take height for example, if you detect a pattern of  digits 
combined with dot, then you can be sure that  its unit is either cm or inch and you can use unit information to make 
necessary conversions.  However, if the value is something  like 5’8”, the pattern will be outside your  known pattern 
(or the specified pattern in your program).  Here, a known pattern is a Knowledge Element for your test.  Based  on a 
collection of different types of Knowledge Elements (values list or patterns),  you can build more complex known 
elements set  (called Knowledge  Zone) to establish your test pass zone.  Anything that that falls within KZ will be 
passed; any thing that falls outside KZ will fail.  Note that in most cases, KZ only consists of one Knowledge Element; 
in rare cases, KZ can include many Knowledge Elements.  In the best practice, it’s advisable to use single element 
KZ.  In the process of defining a Knowledge Zone and  “pass what you know”, you  will be able to separate the 
problematic parts from  the rest of your program. 

As a result of applying KZ concept, SAS’s default handling of automatic conversion from numeric to character and 
character to numeric is not permitted in Soop.  The default conversion is against KZ because what SAS does in the 



3 

 

back is not explicit.  Thus, all notes such as “Character values have been converted to numeric” will disappear from 
log files and will be flagged as not permissible if any SAS program is coded to produce such notes. 

%SoopTesting 

PASSIVE PROGRAMMING (PP)    

By passive programming, I refers to an approach  by which you do not actively change your current program  in order 
to use another one, a macro, for example.  On the contrary, you  let  the macro you want to use to find your program 
and  make  decisions according to what your program is.   

  Take %output macro for example.  In each SAS file, I like to place  a  %output to control the final product of my 
program: SAS dataset, a rft table, an xml file, statistic analysis results,  etc.  

The traditional approach  is  to pass a parameterized  outType to control the type of the  product, such as “ 
%output(outType=1.).”  If nothing needs change after you’ve done your initial coding, every thing would be fine.  
When later you wanted to change the output type, however, you will feel  the pain – imagine you had  50 or more files  
to open  for editing!  

 An alternative approach is  to only write  a simple  %output without specifying any parameter in the macro call.   
Within %output macro, you  place necessary logic: if the SAS file starts with L, you do something; otherwise you do 
something else.  Notice the  paradigm change.  In the old way, our Ms. Output is actively adjusting herself in order to 
produce the desired results.  In the new way,  our Ms. Output  is just passively sitting there,  accepting what comes 
out of the macro production.  The behavior of output macro is not decided by the macro call, rather it is decided by 
the Type of the SAS file that makes the macro call.   

Then we have the question: how to specify the Type of a SAS file? In other words, how to decide what a SAS 
program is? How does macro %output collect the SAS file Type information and  behave accordingly? 

1) File names – L_, D_, T_, F_ can be used to categorize the top level  classification. 
2) Maro variable information: purposely assign each file a Type for a particular use. 
3) Contents of the SAS files (what datasets they use, what tests they conduct). 
4) Meta data center – hard coded in an excel file or xml file or web page. 

 The great benefit is the program maintenance.  When you later want to change the output type, you no longer need 
to edit the 50 SAS files that call the output macro.  Rather, you only need to edit output macro and update instructions 
about what it needs to do when it comes to each of the SAS files.  The passive programming is applied for all tests in 
Soop  – all tests are implemented by macros, and macros can be used by many different tests and will behave 
differently according to different file types and other identifiers.    

In summary, this paper presents an approach by which SAS programmers design the whole programming process, 
test each step as the process goes along, and constantly uses the feedback from the testing results to make 
adjustments.  By doing so, doubling programming becomes a additional layer of testing for confirming result, not as a 
plausible requirement for quality control.  Programming becomes a fun of creative thinking, not a constant thread of 
discrepancy from another programmer’s results.  

STRUCTURE OF SOOP MACRO SYSTEM 
 

To summarize, here is the table to list all the programs involved in Soop: 

Macro name Function Notes 

%SoopMain start SOOP  



4 

 

%SoopWriter Write a program  

%SoopBabyStep Split the program into baby 
steps for testing 

 

%SoopTesting Test each baby step.  

%SoopReport Report the test results.  

%SASReWrite Re-write each step and 
combine each step back into 
one single program. 

 

%SoopLog Logging each step. Can be implemented using other 
languages. 

 

Key Concepts 

Abbreviation Full Name Comments 

BS Baby Step  

KZ Knowledge  Zone  

PP Passive Programming  

Soop SAS Object-Oriented 
Programming 

 

 

REFERENCES 
 

(1) Example of 1*variable http://www.pauldickman.com/teaching/sas/char_to_num.php. 

(2) Source Code 

  

Laiju Zhang, PhD 

Sr. Manager of Biostatistics & SAS programming/Sr Biostatistician  
Medical Device Consultants, Inc. 

49 Plain st, North Attleboro, MA 02760 
(508) 316 7163 

(508) 643-2237 Fax 
LZhang@mdci.com 
http://www.mdci.com 


