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ABSTRACT 
The sequence of DNA nucleotides flanked by the primers is known as an amplicon and is frequently used in 
alignment-based variation scans.  The goal of this paper is to describe two BASE SAS® macros that 
generate the flanks for each base in the reference amplicon that can be used to make a genotype call and 
record the result and its associated data in a database.  The principle underlying this approach is to indentify 
loci using the flanks by incorporating them in regular expressions (regexes) used in the PRX functions in 
BASE SAS.  We can genotype single nucleotide substitutions (single nucleotide polymorphisms or SNPs), 
copy number variants, insertions, deletions, and inversions. By querying the database we can report 
whether a base is a variant or whether we did not cover it-an essential quality control process. 
 
INTRODUCTION  

In research projects and clinical work that use Sanger re-sequencing to perform variation scans of 
DNA, the sequence of nucleotides flanked by the primers is known as an amplicon (Figure 1).  Thus, the 
reference sequence of the amplicon is known and is frequently used to anchor an alignment-based variation 
scan, which usually involves a great degree of manual review by a technician.  The manual review is at best 
slow and at worst susceptible to error, either in the actual calls, the identification of the nucleotide loci, or in 
the recording of the calls.  Often, only the loci with evidence of a variant are recorded.   

 
Figure 1. Reference amplicon F8_A056539L0400 Forward.  The first base of the amplicon is nucleotide 56,539 of the 
reference F8 sequence.  The last base of the amplicon is 56,938 for a total length of 400 bp (56,938-56,539+1=400).  A 
separate program determined that the smallest fragment (substring) that matches uniquely within this amplicon allowing at 
most a one base mismatch is 11 bp in length.  Any fragment smaller than this length will match at least twice after 
allowing for a one base mismatch.  In this amplicon, two fragments, AAG_TATAAA and AAAAAGTC_G, of length 10 
matched twice within the amplicon. 
AGAATTTTTCTTCCCAACCTCTCATCTTTTTTTCTCTTATACAGAAGTTATAAAAGTCAATATTTGAACAA
TGGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATTTATGGCATACACAGATGAAACCTTTAAGA
CTCGTGAAGCTATTCAGCATGAATCAGGAATCTTGGGACCTTTACTTTATGGGGAAGTTGGAGACACACTG
TTGGTAAGTTGAAGAAAAGATTTAAGGTCAGGTAAGAAGAAAAAGTCTGGAGAGTTTTGAGTTTCTAAAAT
ACCTCATAATTCAGCCTTGTCTCCAATGGACATGATCTTTTAAAAGCTATAAATGTTACACAAATAATAGC
TGATTGTATGTATTTAAAGTTTGAGTATATAGAATAAAAATTTAA 

 
The principle underlying the approach of this paper is to indentify loci using the sequences that 

flank them, however, since the reference amplicon was created using the reference sequence, either the 
nucleotide number of the reference sequence or the actual position number in the reference chromosome on 
which the gene is located are also available.  The flanks of a locus create a pattern that is the basis for a 
regular expression (regex) that are then available for use in PRX functions in BASE SAS®1.   

Regexes allow a powerful, concise way to locate the locus of interest in the test sequences.  Using 
them, we can genotype single nucleotide substitutions (single nucleotide polymorphisms or SNPs), copy 
number variants, insertions, deletions, and inversions.  Whenever the regular expression matches in the test 
sequence, the identity of the nucleotide(s) between the flanks of interests is recorded in the database, 
whether or not it is a variant.  Using this method, each base of a reference amplicon will generate an entry in 
the database resulting from an objective and define set of criteria even when the regex fails to match, in 
which case we record data from that event, too. 

By simply querying the resulting database, we can report whether a base is a variant and, just as 
importantly, whether we have sufficient evidence to confirm that it is not.  Importantly, this method allows us 
to state whether a nucleotide in a sequence file matched the reference nucleotide or not or whether we did 
not cover it, either due to failures at the PCR or sequencing stage or because the nucleotide was in an area 
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of low quality.  Using the database we can also quickly generate the chromatogram (Figure 2) surrounding 
the loci without having to open the sequence file and locate it manually. 

The goal of this paper is to describe two BASE SAS macros that implement the processes 
described above.  The first generates the regexes comprised of the patterns composed of the flanks for 
each base in the reference amplicons.  The second uses regexes to make a genotype call and record the 
result and its associated data in a database.   
 
Figure 2. A portion of a chromatogram produced by a SAS macro from an .ab1 file and phred output. 

 
 
DEOXYRIBONUCLEIC ACID (DNA) 
DeoxyriboNucleic Acid (DNA) is an immensely large linear polymer of four nucleotides or their derivatives 
covalently linked by phoshodiester bonds. The nucleotides comprising DNA are adenine (A), cytosine (C), 
guanine (G), and thymine (T) and their derivatives, such as methylated cytosine, which plays a role in 
epigenetics.  DNA is a double-stranded molecule formed by hydrogen bonding between A-T and C-G on 
“complimentary” strands.  Knowing the identity of one base reveals the identity of the complimentary base 
on the opposite strand, thus we frequently talk about base-pairs (bp) of DNA.  The linear strands of DNA 
can be over 255,000,000 bp in the case of human Chromosome 01. 
 If DNA persisted in this linear form, the cells could not contain it, could not adequately control its 
expression, and the fragile DNA would be destroyed by shearing even within the protection of the cell.  DNA 
is thus coiled around proteins called histones and then further supercoiled.  DNA is found in the nucleus and 
mitochondria of most human cells.  With the exception of the sex-chromosomes, X and Y, and the 
mitochondrial DNA, the human genome (entire collection of DNA) is diploid-offspring receive one of each 
autosomal chromosome from their mothers and one from their fathers.  The mothers also contribute one of 
their two X chromosomes and their mitochondrial DNA, whereas fathers also contribute either their X or Y 
chromosomes, thus determining the sex of the resulting embryo.  Each human parent contributes 22 
autosomes and 1 sex-chromosome for a total of 46 chromosomes in a normal, diploid offspring. 
 
GENES 
The major function of DNA is to store the genetic “code” to create and regulate proteins.  The loci that 
encode proteins are known as genes.  An extreme minority of all DNA is known to encode the amino acids 
that make up proteins.  For example, F8, the gene for coagulation Factor VIII that is absent or deficient in 
the sex-linked bleeding disorder Hemophilia A, is located on the X chromosome and is 186 Kbp (kilo-base-
pairs) long.  Even so, F8 is less than 0.1% of the entire X chromosome and only 5% of F8 actually encodes 
the amino acids for the resulting FVIII protein.  Obviously, stretches of coding DNA (cDNA) are interspersed 
with stretches of non-coding DNA, exons and introns, respectively. 
 In humans, triplets of nucleotides, known as codons, code for one of 20 amino acids.  The three 
bases of a codon may be separated by non-coding DNA in a gene.  After the DNA is transcribed, cellular 
processes splice the introns from transcription product, bringing together the exons and either adjacent 
codons or completing a codon interrupted by the intron.  In the process of transcription, thymine is replaced 
with uracil (U); the spliced transcription product is called messenger RNA (mRNA), which separate cellular 
processes then translate into a protein. 
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 Each protein is distinct and thus the genes that encode for them are distinct, too.  In fact, gene 
locations within the genome are well known and further, they correspond to one strand or its reverse 
compliment.  In some cases, similar genes are thought to have arisen by gene duplication, but usually 
contain distinct variations.   
 
DNA VARIATIONS 
Replication of DNA is usually done with high fidelity, but mistakes or damage can occur and not be 
corrected, and thus be passed to future progeny.  We consider five classes of changes that can occur to a 
linear sequence: single base substitutions, copy number variation, insertion, deletions, and inversions. 
Single base substitutions occur when one nucleotide replaces another, for instance ACT and AGT.  Copy 
number variants occur when one base or sequence is repeated a different number of times, for instance 
CGCG and CGCGCG.  Insertions occur when a base of sequence appears between what are thought to be 
two contiguous bases, for instance AT and AAT.  Deletions are related to insertions, but one or more bases 
are missing, for instance AAT and AT.  Determining whether an insertion or deletion occurs depends on the 
reference, so these two classes are generally referred to as INDELs or insertion/deletion.  Finally, an 
inversion means the sequence between two bases of interests is reversed, for instance ACCTG and 
ATCCG. 
 
POLYMERASE CHAIN REACTION (PCR) AND SANGER SEQUENCING 
As mentioned, genes are not only distinctly located on a chromosome, but also are encoded by one strand.  
Short stretches of DNA may be amplified in a process called polymerase chain reaction (PCR).  The 
process involves locating flanks, or primers, on opposite strands that, together, are unique in the genome.  
The primers hydrogen bound or anneal to their reverse complimentary sequence in the genomic DNA.  The 
polymerase then replicates the region of DNA adjacent to the primer in the 5’ to 3’ direction.  This also 
happens in the same reaction vessel with the other primer of the pair, which anneals to the opposite strand.  
Within a few cycles, the replicated region of DNA dominates in number in an exponential fashion.  Within an 
hour, millions of high fidelity copies of the DNA of interest are created (while the other DNA is more or less 
discarded). 
 The exact sequence of this PCR-amplified DNA may be unknown, beyond that of the primers.  To 
determine the base pair sequence of this amplified DNA, another type of cyclical amplification occurs, known 
as Sanger sequencing.  In this case, the nucleotides provided to the reaction vessel also contain modified 
nucleotides that not only inhibit further polymerization when they are incorporated, but they also are linked to 
one of four distinct dyes that can be detected by a laser.  Using the PCR products as a template, the 
sequencing reactions generate populations of “fragments” of the exact target sequence that consist of every 
possible length up to that of the original target sequence, all of which end in a modified nucleotide that can 
be detected by a laser.  In capillaries of specialize instruments, the time needed for the elution of these 
fragments depends on the size of the fragment (much like high pressure liquid chromatography [HPLC] with 
capillaries instead of columns).  Thus recording the elution time (length) of a fragment and using a laser to 
identity the modified, last nucleotide, and combining data from all fragments generated, one can decipher 
the sequence of the target loci.  Loci up to 1,200 bp in length can usually be “re-sequenced” in this method.  
The macros described in this paper use the sequence files, namely the *.ab13 files, produced in these types 
of sequencing runs using Applied Biosystems instruments, such as the 3130xl Genetic Analyzer.  
 
OVERVIEW OF THE MACROS 
The purpose of the macro AMPLICONS_FLANK_REGEXES (AFR) is to generate the regular expressions 
(regexes) for each base in the reference amplicon (Figure 1). The pattern for the regex (Table 1), consisting 
of the target base between two flanks, uniquely identifies the target base within the reference genome, by 
virtue of uniquely identifying it within the reference amplicon, which itself is uniquely located in the reference 
genome. 
 
Table 1. Three Regexes with capture buffers for the 11th base of F8_A056539L0400 in the forward direction. 

Flank_Regex Amplicon_Position NN P FT Amplicon_Name Direction 

(AGAATTTTTC)(.)(TCCCAACCTC) 11 56549 154194450 FT/10 F8_A056539L0400 Forward 

(.GAATTTTTC)(.)(TCCCAACCTC) 11 56549 154194450 F01/10 F8_A056539L0400 Forward 

(AGAATTTTTC)(.)(.CCCAACCTC) 11 56549 154194450 T01/10 F8_A056539L0400 Forward 

 
If a match occurs in the test sequence file, then obtaining the genotype of the base is possible.  

The size of the flanks was previously determined so that any fragment of that size with at most one 
mismatched base will match within the reference amplicon only once.  This avoids ambiguity; the match 
criterion employed is stringent because it generally requires two such flanks.  
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As an example, consider the amplicon: ACGTTGAC.  For a flank size of three, the macro would 
create the following: .CGT, A.GTT, AC.TTG, ACG.TGA, CGT.GAC, GTT.AC, TTG.C, and TGA., where the 
period represents the base for which we would like to obtain a genotype.  The macro allows the user to 
control whether to generate only full-length flanks or allow a partial flank paired with a full-length flank, with 
the caveat that at least one flank must be full-length and match exactly.  The actual regular expression 
created by the macro for the fourth fragment (the first with full length flanks) is (ACG)(.)(TGA). The pairs of 
parentheses are capture buffers.   

When the pattern matches successfully, one can find the actual valued matched using the SAS 
function PRXPOSN(), which is not used in this macro but in BC_PHRED, but knowing that the function will 
be used illuminates the motivation for the pattern.  Presuming a successful match, one knows the identity of 
the flanks and one might reasonably ask why one should use capture buffers for the flanks, which adds to 
the required computational resources. This would be true except that the macro also creates flanks in which 
one mismatch, or “wiggle”, is allowed in the pattern at each possible position in the flank for the reason that 
either noise in the sequence or an actual single base variation (SNP) may exists.  An example of a regular 
expression with a wiggle allowance might be (.CG)(.)(TGA).   

The choice of a period in the regular expression, which matches any one byte character, is a matter 
of economy.  The only characters expected in the sequence are A, C, G, T, and N (however, the sequence 
in AB1 file uses the IUPAC symbols, for instance S for C or G and W for A or T).  Use of the period requires 
one byte, the same as the base for which it substitutes in the pattern. 
 The second macro, BC_PHRED (BCP), uses the regexes created by AFR to attempt to genotype 
and creates a record in the database of that attempt, whether or not it successfully matched.  BCP uses two 
files, phd and poly, created by PHRED2 (www.phrap.org), a base-calling program.  Phd and poly provide the 
quality scores, the called and uncalled base sequence, and limited trace (chromatogram) data such as the 
position (elution time) of the bases and the amplitude (relative fluorescence unit) of the peaks at that 
position.  For each test sequence file, the data step in the BCP cycles through the regexes for each base 
(amplicon position) in the reference amplicon. 
 The two macro discussed in this paper are part of a suite of SAS programs.  The creation of the 
reference sequence file is the topic of Paper P012 that appears in these proceedings.  The successful use of 
these macros without modification relies on the structure and naming conventions employed in the full suite 
of programs.  The discussion and demonstration of the macros should be comprehensible by only reading 
this paper, but the author strongly encourages the reader to obtain and study the other paper. 
 
EXPLANATION OF SAS CODE 
 
AMPLICONS_FLANK_REGEX 
The MACRO statement that indicates the start of the macro code and names the macro uses keyword 
parameters to give the user flexibility (Lines 1-5).  When the user calls the macro, he or she must provide 
values for the parameters, except for the MIN_FLANK and PARTIAL, which have default values.  AMP_DS 
is the name of the dataset containing the name and direction of the reference amplicons.  GENE refers to 
the reference sequence dataset of the gene of interest (technically, the term “gene” for the purposes of this 
macro could refer to any reference sequence whether genomic DNA or RNA, if the data structure is correct).  
The creation of reference sequence is discussed in X in the proceedings of this meeting.  MIN_FLANK is the 
length of the flank to be created.  It is called Min for minimum because it refers to the size of the smallest 
fragment that matches no more than once in the reference amplicon (Figure 1).  The last parameter, 
PARTIAL, allows for the creation of patterns that would allow for an exact match of one flank when the other 
is absent.  Such a match could be useful for the ends of the amplicon, which generally aren’t of interest, or 
to detect INDELs or inversions.  By default, this option is “off”. 
 The SQL procedure (lines 8-15) creates two macro variables.  Two macro variables that obtain 
their values by the keyword parameters appear in this SQL procedure.  These macro variables are 
distinguished by the ampersand. Whereas the ampersand is a needed token, the period is optional, but the 
preferred style of the author.  To understand this macro, a brief explanation of the Amplicon_Name is 
needed.  The amplicon name refers to a reference sequence (of a gene), named by the GENE macro 
keyword parameter (Line 2).  The example used in this paper is F8_A056539L0400. The amplicon name 
reveals the source reference sequence (gene, here F8), details about its location in the gene (A056539), 
and the length of the amplicon (L0400).  Since GENE provides the reference sequence data set, only the 
second part of the name is needed from Amplicon_Name.  Its three components are: A or a, the nucleotide 
number of the starting base, and the Length.  Since the subsequent data step applies to all of the amplicons 
in the data set AMP_DS, the maximum length of the smallest flanks and the amplicons must be determined.  
“A” signifies that the start of the amplicon occurs after the transcription start site, whereas “a” signifies that 
the start of the amplicon occurs before the transcription start site (in the promoter or 5’ genomic DNA). By 
the conventions adopted in this approach, the nucleotide number (NN) of bases before the transcription start 
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site are negative-note, that the NN of transcription start site is +1.  A NN of zero does not exist by convention 
requiring special attention in the algorithm and code implementing it. 

The first selected column (Line 9) contains both the MAX operator and the MAX() function.  The 
MAX() will chose the maximum value of Smallest_Flank in dataset.  If this value is less than MIN_FLANK, 
then the returned value is MIN_FLANK.  The selected second column parses the name, abstracting the 
length of the amplicon.  The length is a zero-padded “number”.  The use of zero-padding, which can be 
achieved in SAS with the Zd. FORMAT and the PUT() function.  The use of INTO with a colon before the 
macro variable names is required.  The author prefers to indent and align the commas for ease of reading. 

Once the maximum sizes of the minimum flank and amplicons have been determined by this SQL 
procedure, the following data step can create the regexes.  The output from this data step is not modest.  
For each amplicon position, it creates at least 2L + 1 regexes, corresponding to the full-length match 
patterns for the exact flanks and two each for a wiggle at each position in the flank.  Typical genotyping 
projects might have amplicon lengths ranging from 800 to 1200 base-pairs and require 30-40 amplicons, 
with both forward and reverse coverage. 

The DATA statement (line 17) creates one data set, AMPLICON_ FLANKS, and uses the Data Set 
Option KEEP to control what variables appear in the output.  The variables Amplicon_Name and Direction 
originate in the AMP_DS input data set.  Amplicon_Position is the relative location within the reference 
amplicon, generated in the data step (Do-Loop starting on Line 97).  Flank_Regex is the regex described 
above, the main product of this data step.  NN is the Nucleotide Number relative to the reference sequence 
specified in GENE.  P is the position in the chromosome reference sequence.  Importantly, P is the 
“absolute” identifier; the base to which it refers may be in several different reference gene sequence files 
with different NN in each, but the value of P will be the same.  Finally, FT indicates the type of match and the 
size of the Smallest_Flank for that amplicon.  FT (five prime, three prime) may be used in quality control 
analyses, for instance by LIMS (Laboratory Information Management Systems) and we may condition on its 
value to derive the consensus call for that base in a later program of this suite. 
 The LENGTH statement (lines 21-30) designates the length of multiple variables.  Note that the 
type (numeric or character) and size in bytes must be indicated, but “grouping” is allowed so that only these 
only have to be specified for the last variable in the group.  The two macro variables (Max_Flank and 
Max_Amp_Size) created in the proceeding SQL statement appear here.  Without these macro variables, the 
required values would not be otherwise known when SAS compiled the data step.  For length of 
Flank_Regex, a calculation is required, which is accomplished using the macro function %EVAL, which 
requires integer values.  This length provides for two flanks of size Max_Flank plus a pair of parentheses for 
enclosing each and a period enclosed by a pair of parentheses. The LENGTH statement specifies three 
numeric variables (Amplicon_Position, NN, and P).  Although the length of numeric variables is rarely an 
issue if the default length is not used, including them orders the variables in the output dataset and is more a 
matter of a convenience and preference. 
 The dataset then creates the hash __AP (Amplicon Position).  Hashes are associative arrays that 
have two major advantages: 1) they can be keyed by any type of variable or combination thereof and 2) their 
size is dynamic (can change during execution).  In contrast, SAS arrays require an integer value for their 
indexed and the size must be provided at compilation, not at execution.  If the key (Amplicon_Position) and 
values (NN and P) did not appear in the LENGTH statement, their type and length would have been 
unknown.  It is better to explicitly define them if one cannot find it another way, for instance by using a SET 
statement.  The CALL MISSING() call routine sets the values to missing (Line 39) so that SAS does not 
send a message to the log.  The purpose of the hash is to faithfully associate the correct values of NN and P 
with their amplicon position.  This is necessary because 1) we may use both forward and reverse amplicons 
and 2) the genes may be on the “-“ strand of the chromosome in which case as the value of NN increasing 
the value of P decreases. 
 The DO-UNTIL loop (lines 42-63) “loads” the regexes into the hash __AP, reading them from the 
data set named by the macro variable AMP_DS .  The loop exits with the value of End is 1 (or any non-zero 
value, but by virtue of its definition, it can only be 0 or 1).  End is created and assigned its value by the 
END= option to the SET statement (Line 43).  When the last observation of the input data set(s) is read, 
SAS assigns 1 to End.   A DO-UNTIL loop checks the condition at the end of the loop.  In contrast, a DO-
WHILE loop checks the condition at the start of the loop. 
 Before obtaining the regexes for each position of the amplicon, the data step must first obtain the 
sequence of the reference amplicon.  As mentioned the amplicon name provides pertinent details about the 
amplicon.  Line 44 assigns to S1 the NN of the starting base of the amplicon.  Using the argument -1 as the 
second argument of the first (leftmost) SCAN() function, counts the components separated by the third 
argument (an underscore) from right to left, i.e. form the end.  The result of the first SCAN function (of the 
form AXXXXXLYYYY) is the first argument of the second SCAN function, which returns the first component 
when the delimiter is “A”, “a”, or “L”.  The value is a string of numbers, potentially left padded with zeroes.  
The INPUT() function converts this character string to a numeric value (the variable NN is numeric in the 
GENE data set).  If the first position is “a”, then starting NN is negative.  The values “A” and “a” were chosen 
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instead of “+” and “-“, for instance, because the amplicon names become incorporated into the file names 
and “A” was chosen for “Amplicon”.  Line 46 similarly parses the amplicon name to return the length as a 
numeric variable (L1).  The length of the amplicon includes its first base, so that A0001L09 would include 
bases 1-9, not 1-10.  Since the name of the amplicon was designed to exclude bases covered by the primer, 
the bases in the reference amplicon are those that are amplified and can vary; one can decipher in this 
example that the last base of the forward primer was -1 and the first base of the reverse primer was 10, but 
the lengths of the primers are not known (however, based on the desirable characteristics of the primer 
chemistry, one has a very good chance of either identifying the primers or suitable substitutions, neither of 
which are needed for the function of this macro other than in the creation of the names of the amplicon).  
Thus, at this point the data step has the three pieces of information required to identify the sequence of the 
amplicon: the starting NN, the length of the amplicon, and the name of the reference sequence to which they 
pertain. 
 As mentioned, the NN 0 does not exist by convention.  NN -1 is the last base of the promoter and 
the next base is +1, the transcription start site.  Thus for amplicons containing the NN -1 and NN + 1, 
additional logic would be required to obtain the correct number of bases in the amplicon.  To circumvent this, 
the data step instead employs a counter (__N, Line 47 initializes it to zero).  Line 48 initializes Amplicon to 
missing (character).  The last step before the loop to read the GENE data set is to clear the hash (Line 49). 
 The DO-Loop (also known in SAS-L programming circles as a DOW or Whitlock-DO-Loop) on 
Lines 51-63 reads the GENE data set, subject to the controls obtain from parsing the amplicon name, and 
adds the key-value pairs to hash __AP.  The GENE data set is indexed by NN.  Thus, a SET statement with 
the KEY= option is used.  The DO-Loop initializes NN to S1 (line 51); upon each iteration, the value of NN is 
increment BY 1 UNTIL the condition that the count (__N) is equal to the value of L1, the length of the 
amplicon. 
 The first action of this DO loop is to increment the counter (Line 52).  This is done very concisely.  
This line, in effect, both RETAINs __N and acts as if it employed the SUM() function. Note that SUM( . , 1) 
returns 1, whereas __N = . + 1 will return missing (.).  Since NN is incremented BY 1, it may very well be 
assigned the value 0.  If this occurs, its value is incremented to 1 (Line 54), but no additional increment was 
made to the counter.  The terms “Forward” and “Reverse” become important at this point and merit a short 
discussion.  As mentioned, a gene appears on one strand of DNA or its reverse compliment.  Sequencing in 
both directions is wise because some peaks “resolve” better in one direction than the other.  The “Forward” 
direction is, by the convention of this approach, when the NN increases as one progresses form left to right 
in the amplicon sequence.  Referring to the relative position in the amplicon (Amplicon_Position, lines 55 
and 56), another convention adopted keeps the first position of the amplicon as 1.  Thus, the first amplicon 
position of the forward amplicon corresponds to the Lth position of the reverse amplicon.  Indeed, the 
potential for confusion is great, even among experienced users.  We therefore maintain the NN and P with 
the Amplicon_Position, even though this adds to the storage requirement.  However, without knowing the 
source amplicon, one can easily assemble all of the attempted calls for a given base by matching on its NN 
or P, either across files or projects, respectively.  Once the NN and Amplicon_Position is assigned, the 
reference base and P can be read from the GENE data sets (lines 57-60, with KEY= on Line 59).  Note that 
the code permits a risk in that it does not check the return code (_IORC_) to see if the read was successful.  
It is incumbent upon the user to be sure that the data sets are in order and that the correct GENE dataset 
and amplicon names are used-not a trivial issue.  As each base is read from the reference sequence, Line 
61 concatenates it to the amplicon.  The CATS() function concatenates the base to the amplicon after each 
argument has been stripped (S for STRIP()) of leading and trailing blanks and assigns the returned value to 
Amplicon, both the variable accepting the assignment and an argument to the function-it is a bit of a SAS 
“feature” to allow this construct.  This line makes the maximum length of the amplicons in the AMP_DS 
essential; if the length of Amplicon were too short, then SAS would set _ERROR_ to 1 and issue a 
WARNING to the log.  The ADD method (Line 62) adds the hash values NN and P to the hash __AP 
indexed by the key Amplicon_Position assigning the return code to __RC.  Again, no check of the value is 
made because we assume it is successful. 
 At the end of the loop, the sequence of Amplicon is known and the hash __AP is “loaded”.  In three 
statements, the data step will be ready to create the regexes for each Amplicon_Position.  The first step 
capitalizes (UPCASE() Line 65) the amplicon sequence.  In the GENE dataset, the exonic bases are 
capitalized whereas all other bases (intronic, promoter, genomic) are lower case.  Although, capitalization 
may appear purely cosmetic since the matching (for instance, the PRXMATCH() function in BCP) is 
performed insensitive to case, the author purposefully developed this “habit” so that upon potential manual 
review, the technician is “blinded” to the nature of the base since extra effort or attention might be given to 
an exonic base.  For Reverse amplicons, the reverse compliment of the sequence is obtained (Lines 66-75).  
The TRANSLATE() function works well and can function on multiple pairs of targets and changes, but the 
changes are made to lower case.  For instance, “T” is changed to “a”.  The returned “compliment” value from 
TRANSLATE() is then converted to capitals and reversed (REVERSE).  Finally, leading and trailing blanks 
are stripped (STRIP).  For instance, CAGT would become ACTG.  The last statement (Line 76) determines 
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the length of the flank.  For some amplicons, especially those that might be entirely within a (large) exon, 
which typically do not have repetitive sequence, the smallest flank might be less than some desirable 
number (the author prefers 10).  In this case, the macro user has the opportunity to insist upon a stricter 
minimum criterion.  S_F takes the larger of Smallest_Flank (read from AMP_DS) and MIN_FLANK 
(assigned as a macro keyword parameter), as determined using of the MAX operator.  From this point, 
cycling through each Amplicon_Positon of the Amplicon will create the regexes using three DO-Loops: one 
for partial five prime flanks (FPF) and full three prime flanks (TPF), one for full FPF and TPF flanks, and one 
for full FPF and partial TPF.  Partial flanks occur when attempting to match bases near the ends of the 
amplicon.  In each case, the pattern is comprised of contiguous sub-sequences that maintain the order. 
 As the Do-Loop creates each regex is also creates a variable, FT, that indicates the nature of the 
match and the size of the flanks; each regex includes one exact full flank, but the other may be missing, an 
exact match of a partial flank, or an exact full length flank with at most one mismatch base.  For example, 
“p5” indicates that the regex is completely missing the FPF and has an exact full length TPF; “P5” indicates 
that the regex comprises an exact, but less than full length FPF and an exact full length TPF; and F12 
indicates that the regex comprises an exact full length FPF and but that the TPF has a mismatch at base 12.  
The second part of the variable FT indicates length of the flanks.  By obtaining a frequency of this variable 
by base, one may obtain a measure of the strength of support for a true variant and how much noise exists 
in the test sequences. 
 The first Do-Loop (Lines 79-94) creates the regexes for the first bases of the amplicon.  The loop 
ends when Amplicon_Position is greater than S_F (smallest flank), so it creates the regexes that have only 
an absent or less than full length FPF.  When the Amplicon_Position is the first base of the amplicon, the 
FPF is absent and FT is “p5” (line 80), whereas from the second base until the S_Fth base, the FPF is a 
partial, but exact flank, FT is “P5” (line 81).  By using the SUBSTR() function and appropriate starting points 
and lengths, the sequences of the FPF and TPF are created (lines 83-84 and 85, respectively).  Note that 
the macro has not verified that the length of that amplicon is actually longer than the length of the flanks.  
Whereas, this would be an easy modification, the author has verified the contents of the data set containing 
the amplicons that are the subject of the genotyping projects. Finally, the nucleotide number (NN) and 
absolute chromosomal position (P) are reset to missing (Line 86).  Using Amplicon_Position as a key, the 
corresponding NN and P that are the values for that key in the hash __AP are retrieved using the FIND hash 
method.  Usually, it is very wise to check the return code (hence, __RC), but we are sure that this key-value 
pair exists in __AP since we assigned it within this data step (Line 62).  The regex pattern with capture 
buffers is concatenated and assigned to the variable Flank_Regex (line 84) and output to the data set (line 
85). Regexes are concise and powerful, but may require additional study to use to their potential.  The 
parentheses involved in the capture buffers do not contribute to the length of the match; if one wants to 
match a parenthesis, then one must use an escape character, for instance “\(“, since a parenthesis is among 
the regex metacharacters. Another interesting point is the use of a null flank in the case of “p5”, for instance.  
This is different from matching either a space or a newline.  For the purposes of the program, we could forgo 
its use: ()(.) (2345) and (.)(2345) would work.  However, the author retains it for the “symmetry” between the 
various Do-Loops.  

This Do-Loop produces S_F regexes, one for positions 1 through position S_F of the amplicon.  As 
previous stated, the design of amplicons typically allows for the “loss” of the first (and last) 20-30 bases of 
the amplicon in sequencing.  If these bases are of interest, one either redesigns the amplicons or creates 
second overlapping amplicon.  However, it is interesting, if not potentially useful to obtain information on 
these bases and, if an overlapping amplicon is needed, then these bases are of interest and results from 
these amplicons might be used. 
 The next Do-Loop (lines 97-152) creates the patterns for amplicon positions that have two full-
length flanks and their “wiggle” variants, i.e. those positions that are within S_F of the ends of the amplicon.  
Within this loop, we are not worried about attempting to SUBSTR() beyond the end of the variable Amplicon 
because we set end of the Do-Loop accordingly.  For each Amplicon_Position, the assignment statements 
use the SUBSTR() function to obtain the sequence of the FPF and TPF (Lines 100 and 101, respectively).  
Note the FPF ends one base before amplicon position and the length of the FPF is S_F: (Amplicon_Position 
-1) – (Amplicon_Position – S_F) + 1 = S_F – 1 + 1 = S_F, the intended length.  The addition of one is not 
always obvious, but the difference between the position numbers and the number of bases between them 
differs by one.  For example, for a flank that starts at NN = 1 and ends at NN = 10, the number of bases 
(length) is 10, but the difference between 10 and 1 is 9. 
 Additional assignment statements that replicate the FPF and TPF as FP_Frag and TP_Frag, 
respectively, will store the original, exact flank sequences so that the wiggle variants can be created (Lines 
103 and 104, respectively).  The values of NN and P are again set to missing (Line 105), and the values 
corresponding to the key Amplicon_Position are retrieved using the FIND hash method.  The regex for the 
pattern with exact, full-length flanks is created and output to the data set (Lines 109-111 and 112, 
respectively). 
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 At this point, a Do-Loop (lines 115-138) cycles through each position of the flanks.  The goal of this 
Do-Loop is to replace each base of one flank with a period one at a time.  Again, in a regex the 
metacharacter period matches any one-byte value, but we can use it without changes the length of the flank 
variables.  To do so, we use a SUBSTR() function again, but this time, it appears on the right side of the 
assignment statement (Lines 116-117)-an unusual arrangement for SAS functions.  When this function 
appears on the right side of the assignment statement, it “excises” the string start at the value given as the 
second argument of the function.  The length of the excise string is given as the third.  The excised string is 
replaced with the string that appears on the right side of the equation.  During each iteration, the _n_th 
position of the flank is replaced with a period.  To avoid the computation SUBSTRing during each iteration, 
we instead use a second pair of variables to store the original value, which we reassign after the regex has 
been built later in the Do-Loop. One has a variety of approaches to accomplish this replacement including 
CATX(), TRANSLATE(), TRANWRD(), Call Poke(), et cetera.  However, the use of SUBSTR(left of =) seems 
to minimize the number of calculations while clearly indicating its purpose, once, that is, one is accustomed 
to using it. 
 It may appear that the substitution of the wiggle in FP_Frag and TP_Frag (Lines 116 and 117, 
respectively) violates the criterion that allows at most one mismatch in one flank while requiring an exact 
match in the other.  However, FP_Frag pairs with TPF and FPF pairs with TP_Frag (Lines 121-124 and 129-
132, respectively), thus each regex pattern contains at most one potential mismatch.  Notice that the order 
of creation an output begins first with the exact match then proceeds to the wiggle.  This Do-Loop creates 2 
* S_F regexes (one for each position of the flank for each flank).  However, in the matching process 
employed by BCP, once one pattern of the group for the Amplicon_Position matches no further attempts are 
made.  
 Lines 138-152 create the regexes for patterns that match only one exact, full-length flank while the 
other is missing (technically, a null length flank).  This is not without reason, even though these calls will not 
be used to obtain a consensus call.  At times, even the best technician cannot help but produce noisy 
sequencing.  Despite the criteria requiring matches on both flanks, the author has witnessed matches to 
extremely noisy test sequences that are amazing.  Although, the author discards calls from noisy flanks, 
“hits” assure the user that the file indeed was generated from the primers for that amplicon.  Further, a real 
situation occurs in which segments of the reference DNA sequence are absent from the test DNA, an 
INDEL.  When this occurs, no full-length flanks in the area of interest will match, unless by a quirk of fate 
that the adjacent sequence matches the flank.  The regexes generated by this macro are a poor way to 
genotype INDELS, but by querying the resulting database and noting (repetitive) “gaps”, suspicion of an 
INDEL grows, especially in low noise, high QV regions.  Since the macros that generate regexes for both 
INDELs and inversions are in development, the author has left the choice to produce them as an option in 
AFR (Line 140, which uses the %IF, the macro version of IF). 
 Finally, the last Do-Loop (lines 155-171) creates the regexes for the patterns at the end of the 
amplicon.  This is similar to the Do-Loop on Lines 79-94, except the FPF will be full-length.  Unlike the 
sequence at the beginning of the amplicon, the sequences for these bases is usually quite good, unless the 
amplicon is over 1,000-1,200 base-pairs.  Understanding the PCR and sequencing reactions clarifies why 
this is so.  The sequencing reactions create a population of fragments of varying lengths up to the length of 
the amplicon.  The elution times of longer fragments become increasingly indistinguishable from fragments 
one to a few bases shorter, but out to 1,000 the separation is usually distinct enough that the sequence is 
clean.  Thus, the bases at the end of the amplicon are viable targets, but no full length TPF match is 
available.  Since the sequence can be clean, the question of whether to allow these bases to contribute to 
the consensus calls rest with whether the user feels that a fragment of length S_F really unique locates the 
base within the reference amplicon and test sequence. 
 
BC_PHRED: The macro consists of a data step followed by two procedures (APPEND and DATASETS).  
The data step performs three general steps 1) load the regexes created by AFR for a given amplicon and 
direction into a hash, 2) obtain the phred data for the test sequence, and 3) attempt to obtain a genotype 
from the test sequence for each position in the reference amplicon.  The macro statement (Lines 1-4) names 
the macro and uses three names keyword parameters: PHRED, the name of the SAS dataset holding the 
phred data; LN, the name of the library; and OUT_DS, the name of the output dataset.  Both PHRED and 
OUT_DS require the two-level SAS name, if the data are in permanent SAS datasets, but assume the 
passwords are the same for all data sets.  A macro variable stores the password, which is not intended to be 
a security measure, but rather is a process the author adopts to avoid unintentional changes or deleted data 
sets. 
 The DATA statement (Lines 5-9) creates a permanent data set, but it is only intended to be 
temporary.  The KEEP= data set option specifies the variables that will be in the dataset.  Only five of these 
variables are created in this data step: POSITION, QV_FPF, QV_TPF, NOISE_FPF, and NOISE_TPF.  The 
remaining variable listed in the KEEP= option originate in the input data sets. 
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 The LENGTH statement (Lines 12-20) not only creates new variables and specifies their attributes, 
but it also orders the variables in the output dataset.  Of note are __AMPLICON_POLY, _1, _3, 
__SCAN_FLAG, __DIR, and __AN.  __AMPLICON_POLY holds the sequence as originally read from the 
phred .poly (text) file.  It is a character variable with a length of 5000. Since the amplicons of these projects 
are generally under 1,200 bp in length, even with “noise” at the end of the test sequence files, this length 
has been more than adequate.  _1 and _3 are the actual FPF and TPF held in the capture buffers when the 
regexes match the test sequences successfully.  Again, a length of 60 is more than twice the required 
length, even for amplicons that cover introns, which typically have more repetitive sequences than exons.  
__SCAN_FLAG is an indicator variable for a successful match at a given amplicon position whose purpose 
is to “shut off” further matching attempts.  Once a pattern matches, subsequent attempts to match other 
patterns (those with a wiggle base) are not necessary.  __DIR and __AN are also indicator variables that 
control whether the hash FR should be cleared and reloaded.  As long as the incoming test sequences are 
generated by the same amplicon and direction, the regex patterns loaded into the hash FR do not need to 
be loaded.  When the macro processes a large number of test sequences for a given amplicon and 
direction, this design should be more efficient than the I/O required to read each regex anew.  Both __DIR 
and __AN are RETAINed (Lines 22); the data step does not reset their values to missing when it (implicitly) 
loops. 
 When declaring a hash and defining its keys and values (Lines 28-33), it is best to explicitly state 
the attributes of the variables that comprise its keys and values.  To avoid the “wall paper” of listing its 
variables in the LENGTH statements and, more importantly, misspecifying them, the use of a SET statement 
(Line 36) accomplishes this goal since these variables are in data set Amplicons_Flanks.  However, the data 
step does not read a single observation from the data set since the condition _N_ = 0 is never met and thus 
no execution occurs.  During compilation, the attributes of the variables in AMPLICON_ 
FLANKS become available to the data step by virtue of being “read” in a SET statement-whether the 
condition is false is not known until execution and even then only we programmers know that it is always 
false.  Several posters on SAS-L point out that coding “IF 0” suffices, but the author adopted the condition 
_N_ = 0. 
 The suite of programs involved in this process may use the phred data multiple times so to avoid 
multiple reads of the raw text file, the phred data were converted to a permanent SAS dataset.  The 
structure of phred data for each test sequence is observations, but to be available to the data step for 
processing, the data must be held in variables.  The data step uses arrays to hold these data (Lines 37-47).  
The contents of these arrays are reset to missing using a Do-Loop (Lines 49-55) prior to re-loading them 
with the test sequence-specific data.  The inspired programmer might recognize the inefficiency of cycling 
through &OBS. (5000) for each new test sequence and could use CALL POKE() to accomplish the task.  
Eventually, the author will have the ambition to be so inspired, but not as of these proceedings. 
 The data set FILES_AMPLICON identifies the files to be genotyped (Line 58).  As the data step 
reads each observation in this data set, it obtains the amplicon data (name and direction) for each 
FILE_SEQUENCE_NUMBER (FSN).  The phred data set is indexed by the FSN and, thus, only the data 
pertaining to this FSN are read from it since the KEY= option (Line 63) of the SET statement (Line 62) 
specified this index.  Note that here (Line 66) the author takes the precaution of checking the return code 
(_IORC_); when obtaining 30,000 files, some of which are 200 Kb in size, especially over networks, 
occasionally file may be lost or corrupted.  This Do-Loop also creates the “linear” test sequences as the 
concatenation of called bases (Line 67).  The SAS System limitation on the length of a character variable 
greatly limits the very near future use of SAS as a bioinformatics platform for these types of projects; 
whereas the length DNA in Sanger re-sequencing projects is well under this limit, the so called “next 
generation sequencing” era may very well generate data well above this limit.  The data pertaining to each 
base, as determined by phred, are loaded into their respective arrays indexed by the position in the test 
sequence (Lines 68-78). At the end of the loop, when the last observation has been read, the variables are 
reset for the next iteration (Lines 83-85).  Note that this is contingent upon a successful read for that index. 
 The actual length of the test sequence is assigned as the last (maximum) observation of the phred 
data (Line 87).  Until the observation is read from FILES_AMPLICON, the amplicon and direction to which it 
pertains is unknown.  Once it is read, if they differ (Lines 95-96) from that currently held in the hash FR, then 
the hash must be cleared and re-loaded (Lines 98-103).  They keys for this hash are the Direction, 
Amplicon_Name, Amplicon_Position, and Count (Lines 29-31).  Count is an enumeration of the regexes for 
each amplicon position, that is the exact match (Count = 1) and those with one mismatch in a flank (Count > 
1). 
 At this point, the data step has the test sequence and the patterns corresponding to each position 
in the reference amplicon and can attempt to match those patterns within the test sequence.  This is 
accomplished with the Do-Loop in Lines 107-206).  The process, however, does not only attempt to match 
the pattern-it abstracts data about successful matches, attempts subsequent matches in the case of a 
failure, and records whether a match occurred for a given amplicon position so that further attempts to 
match other patterns for that amplicon position do not occur. 
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 During each iteration, the variables for these data are reset to missing (Line 108-113).  After that 
step, an inner Do-Loop iterates through the values of COUNT (Lines 117-199).  Unlike its outer loop (line 
107), the inner loop does not iterate to a set upper limit.  Instead, it test the condition provided in 
parentheses following the UNTIL (Line 117) at the end of each loop immediately prior to looping.  The 
condition is whether the complex key involving COUNT existed in the hash FR.  COUNT is incremented by 1 
at the end of each loop (Line 107).  For a given amplicon position, the number of regexes that correspond to 
it is unknown, without a calculation.  Once the loop cycles through the number of patterns without a match, 
the next increment of COUNT from the loop will not be a key in FR and the FIND() method will return 0, 
ending the Do-Loop.  Otherwise, a regex pattern will be available and attempts to match in the test 
sequence can proceed.   
 The first action of the inner Do-Loop attempts to find the values corresponding to these keys of the 
hash FR (Line 118).  If found (Line 119), an attempt to match its corresponding pattern is made.  First, the 
pattern is compiled to a perl regex (Line 123) using the function RXPARSE() and the starting position of the 
match is set to 1 (Line 124).  Note that the actual match criteria are insensitive to case by virtue of the /i 
option.  The author could have included the both the forward slashes and the /i option in the regexes 
produced by AFR and it may be worth exploring the relative savings of the two approaches.  The choice of 
starting the search at 1 for each regex, even after a successful match, is simply the preference of the author 
to be as objective as possible (allowing any match or matches). 

The attempt to match is initially accomplished with CALL PRXNEXT() (Line 124-126).  
__RC_PARSE is the pattern ID of the regex compiled by Line 123. Upon a successful match, CALL 
PRXNEXT updates __POSITION to the relative position of the match in the string and assigns to START the 
position of the character next to the match.  When this happens, the “hit” data will be abstracted by the Do-
While Loop, (Lines 136-193), and __SCAN_FLAG is set to 1 (Line 133) indicating the no more regexes for 
that amplicon position should be searched by virtue of the LEAVE (Line 198).  Importantly, the length of the 
flank is determined using the variable FT (Line 134). 
 The number of matches within a test sequence is not guaranteed to be zero or one, despite the 
criteria on the length of the flanks.  Indeed, to the dismay of the author, multiple matches within test 
sequences have occurred.  Rather than being an extremely rare event, such as duplication, such a match 
most likely represents “bleed through” in which the signal from one capillary is not sufficient shielded from 
the detector in an adjacent capillary.  Also, when the match criteria allow only one (“p5”) or a partial flanks 
(“P3”), multiple hits may also occur. Subsequent attempts to match the regex occur until no further matches 
occur (POSITION = 0). 
 Upon a successful match, the condition of the Do-While Loop (Line 127) will be true.  In contrast to 
the Do-Until Loops seen earlier, the condition of a Do-While Loop is tested its commencement.  Thus, if 
__Position = 0, this loop does not execute.  The actual sequence of the flanks that the pattern matched are 
abstracted using PRXPosN() functions (Lines 134 and 135).  The POSITION of the base of interest in the 
test sequence is then calculated (Line 137) as the sum of the __POSITION (starting position of the entire 
pattern in the test sequence) and the length of _1.  Note that if _1 is the null match (“p5”), then the 
LENGTH() function returns 1 (Length(“”)=1).  To accommodate this, one could use an IF-THEN statement, 
but a Boolean also suffices.  Note that _1 ne “ “ returns a 1 if _1 is nonmissing, but a 0 if is missing.  Once 
this position is calculated, values for the variables such as the quality values (QV) and area of the uncalled 
peaks can be assigned from their corresponding arrays (Lines 137-143). 
 At this point, we have our hands on the flanks and their corresponding data in the arrays.  At times, 
noise masquerades as heterozygous bases.  Both the number of bases in the flank that have “high” QV and 
little “noise” may help future decisions concerning the strength of evidence that the call is true.   

Using the length of the flank recorded in the variable __FLANK_LENGTH, and the value of 
POSITION, the values corresponding to the bases of the flanks can be found in their corresponding arrays.  
The variables QV_FPF and QV_TPF tally the number of bases in the flanks that have a QV greater than 24, 
whereas NOISE_FPF and NOISE_TPF tally the number of bases that have uncalled bases with relative 
peak areas greater than 15%.  Two Do-Loops accomplish these calculations for the FPF and TPF (Lines 
146-164 and 156-165). 
 After these data are abstracted, the data are output (Line 166).  Table 2 displays one observation 
for which a match occurred.  At this point, another attempt to match is made (Lines 168-170).  If successful, 
START is again incremented (Line 174) and the values to be abstracted are reset to missing (Line 175-179).  
In this case __POSITION is greater than zero and the loop has reached its end and returns to Line 127.  
The data abstraction for this hit, which occurs at the bottom of the loop, actually occurs in the next iteration 
of the loop.   

After exiting from the Do-While Loop, CALL PRXFREE (Line 182) frees the memory allocated to 
the regex.  If a match occurred, then LEAVE (Line 186) exits the loop started on Line 117; no further 
matches for patterns for that amplicon position will be attempted.  If a matched did not, then COUNT is 
incremented by one and, if the resulting complex key containing it exists in FR, then cycle is repeated.  If the 
loop cycles through all of the regexes for that amplicon position without success, then no hit occurs; FT is 
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  Table 2. An observation resulting from a successful match from BCP. 
File_Sequence_Number NN Amplicon_Position Position 

2 61640 94 100 

P C_B U_B RA_C 

154189359 A N 0.70600 

RA_U C_BP U_BP QV 

-1 1163 -1 57 

QV_FPF QV_TPF Noise_FPF Noise_TPF FT 

12 12 0 0 FT/12 

A_Amplitude C_Amplitude G_Amplitude T_Amplitude 

24518.03 735.495 438.387 1334.06 

 
set to missing (Line 191) and the amplicon position is output without any corresponding hit data, 

but only after a match was attempted for every regex for that position. 
 The cycle through the AMPLICON_POSITION begun on Line 107 ends at Line 194.  At this point, 
the data step implicitly loops to Line 5, but no action occurs until Line 58 (technically, some of the lines, such 
as 24 and 25, result in execution, but the checks fail, so no action results).  If SAS did not read the last 
observation in FILES_AMPLICON, then the data step continues, otherwise, it ends at this point.  A second 
macro not covered in this paper, BC_ABI, does not require the phred output but abstracts the data directly 
from the .ab1 file.  To abstract these data, the author uses another macro also not covered in this paper, 
READ_AB1.  Both macros are freely available upon request. 
 
CONCLUSION 
The author describes two macros from a suite of programs that generate a database of genotype calls from 
projects that utilize Sanger re-sequencing and .ab1 files.  The first macro (AFR) creates regular expressions 
(regexes) for each base in a reference amplicon; this macro creates a “family” of regexes for each position 
based on its contiguous flanks, but each regex requires one full-length flank to match exactly, whereas the 
second flank may be absent, an exact partial flank, or be full-length with at most one mismatch or wiggle 
base.  This differs from the conventional approach that uses test sequence-wide alignment, such as 
BLAST4.  In one respect, the alignment approach may more accurately identify (locate) the base within the 
reference (anchor) sequence, which is not limited to an amplicon, but may be the whole genome.  Within the 
amplicons of a re-sequencing project this is not likely to represent an advantage.  Further, the need for the 
test sequence to fall within a contig is not required by the approach of this paper, although later processing 
of the data from a test sequence might exclude it if too many bases result in missing calls.  Finally, every 
base of the reference amplicon generates an observation in the resulting database whether the base in the 
test sequence differs from the reference base or not and whether its patterns match in the test sequence or 
not.   A patient will have at least as many entries for a base as he or she has a test sequence file that covers 
it.   
 The author considers the latter to be an essential improvement.  In the field of Hemophilia A, for 
instance, one may be very certain that the reason Factor VIII activity is absent or deficient is due to a DNA 
defect in the F8 gene.  In variation scans of the approximately 20 Kbp of this 186 Kbp gene that are 
considered to be classically functional, true variants are often found faithfully, but the presence of false 
negatives, that is true variants that are not reported, can greatly affect the results of research questions.  
False negatives most likely result when the bases were not amplified in the test sequence despite being 
covered, in which case sequence that is not present cannot be aligned and the possible variants that it 
would contain will not be show up as potential discrepancies in the contig.  By creating a database record for 
each base in the reference amplicon, one can provide a report of the number of times the call was supported 
and the extent to which coverage may have been insufficient.  The author and his groups usually agree that 
at least two separate, high-quality calls for the same genotype with no unresolved discrepancies are 
required to generate a consensus call for each position.  We relax the phred quality score criterion for 
potential heterozygous alleles, since phred was originally trained using sequence from clones, which were 
not diploid. The latest use of these programs by the author resulted in over nine million entries into the 
database and this was for just one phase involving approximately 50 patients from a project with a target 
enrollment of 1,200 patients.  Clearly, manual review by technicians has limited utility, especially when 
current technological advances make covering megabase-sized targets feasible, although the read lengths 
of these instruments pose difficulties for not only this approach but also for the alignment approach, too. 
 The second macro BCP uses the regexes generated in the first to attempt to obtain a genotype and 
create an entry for it in a relational database.  Most tables in this database have FILE_SEQUENCE_ 
NUMBER as a key (index).  Since an unknown number of files for a given amplicon and direction may be 
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processed, this macro loads the regexes for the latter into a hash and then processes (reads) the incoming 
files in groups defined by amplicon name and direction, but clears and re-loads the hash when a new group 
is encountered.  If the file data set (Files_Amplicon) is not sorted appropriately, the hash will be cleared and 
re-loaded many time causing a greatly inefficient process. Clearly two issues affect this approach, on of 
which is a SAS limitation.  The first issue is the number of bases covered in the reference amplicon, which 
determines whether loading them into a hash is feasible.  One alternative would be to read them from a data 
set; the second would be to generate them on the fly.  The second issue is the length of the test sequences.  
Currently, we are well under the SAS limit on the length of a character variable, which is 32,767 bytes.  One 
alternative is to use perl and an SAS INFILE statement with a PIPE. 
 BCP reads the list of files, which contains the amplicon name, the direction, and its smallest flank, 
and then cycles through each position of the reference amplicon to attempt to obtain a genotype.  The 
number of matches of a given regex within the amplicon is not limited, but once on regex of the pattern 
matches, no further attempts for subsequent regexes for that pattern are attempted.  Obviously, if two full-
length exact flanks match, every variation of them generated by AFR will also match.  Among the full-length 
matches with a wiggle, if one matches, the others cannot since only one mismatch is allowed in the flanks.  
The ability to make multiple matches is one way that this approach differs from the conventional alignment 
approach.  True sequence duplication will be missed in the latter, unless multiple alignments are allowed, 
but that is such an exceedingly rare event as to be almost theoretical.  In the author’s experience, multiple 
hits with full-length flanks have represented bleed through.  Bleed through can still result in high QV’s, so the 
presence of multiple hits might alert an otherwise unsuspecting user of a potential problem. 
 The author believes this approach has utility even in the era of next generation sequencing (NGS).  
First, Sanger re-sequencing (SR) is still a gold standard.  It is not uncommon to see SR verification of NGS 
results.  Second, once the target sequence is assembled using NGS, the variants it contains still need to be 
determined and recorded.  It this respect, location is extremely important.  Consider the example of RhD 
(CCDS5 262.1) and RhCE (CCDS 30635.1).  Many of us are casually familiar with the Rh factor because of 
“rejection” in blood transfusing and pregnancy.  Rh(-) patients exposed to Rh(+) blood may develop 
antibodies.  Both genes are on Chromosome 01 about 1 Mbp apart and they have an incredibly high level of 
homology.  Many of the SNPs reported in dbSNP6 for RhD actually match the sequence for RhCE.  Table 3 
provides a few examples that code for non-synonymous-SNPs (ns-SNP) and represent a challenge to the 
length of the flanks required to uniquely map the bases of interest. 
 
        Table 3. Highly homologous DNA sequence of RhD (top) and RhCE (bottom) that code for ns-SNPs 

Amino Acid position DNA sequence 

16 TCCGGCGCTGCCTGCCCCTCTGGGCCCTAACACTGGAAGCA 
TCCGGCGCTGCCTGCCCCTCTGCGCCCTAACACTGGAAGCA 

60 ATCTGACCGTGATGGCGGCCATTGGCTTGGGCTTCCTCACC 
ATCTGACCGTGATGGCGGCCCTTGGCTTGGGCTTCCTCACC 

68 GCTTGGGCTTCCTCACCTCGAGTTTCCGGAGACACAGCTGG 
GCTTGGGCTTCCTCACCTCAAATTTCCGGAGACACAGCTGG 

103 GCTTCCTGAGCCAGTTCCCTTCTGGGAAGGTGGTCATCACA 
GCTTCCTGAGCCAGTTCCCTCCTGGGAAGGTGGTCATCACA 

 
 With appropriate molecular and bioinformatics approaches, the conundrum represented by the 
extreme example of RhD and RhCE become manageable, but awareness is important.  Nonetheless, this 
example also illustrates the utility of reference sequence-based database structure for genomic data.  The 
three billion base-pairs of the haploid human genome may very well require a full diploid data base per 
patient since insertion will represent a general challenge.  The situation is compound by potential variants in 
somatic cells (tumors of cancer offer a vivid illustration) that are not in the germline and the need to store 
longitudinal results of expression.  The later will very likely become a routine diagnostic tool in the near 
future but it will also generate an immense amount of data. 
 The sheer volume of data is daunting, but the capabilities are staggering.  The approach taken in 
this suite of program is one that can be extended to the full genome data at the patient level.  One may be 
heartened by the fact that once the sequence of the patient’s genome is determined (at birth or in utero) the 
supporting data can be archived.  For now, the author keeps these data active and available for review, for 
which the database and approach described in this paper can be used to easily generate reports and 
summary statistics for laboratory information management systems (LIMS). 
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%Macro Amplicons_Flank_Regexes ( Amp_DS    = 
                               , Gene      = 
                               , Min_Flank = 10 
                               , Partial   =  0 
                               ) ; 
 
  /* Example: Amplicon_Name = F8_A056539L0400 */ 
  Proc SQL NoPrint ; 
    Select ( Max( Smallest_Flank ) Max &Min_Flank. ) 
         , Max( Scan( Scan( Amplicon_Name , -1 , "_" ) , 2 , "AaL" )) 
      Into : Max_Flank 
         , : Max_Amp_Size 
    From &Amp_DS. 
    ; 
  Quit ; 
 
  Data Amplicons_Flanks ( Keep = Amplicon_Name Direction Amplicon_Position                  
                                 Flank_Regex NN P FT  
                        ) ; 
 
    Length FP_Frag 
           TP_Frag           $ &Max_Flank. 
           /* Example: (123)(.)(567)*/            
           Flank_Regex       $ %Eval( 2 * ( &Max_Flank. + 2 ) + 3 )            
           Amplicon          $ &Max_Amp_Size. 
           Amplicon_Position 
           NN 
           P                 8 
           FT                $ 6 
           ; 
 
    If _n_ = 1 
    Then 
      Do ; 
         Declare Hash __AP() ; 
         __RC = __AP.DefineKey ( "Amplicon_Position" ) ; 
         __RC = __AP.DefineData( "NN" , "P" ) ; 
         __RC = __AP.DefineDone() ; 
         Call Missing( Amplicon_Position , NN , P ) ; 
      End ; 
  
      Do Until ( End ) ; 
        Set &Amp_DS. End = End ; 
        S1 = Input( Scan( Scan( Amplicon_Name , -1 , "_" ) , 1 , "AaL" ) , 8. ) ; 
        If Scan( Amplicon_Name , -1 , "_" ) =: "a" Then S1 = S1 * -1 ; 
        L1 = Input( Scan( Scan( Amplicon_Name , -1 , "_" ) , 2 , "AaL" ) , 8. ) ; 
        __N = 0 ; 
        Amplicon = "" ; 
        __RC = __AP.Clear() ; 
 
        Do NN = S1 By 1 Until ( __N => L1 ) ; 
          __N + 1 ; 
          /* In Case the amplicon tranverses +1 */ 
          If NN = 0 Then NN = 1 ; 
          If Direction = "Forward" Then Amplicon_Position = __N ; 
           Else If Direction = "Reverse" Then Amplicon_Position = L1 - __N + 1 ; 
          Set Seq.&Gene. ( PW    = &PW. 
                           Keep  = Base NN P 
                         ) Key   = NN 
                         ; 
          Amplicon = CatS( Amplicon , Upcase( Base )) ; 
          __RC = __AP.Add() ; 
        End ; 
 
        Amplicon = Upcase( Amplicon ) ; 
        If Direction = "Reverse"  
        Then Amplicon = Strip( Reverse( Upcase( Translate( Upcase( Amplicon ) 
                                                         , "a" , "T" 
                                                         , "c" , "G" 
                                                         , "g" , "C" 
                                                         , "t" , "A" 
                                                         ) 
                                              ) 
                                      ) 
                             ) ; 
        S_F = Smallest_Flank Max &Min_Flank. ; 
 
        /* Partial FPF */ 
        Do Amplicon_Position = 1 to S_F ; 
          If Amplicon_Position = 1 Then FT = CatX( "/" , "p5" , Put( S_F , z2. )) ; 
           Else FT = CatX( "/" , "P5" , Put( S_F , z2. )) ; 
          If Amplicon_Position - 1 > 0  
          Then FPF = Substr( Amplicon , 1 , Amplicon_Position - 1 ) ; 
           Else FPF = "" ; 
          TPF = Substr( Amplicon , Amplicon_Position + 1   , S_F ) ; 
          Call Missing( NN , P ) ; 
          __RC = __AP.Find() ; 
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          /* Exact flanks */ 
          Flank_Regex = CatX( "(.)"  
                            , CatS( "(" , FPF , ")" )  
                            , CatS( "(" , TPF , ")" ) 
                            ) ; 
          Output ; 
      End ; /* Cycled through Amplicon_Position for Partial FPF */ 
  
      /* Full Match */  
      Do Amplicon_Position = S_F + 1 to Length( Amplicon ) - S_F ; 
        FT = CatX( "/" , "FT" , Put( S_F , z2. )) ; 
        /* Example: S_F = 10, FPF = 1-10, Amplicon_Position = 11, TPF = 12-21 */ 
        FPF = Substr( Amplicon , Amplicon_Position - S_F , S_F ) ; 
        TPF = Substr( Amplicon , Amplicon_Position + 1   , S_F ) ; 
        /* Flank_Regex */ 
        FP_Frag = FPF ; 
        TP_Frag = TPF ; 
        Call Missing( NN , P ) ; 
        __RC = __AP.Find() ; 
 
        /* Exact flanks */ 
        Flank_Regex = CatX( "(.)"  
                          , CatS( "(" , FPF , ")" ) 
                          , CatS( "(" , TPF , ")" ) 
                          ) ; 
        Output ; 
 
        Do _n_ = 1 To S_F ; 
          SubStr( FP_Frag , _n_ , 1 ) = "." ; 
          SubStr( TP_Frag , _n_ , 1 ) = "." ; 
 
          /* Wiggle in FPF */ 
          FT = CatX( "/" , CatS( "F" , Put( _n_ , z2. )) , Put( S_F , z2. )) ; 
          Flank_Regex = CatX( "(.)"  
                            , CatS( "(" , FP_Frag , ")" )  
                            , CatS( "(" , TPF , ")" ) 
                            ) ; 
          Output ; 
 
          /* Wiggle in TPF */ 
          FT = CatX( "/" , CatS( "T" , Put( _n_ , z2. )) , Put( S_F , z2. )) ; 
          Flank_Regex = CatX( "(.)"  
                            , CatS( "(" , FPF , ")" )  
                            , CatS( "(" , TP_Frag , ")" ) 
                            ) ; 
          Output ; 
 
          FP_Frag = FPF ; 
          TP_Frag = TPF ; 
 
        End ; /* Cycled through size of S_F */ 
 
        %If &Partial ne 0 
        %Then 
           %Do ; 
               /* FPF Only */ 
               Flank_Regex = CatS( "(" , FPF , ")(.)()" ) ; 
               FT = CatX( "/" , "F0" , Put( S_F , z2. )) ; 
               Output ; 
               /* TPF Only */ 
               Flank_Regex = CatS( "()(.)(" , TPF , ")" ) ; 
               FT = CatX( "/" , "0T" , Put( S_F , z2. )) ; 
               Output ; 
           %End ; 
        End ; /* Cycled through Amplicon_Position */ 
 
        /* Partial TPF */ 
        Do Amplicon_Position = Length( Amplicon ) - S_F + 1 To Length( Amplicon ) ; 
          If Amplicon_Position < Length( Amplicon )  
          Then FT = CatX( "/" , "P3" , Put( S_F , z2. )) ; 
           Else FT = CatX( "/" , "p3" , Put( S_F , z2. )) ; 
          FPF = Substr( Amplicon , Amplicon_Position - S_F , S_F ) ; 
          If Amplicon_Position + 1 <= Length( Amplicon )  
          Then TPF = Substr( Amplicon , Amplicon_Position + 1   ) ; 
           Else TPF = "" ; 
          Call Missing( NN , P ) ; 
          __RC = __AP.Find() ; 
          /* Exact */ 
          Flank_Regex = CatX( "(.)"  
                            , CatS( "(" , FPF , ")" )  
                            , CatS( "(" , TPF , ")" ) 
                            ) ; 
          Output ; 
        End ; /* Cycled through Amplicon_Position For Partial TPF */ 
      End ; /* Cycled through Amplicons */ 
  Run ; 
%MEnd Amplicons_Flank_Regexes ; 
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%Macro BC_Phred ( Phred      = /* PATH._03_F8_Phred */ 
                , LN         = 
                , Out_DS     = /* PATH._04_F8_BC_Base */ 
                ) ; 
   Data &LN..BC_Base_Tmp ( Keep = File_Sequence_Number NN Amplicon_Position Position      
                                  P C_B U_B RA_C RA_U C_BP U_BP QV FT QV_FPF QV_TPF  
                                  Noise_FPF Noise_TPF 
                                  A_Amplitude C_Amplitude G_Amplitude T_Amplitude 
                         ) 
        ; 
 
    Length File_Sequence_Number NN Amplicon_Position Position P      8 
           C_B U_B                                                   $    1 
           RA_C RA_U C_BP U_BP QV QV_FPF QV_TPF Noise_FPF  Noise_TPF 8 
           __Amplicon_Poly                                           $ 5000 
           _1 _3                                                     $   60 
           __Scan_Flag                                               $    1 
           __Dir                                                     $    7 
           __AN                                                      $  100 
           ; 
 
    Retain __Dir __AN ; 
 
    If _n_ = 0 Then Set Amplicons_Flanks ; 
    If _n_ = 1 
    Then 
      Do ; 
      Dcl Hash FR ( Ordered : "Yes" ) ; 
      __RC_Hash = FR.DefineKey ( "Direction" ,  "Amplicon_Name"  
                               , "Amplicon_Position" , "Count"  
                               ) ; 
      __RC_Hash = FR.DefineData( "Flank_Regex" , "FT" , "P" , "NN" ) ; 
      __RC_Hash = FR.DefineDone() ; 
   End ; 
 
    /* Poly */         
    Array CB( &Obs. )   $  1 ;                      /* Called base */ 
    Array UB( &Obs. )   $  1 ;                      /* Uncalled base */     
    Array CBRA( &Obs. ) ;                           /* Called Base Relative Area */ 
    Array UBRA( &Obs. ) ;                           /* Uncalled Base Relative Area */ 
    Array CBP( &Obs. )  ;                           /* Called Base Pos */  
    Array UBP( &Obs. )  ;                           /* Uncalled Base Relative Area */ 
    Array A_Amp ( &Obs. ) ; Array C_Amp ( &Obs. ) ; /* Amplitude */ 
    Array G_Amp ( &Obs. ) ; Array T_Amp ( &Obs. ) ; /* Amplitude */ 
 
    /* PHD */ 
    Array Qual( &Obs. ) ; /* Quality Values */ 
 
    Do _n_ = 1 To &Obs. ; 
      CB( _n_ )     = "" ; UB( _n_ )     = "" ; 
      CBRA( _n_ )   = .  ; UBRA( _n_ )   = .  ; 
      CBP( _n_ )    = .  ; UBP( _n_ )    = .  ; 
      A_Amp ( _n_ ) = .  ; C_Amp ( _n_ ) = .  ; G_Amp ( _n_ ) = .  ; T_Amp ( _n_ ) = .  ; 
      Qual( _n_ )   = .  ; 
    End ; 
 
    /* Source of FSN, Amplicon_Name, Direction, Path, and File */ 
    Set Files_Amplicon ; 
 
    /* Obtain the Sequence and Base data */ 
    Do Until ( End ) ; 
      Set &Phred. ( PW = &PW. ) 
          Key = File_Sequence_Number 
          End = End 
          ; 
      If __OK ne "1" And _IORC_ = %SysRC(_SOK) Then __OK = "1" ; 
      __Amplicon_Poly = CatS( __Amplicon_Poly , Called_Base ) ; 
      CB   ( Position ) = Called_base                 ; 
      UB   ( Position ) = Uncalled_base               ; 
      CBRA ( Position ) = Called_base_rel_peak_area   ; 
      UBRA ( Position ) = Uncalled_base_rel_peak_area ; 
      CBP  ( Position ) = Called_base_pos             ; 
      UBP  ( Position ) = Uncalled_base_pos           ; 
      Qual ( Position ) = QV                          ; 
      A_Amp( Position ) = A_Amplitude                 ; 
      C_Amp( Position ) = C_Amplitude                 ; 
      G_Amp( Position ) = G_Amplitude                 ; 
      T_Amp( Position ) = T_Amplitude                 ; 
    End ; 
    If End And __OK = "1" 
    Then 
      Do ; 
         __OK    = "" ; 
         _Error_ = 0 ; 
         End     = 0 ; 
      End ; 
    Stop = Position ; 
 
    /* Obtain the Flank Regex's */ 
    If     __Dir ne Direction 
       Or  __AN  ne Amplicon_Name 
    Then 
      Do ; 
        __RC_Clear = FR.Clear() ; 
        __Dir      = Direction     ; 
        __AN       = Amplicon_Name ; 
        /* Load Regex */ 
        Do Until ( End_AF ) ; 
          Set Amplicons_Flanks Key = DAN End = END_AF ; 
          /* If the key is found in Amplicons_Flanks */ 
          If _IORC_ = %SysRC(_SOK) Then __RC_Add = FR.Add() ; 
          Else _ERROR_ = 0 ; 
        End ; 
   End ; 
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         /* Attempt to match the Flank_Regex within __Amplicon_Poly */ 
    Do Amplicon_Position = 1 To Input(Scan(Amplicon_Name,2,"L") , 8. ) ; 
      Call Missing ( C_B , U_B , RA_C , RA_U , C_BP , U_BP , QV 
                   , A_Amplitude , C_Amplitude , G_Amplitude  
                   , T_Amplitude 
                   , QV_FPF , QV_TPF , Noise_FPF , Noise_TPF 
                   , Position , __Scan_Flag 
                   ) ; 
       /* Cycle through the regexes for each Amplicon_Position until one matches.  */ 
       /* Amplicon_Position until one matches.  When one matches,                  */ 
       /* __Scan_Flag = "1" then we LEAVE the Count loop                           */ 
      Do Count = 1 By 1 Until ( __RC_Count_Find ne 0 ) ; 
        __RC_Count_Find = FR.Find() ; 
        If __RC_Count_Find = 0 
        Then 
          Do ; 
             Start = 1 ; 
             __RC_Parse = PRXParse( CatS( "/" , Flank_Regex , "/i" )) ; 
             Call PRXNext( __RC_Parse , Start , Stop , __Amplicon_Poly 
                         , __Position , Length  
                         ) ; 
             Do While ( __Position > 0 ) ;   
               /* Start the search for a subsequent match */ 
               /* immediately after the match             */ 
               Start          = __Position + 1 ; 
               __Scan_Flag    = "1" ; 
               __Flank_Length = Input( Scan( FT , 2 , "/" ) , 8. ) ; 
               /* Locus details */ 
               _1 = PRXPosN( __RC_Parse , 1 , __Amplicon_Poly ) ; 
               _3 = PRXPosN( __RC_Parse , 3 , __Amplicon_Poly ) ; 
               /* Position of the base of interest */ 
               Position = __Position + Length( _1 )*( _1 ne " " ) ; 
               C_B         = CB(    Position ) ; U_B         = UB(    Position ) ; 
               RA_C        = CBRA(  Position ) ; RA_U        = UBRA(  Position ) ; 
               C_BP        = CBP(   Position ) ; U_BP        = UBP(   Position ) ; 
               QV          = Qual(  Position ) ;  
               A_Amplitude = A_Amp( Position ) ; C_Amplitude = C_Amp( Position ) ; 
               G_Amplitude = G_Amp( Position ) ; T_Amplitude = T_Amp( Position ) ; 
               /* FPF QV Noise */ 
               QV_FPF    = 0 ; 
               Noise_FPF = 0 ; 
               Do _n_ = Position - __Flank_Length To Position - 1 ; 
                 If 0 < _n_ <= Stop 
                 Then 
                   Do ; 
                      QV_FPF    + ( Qual( _n_ ) > 24   ) ; 
                      Noise_FPF + ( UBRA( _n_ ) > 0.15 ) ; 
                   End ; 
               End ; 
               /* TPF QV Noise */ 
               QV_TPF    = 0 ; 
               Noise_TPF = 0 ; 
               Do _n_ = Position + 1 To Position + __Flank_Length ; 
                 If 0 < _n_ <= Stop 
                 Then 
                   Do ; 
                      QV_TPF + ( Qual( _n_ ) > 24 ) ; 
                      Noise_TPF + ( UBRA( _n_ ) > 0.15 ) ; 
                   End ; 
               End ; 
               Output ; 
               /* Search for next match */ 
               Call PRXNext( __RC_Parse , Start , Stop , __Amplicon_Poly  
                           , __Position , Length  
                           ) ; 
               If __Position > 0 
               Then 
                 Do ; 
                    Start = __Position + 1 ; 
                    Call Missing ( C_B , U_B , RA_C , RA_U , C_BP , U_BP , QV 
                                 , A_Amplitude , C_Amplitude , G_Amplitude , T_Amplitude 
                                 , QV_FPF , QV_TPF , Noise_FPF  
                                 , Noise_TPF , Position 
                                 ) ; 
                End ; /* __Position > 0 */ 
             End ; /* WHILE LOOP: __Position > 0 */ 
             Call PRXFree( __RC_Parse ) ; 
          End ; /* __RC_Count_Find = 0 */ 
          /* If one of the regex's match, then do not attempt */ 
          /* to match the others for that position            */ 
          If __Scan_Flag = "1" Then Leave ; 
      End ; /* Cycled through Count */ 
      If __Scan_Flag = "" 
      Then 
        Do ; 
           FT = " " ; 
           Output ; 
        End ; 
    End ; /* Cycled through Amplicon_Position */ 
  Run ; 
 
  /****************/ 
  Proc Append Base = &Out_DS. ( PW = &PW. ) 
              Data = &LN..BC_Base_TMP 
             ; 
  Run ; 
 
  Proc Datasets Library = &LN. NoList ; 
    Delete BC_Base_TMP ; 
  Quit ; 
%MEnd BC_Phred ; 

 
 
 
 


