

 1

PharmaSUG 2011 - Paper AD14

Creating a define.xml file for ADaM and SDTM
John H. Adams, Boehringer Ingelheim Pharmaceutical, Inc., Ridgefield, CT

ABSTRACT
The use of Define.xml files is currently required for most FDA submissions. While the define.xml file process for
SDTM only submissions is pretty stable now, many users in the pharmaceutical industry are still struggling with
define.xml files that also cover ADaM submissions.

A define.xml is central to any electronic FDA submission. It is what a reviewer sees first and guides the reviewer
through the objectives, analyses and data for the submission. You can think of the define file as a container of
metadata (and table of contents) that describes all of the data and analysis that a submission contains. While it is a
machine readable file, an accompanying style sheet allows the reviewer to display and read the file in any browser.
Since the define.xml file has imbedded active links, the reviewer can easily drill down into the data and or
supporting documents.

Define.xml files are dependant on two other issues, a schema and a style sheet. The schema, in essence, defines
the type of data (and its hierarchical structure) that can be described in the file. The style sheet, on the other hand,
describes how to display (or render) the data in a browser. You can’t include data (elements or attributes) in the file
that are not part of the schema. Logically, you also can’t have the style sheet reference data (elements or
attributes) that are not part of the schema.

While there are standard SDTM schema and style sheet available from CDISC, this is not the case for ADaM. The
final drafts of these are still under discussion by the CDISC team. The CDISC pilot 1 project did create and used a
modified schema / style sheet set. This paper describes a project for creating a metadata user interface and a
program to create a viable SDTM/ADaM define.xml file, using that pilot 1 schema / style set.

1 INTRODUCTION
A define.xml is central to any electronic FDA submission. It is what a reviewer sees first and guides the reviewer
through the objectives, analyses and data for the submission. You can think of the define file as a container of
metadata (and table of contents) that describes all of the data and analysis that a submission contains. While it is a
machine readable file, an accompanying style sheet allows the reviewer to display and read the file in any browser.
Since the define.xml file has imbedded active links, the reviewer can easily drill down into the data and or
supporting documents.

A define.xml file is basically a markup language type file containing a bunch of data items, each of which is
surrounded by tags, e.g. <NOTE> data </NOTE>. These are called elements. An element can have child-elements,
values or attributes. For example, < NOTE > is a root element with several child-elements that have values. Here’s
a simple example:

<NOTE>

 <TO>KAREN</TO>

 <FROM>JOHN</FROM>

 <HEADING>REMINDER</HEADING>

 <BODY>PLEASE VALIDATE MACRO</BODY>

</NOTE>

 2

Creating an xml file is quite easy since it is essentially a sequential ASCII type file. However, creating a valid
define.xml file is much more difficult. The define.xml file must be properly constructed according to a specific
CDISC schema, supplied along with the define.xml file. This schema defines the internal structure of allowable
elements and their composition. Additionally, a style sheet must also be supplied. This style sheet defines the
rendering or layout of the display for a define.xml file.

This paper will describe our project to create SDTM and ADaM compatible define.xml files, using the schema and
style sheet from the CDISP Pilot 1 project. It will also provide a brief tutorial/primer on schema and style sheets.

 3

1.1 A SCHEMA TUTORIAL

A schema for a define.xml file defines the:

1. the elements that can appear
2. the attributes that can appear for elements
3. which elements are child elements
4. the order (structure) of child elements
5. the number of child elements
6. whether an element is empty or can include text
7. the data types for elements and attributes
8. default and fixed values for elements and attributes

Xml schemas are based on ODM and CDISC standards, but they are extensible. You might ask why we would
want to use a schema. Well, a schema makes it easy to:

1. describe allowable file content
2. validate the correctness of data
3. work with data from databases
4. define data aspects (restrictions on data)
5. define data patterns (data formats)
6. convert data to different data types

The following diagram shows the general CDISC (pilot 1) schema structure that was used for this application. It is
capable of carrying both SDTM and ADaM data.

 Three of the most important substructures, i.e. those for the Domain definitions, Variable definitions and Analysis
results, are shown in more details below. Others are not shown in this paper.

 4

The ItemGoupDef structure below defines the domains that are included in the submission:

The ItemDef structure below defines all variables in each domain:

 5

The AnalysisResultsMetadata structure (partial) below defines all analysis’ in the submission:

 6

1.2 STYLESHEET TUTORIAL

Style sheets are written in XML syntax and are stored as XSL files. The style sheet is used to transform an XML
document into another type of document, like HTML, that is recognized by a browser. All major browsers support
XML and XSL type files. With a style sheet you can rearrange and sort elements, perform tests, make decisions
about which elements to hide and display, etc. So a linked style sheet for a define.xml file defines the layout of the
desired display, i.e. how the browser should display / render elements from the define.xml file. Of course, style
sheets are also extensible.

ToC

Content

(partial)

 7

2 THE APPLICATION

2.1 User interface for Input of Metadata

The first hurdle to overcome was to design an easy user interface to capture the metadata needed for the
define.xml file. It was decided to use an EXCEL workbook as input during the first phase of this project. A later
phase would eliminate the workbook and pull the metadata automatically from other sources.

The EXCEL workbook was organized to have seven separate sheets (tabs) that logically contain the major types of
data needed, as per the following diagram:

As you’ll notice, the sheets do not reflect a one-to-one mapping to major schema elements, i.e. ItemGroupDef,
ItemDef, etc., as some developers have done. In fact, the Domains_Variable sheet sources both the ItemGroupDef
and the ItemDef elements. The major focus of the sheet design was, instead, on creating logical groupings of data
that users understand. All sheets have additional help built in, i.e. drop-down selections, data checking, popup
comments, etc. Let’s look at samples of all sheets.

 8

Following is a sample Header sheet:

Tabs represent sheets

 9

The following figure shows the layout of the domain sheet:

Next, we see a sample of the Domain_variables sheet (partial) below:

The referenced code lists from the above sample are defined in the sample Code lists sheet below:

Comment appears
when a cell is selected

Only
used for
SDTM CodeList_ID

defined in
‘code_lists’ sheet

Computation_MethodID
Defined in
‘Computation_Methods’
sheet

 10

The referenced computation methods from the above Domain_variables sample are defined in the sample
Computation_methods sheet below:

All documents are defined in the sample Document links sheet below:

And finally, a sample Results_Metadata sheet sample. This defines each analysis (one per row) below:

Computation_MethodID referenced
in ‘Domain variables’ sample sheet Algorithm

Document is located in same
folders as define file, unless
preceded by a path

Point to a location within
a Document (optional)DisplayDocumentID

Other DisplayDocumentIDs
as defined in Document_links
sheet

Primary
DisplayDocumentID
as defined in
Document_lnks

 11

2.2 The program
A SAS program was written to create the define.xml file. The program has 3 major sections:

1. The input section uses the XLS engine to read each spreadsheet into a dataset. Using the XLS engine in
SAS 9.2 as opposed to using Proc Import has a number of advantages, as seen by the simplicity of this
code:

%MACRO escapechars (char_str=);
 &char_str = TRANWRD (&char_str, '&', '&');
 &char_str = TRANWRD (&char_str, "<", '<');
 &char_str = TRANWRD (&char_str, ">", '>');
 &char_str = TRANWRD (&char_str, "'", ''');
 &char_str = TRANWRD (&char_str, '"', '"');
 &char_str = TRANWRD (&char_str, '0a'x, '
');
%MEND;

libname xlsdata 'F:\CDISC\1222_Project\PharmaSug\datasets\analysis\User_defined_xml_input.xls'
 getnames=yes scantext=yes scan_textsize=yes version=2002;

data header;
 set xlsdata.'Header$'n;
run;

data Domains ;
 set xlsdata.'Domains$'n ;
 length item_group_oid $50;
 item_group_oid=trim(dataset_name);
 if dataset_name ^= ' ';
 %escapechars(char_str=dataset_description);
run;
proc sort data=Domains; by dataset_name; run;

data Domain_variables ;
 set xlsdata.'Domain_variables$'n;
 length item_oid item_group_oid $50;
 item_group_oid=trim(dataset_name);
 item_oid=trim(dataset_name)||'.'||trim(variable_name);
 %escapechars(char_str=variable_label);
run;
proc sort data=Domain_variables; by dataset_name variableorder; run;

data Code_lists;
 set xlsdata.'Code_lists$'n;
 length codelist_oid $50;
 codelist_oid='Codelist.'||trim(codelist_id);
 %escapechars(char_str=decode_text);
 if codelist_id ^=' ';
run;
proc sort data=Code_lists; by codelist_id; run;

data Computation_methods ;
 set xlsdata.'Computation_methods$'n;
 length compmethod_oid $50;
 %escapechars(char_str=computation_description);
 compmethod_oid='Method.'||trim(Computation_methodid);
run;

data Document_links ;
 set xlsdata.'Document_links$'n;
run;

data Results_metadata;
 set xlsdata.'Results_metadata$'n;
 %escapechars(char_str=display_name);
 %escapechars(char_str=reason);
 %escapechars(char_str=documentation_text);
 %escapechars(char_str=selection_criteria);
 %escapechars(char_str=program_statements);
run;

Read in each
spreadsheet
and do some
pre-processing

Macro to replace
non-allowable
characters in XML
elements

 12

2. The second section processes the input data and creates the actual text lines, stored in datasets, for the

seven major elements in the define.xml file. The creation of these text lines is very schema dependant, so
you must be very familiar with it in order to create these text lines..

In this application, the text lines represent the proper formats and structures of elements in the CDISC
pilot 1 schema. Only the control variable setup and the coding for one of the major elements (
ItemGroupdef) is shown here for illustration. Coding for the other major elements follows a similar
methodology.

The following code block creates a number of macro control variables. These are used during the
processing of the seven major elements / blocks.

proc sql noprint;
 select count(parameter_description) into: header_cnt from header;
 select count(distinct dataset_name) into: domain_cnt from domains;
 select distinct dataset_name into: domain_names separated by '~' from domains;
 select count(distinct dataset_name) into: dsname_cnt from domain_variables ;
 select count(variable_name) into: Tot_var_cnt from domain_variables;
 select count(distinct code_or_controlled_terms) into: CT_cnt from domain_variables;
 select count(Variable_derivation) into: comp_cnt from domain_variables;
 select distinct dataset_name into: dsname_names separated by '~' from domain_variables;
 select DS_var_cnt into: DS_var_cnt separated by '~'
 from (select count(variable_name) as DS_var_cnt , dataset_name from domain_variables group dataset_name);
 select distinct dataset_name into: ds_names1 separated by '~'
 from domain_variables order by dataset_name;
 select distinct code_or_controlled_terms into: CT_names separated by '~' from domain_variables;
 select distinct Variable_derivation into: comp_IDs separated by '~' from domain_variables;
 select count(distinct codelist_name) into: codelst_cnt from code_lists;
 select distinct codelist_name into: codelst_IDs separated by '~' from code_lists;
 select distinct language into: language1 from code_lists;
 select count(distinct Computation_methodid) into: meth_cnt from computation_methods;
 select distinct Computation_methodid into: meth_IDs separated by '~' from computation_methods;
 select distinct language into: language2 from computation_methods;
 select count(distinct Document_id) into: doc_cnt from document_links;
 select distinct Document_id into: doc_IDs separated by '~' from document_links;
 select count(distinct Display_identifier) into: display_cnt from Results_metadata;
 select distinct Display_identifier into: display_IDs from Results_metadata;
 select Display_document_link into: analdoc_ID separated by '~' from Results_metadata;
 select other_document_links into: analdoc_lst separated by '~' from Results_metadata;
 select distinct dataset into: ds_names2 separated by ' ' from Results_metadata;
quit;

 13

Next, there are separate code blocks for creating the element structures of major elements. The following
code is for creating the ItemGroupDef structure. As you can see below, each ‘LINE’ text is constructed
complete with the appropriate tags, sub elements, attributes and values.

data xml_ItemgroupDef(keep=line drop=errmsg);
 length line $5000 errmsg $200;
 if &domain_cnt = 0 then do;
 errmsg = 'ERR' || 'OR: - (ItemGroupDef) dataset count in DOMAINS = 0';
 put errmsg;
 end;
 else if &dsname_cnt = 0 then do;
 errmsg = 'ERR' || 'OR: - (ItemGroupDef) dataset count in DOMAIN_VARIABLES = 0';
 put errmsg;
 end;
 else if &domain_cnt ^= &dsname_cnt then do;
 errmsg = 'ERR' ||'OR: - (ItemGroupDef) dataset count in DOMAINS(' ||trim(left(put(&domain_cnt,best8.))) ||
 ') not equal to that in DOMAIN_VARIABLES(' || trim(left(put(&domain_cnt,best8.))) || ')';
 put errmsg;
 end;
 else if &domain_cnt > 0 then do i=1 to lastdom; /* start loop through domains */
 set domains point=i nobs=lastdom;
 if dataset_name ^= ' ' then do;
 dataset_type='SDTM'; /*Default value*/
 line = ' '; output;
 line = '<!-- *** -->'; output;
 line = '<!-- Defining ItemGroupDef for dataset ' || trim(dataset_name) || ' -->'; output;
 line = '<!-- *** -->'; output;
 line = '<ItemGroupDef OID="' || trim(dataset_name) || '"' ; output;
 line = ' Name="' || trim(dataset_name) || '"' ; output;
 line = ' SASDatasetName="' || trim(dataset_name) || '"' ; output;
 if Repeating = ' ' then Repeating = ' ';
 line = ' Repeating="' || trim(repeating) || '"'; output;
 if Reference_data = ' ' then Reference_data = 'No';
 line = ' IsReferenceData="' || trim(Reference_data) || '"'; output;

 if trim(left(upcase(Class_of_Dataset))) in('ADSL' 'BDS' 'OTHER') then do; /*ADaM dataset*/
 dataset_type='ADAM';
 line = ' Purpose="Analysis"' ; output;
 line = ' crt:Class="Analysis"' ; output;
 end;
 else do; /*SDTM type dataset*/
 line = ' Purpose="Tabulation"' ; output;
 line = ' crt:Class="' || trim(left(Class_of_Dataset)) ||'"' ; output;
 end;

 %escapechars(char_str=dataset_description);
 line = ' crt:Label="' || trim(dataset_description) || '"'; output;
 line = ' crt:Structure="' || trim(dataset_structure) || '"'; output;
 line = ' crt:DomainKeys="' || trim(Key_Variables_of_dataset) || '"'; output;
 line = ' crt:ArchiveLocationID="Location.' || trim(dataset_location) || '"'; output;
 line = '>'; output;
 line = ' '; output;

 if &dsname_cnt > 0 then do j=1 to lastvar; /* start loop through vars for dataset*/
 set domain_variables(rename=(dataset_name=dom_name)) point=j nobs=lastvar;
 if dom_name = dataset_name then do;
 line = '<!-- ItemRef for dataset (' || trim(dataset_name) || ') Variable ' || trim(Variable_name) || ' -->'; output;
 line = ' <ItemRef ItemOID="' || trim(Variable_name) || '"'; output;
 line = ' OrderNumber="' || trim(left(VariableOrder)) || '"'; output;
 if Value_Required = ' ' then Value_Required = 'No';
 line = ' Mandatory="' || trim(Value_Required) || '"'; output;
 if dataset_type='SDTM' and Variable_Role ^= ' ' then do; /*define role for SDTM only*/
 line = ' Role="' || trim(Variable_Role) || '"'; output;
 end;
 if Variable_derivation ^= ' ' then do;
 /* check if Variable_derivation variable is a linked method*/
 if index(upcase("&meth_IDs"),trim(left(upcase(Variable_derivation))))>0 then do;
 line = ' MethodOID="' || "MethList." || trim(left(upcase(Variable_derivation))) || '"'; output;

Loop
through
variable
for each
domain

Loop
through
each
domain

 14

 end;
 end;
 line = ' />'; output;

 end;
 end; /* end loop through vars for dataset*/

 line = ' <crt:leaf ID="Location.' || trim(dataset_Name) || '" xlink:href="' || trim(dataset_location) || '">'; output;
 line = ' <crt:title>' || trim(dataset_location) || '</crt:title>'; output;
 line = ' </crt:leaf >'; output;

 line = '</ItemGroupDef>'; output;
 end;
 end; /* end loop through datasets */

 Stop;
run;

Coding for the other major elements follows a similar methodology, i.e. creating the actual text lines in a
dataset, as the above example, but won’t be shown in this paper.

3. This step is relatively simple, as most work has already been done in the 2nd step. The final define.xml file
is created in this step by successively reading each of the seven data steps in proper order and writing
each text line to the external file.

. filename xmlout 'F:\CDISC\1222_Project\PharmaSug\datasets\analysis\define.xml' lrecl=5000 ;

data _null_;

 set xml_header xml_doclinks xml_itemgroupdef xml_itemdef2 xml_codelist xml_methodlist xml_results_metadata

 end=done;
 file xmlout;
 put line;

 if not done then return;
 else do;
 line = ' '; put line;
 line = '<!-- *** -->'; put line;
 line = '<!-- Close the container elements -->'; put line;
 line = '<!-- *** -->'; put line;
 line = '</MetaDataVersion>'; put line;
 line = '</Study>'; put line;
 line = '</ODM>'; put line;
 end;
run;

libname xlsdata clear;
filename xmlout clear;

Loop
through
variable
for each
domain

Loop
through
each
domain

(From previous page)

Data sets with line text for all elements

 15

2.3 The Results

The program runs extremely fast (a few seconds) and produces a well formed XML file that is both SDTM and
ADaM Implementation Guide (IG) compatible.

The log of a sample run shows that the external file was written:

NOTE: The file XMLOUT is:
 Filename=F:\CDISC\1222_Project\PharmaSug\datasets\analysis\define.xml
 RECFM=V,LRECL=5000
 Last Modified=16Feb2011:14:36:07
 Create Time=15Feb2011:11:19:04

NOTE: 4961 records were written to the file XMLOUT.
 The minimum record length was 1.
 The maximum record length was 311.

NOTE: There were 40 observations read from the data set WORK.XML_HEADER.
NOTE: There were 36 observations read from the data set WORK.XML_DOCLINKS.
NOTE: There were 1221 observations read from the data set WORK.XML_ITEMGROUPDEF.
NOTE: There were 3532 observations read from the data set WORK.XML_ITEMDEF2.
NOTE: There were 76 observations read from the data set WORK.XML_CODELIST.
NOTE: There were 16 observations read from the data set WORK.XML_METHODLIST.
NOTE: There were 33 observations read from the data set WORK.XML_RESULTS_METADATA.
NOTE: DATA statement used (Total process time):
 real time 0.10 seconds
 cpu time 0.07 seconds

Following are screen shots of the define.xml file as rendered by the Internet Explorer browser:

Specific
Analysis
with links

links to
general
document

ToC
with
links

Summary of analysis’
with links to details

First
page

 16

SDTM
Domain
summary
with links

ToC
with
links

Analysis
Domain
summary
with links

Domain
variables
detail
(partial)
with links

Second
page

ToC
with
links

Computation
Method
definitions

Codelist
definitions

Last
page

 17

3 Conclusions
While there are standard SDTM schema and style sheet available from CDISC, this is not the case for ADaM. The
final drafts of these are still under discussion by the CDISC team.

The CDISC pilot 1 project did create and used a modified schema / style sheet set. The application described in
this paper bridges the gap for the immediate future by using the CDISC pilot 1 schema and style sheet set. It
provides us with a process for creating a viable SDTM/ADaM define.xml file right now. When a final schema and
style sheet set becomes available from CDISC, the program can easily be adapted. Additionally, our plans call for
more automation of the metadata user interface.

 18

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

John H Adams
900 Ridgebury Road
Ridgefield, CT, 06877-0368
Work Phone: 203-778-7820
Fax: 203-837-4413
Email: john.adams@boehringer-ingelheim.com
 adamsjh@mindspring.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

