
 1

PharmaSUG2011 - Paper CD01

A Cost-Effective SDTM Conversion for NDA Electronic Submission

Xiangchen (Bob) Cui, Vertex Pharmaceuticals, Cambridge, MA
Scott Moseley, Vertex Pharmaceuticals, Cambridge, MA

Min Chen, Vertex Pharmaceuticals, Cambridge, MA

ABSTRACT

When submitting clinical study data in electronic format to the FDA, sponsors are required to submit data definition tables
(define.xml) and a reviewer guide (define.pdf), in addition to SDTM and ADaM datasets. The standardized, well-defined, and
detailed define files minimize the time needed for FDA reviewers to familiarize the data, which can speed up the overall review
process. The programming specification documentation serves as a part of a reviewer guide, as well as the documentation for
programming validation. It is very crucial to ensure the consistency of the attribute of each variable among datasets, define
files, and programming specification. It is highly desirable to automate this process to ensure technical accuracy and
operational efficiency.

This paper describes a method that can streamline the process from SDTM/ADaM conversion to NDA electronic submission to
achieve the goal, avoid the waste of the time and resources for verification of the consistency at the later stage, significantly
reduce the time and work load to develop SAS® programs for SDTM/ADaM conversion and validation, and prepare define
files.

INTRODUCTION

SDTM Conversion process for NDA Electronic Submission is composed of programming for SDTM conversion and its
validation, preparing the Reviewer Guide documentation (define.pdf), and creating Data Definition Document (define.xml). A
major part of define.xml is the “comment” column, which provides the detailed information for FDA reviewers to familiarize and
understand the data. The programming specification documentation is a key part of the SDTM Conversion process, for it is
used for programming and validation, the preparation of define.pdf, and the generation of the major parts of define.xml. A cost-
effective way is very desirable, which can ensure SDTM Conversion meet the requirements described in SDTM
Implementation Guide and in-house standards, and guarantee the consistency among SDTM datasets, programming
specification, and define files. This paper introduces a methodology to achieve these goals. It was developed and used in our
two Phase II and III studies for NDA submission. It turns out to be very successful.

We start with a Vertex SDTM Master Spreadsheet, an Excel® specification document, which follows CDISC SDTM
Implementation Guide V3.1.1, and provides all variables for common domains. For each variable, the spreadsheet gives both
the CDISC standard and Vertex standard attributes. The programming specification will be written in the “SDTM comment”
column for each domain. The macro %cdiscspec is called to each spreadsheet and generates the programming specification
in Rich Text Format (RTF) and a SAS dataset containing the variable attributes. The macro %mk0obs is called to the SAS
dataset and generates the zero observation dataset. The calling of macro % sdtm_attrib to the zero observation dataset
generates four global macro variables, which give the variables kept in the final domain and supplemental domain, and their
attributes, respectively, and they will be used and facilitate SDTM conversion programming for both production and validation.
Once each SDTM domain is fully developed and validated, the macros %all_spec and %write_vars_info are called to populate
variable attributes and “SDTM comment” into define.xml at the final step for NDA submission. Since Excel® specification
document is a unique source for SDTM datasets, programming specifications, and define files, consistency among them can
be guaranteed. It avoids the waste of resources due to consistency checking. Further, it significantly reduces programming
work load and error-prone manual processing to update all of three if there are some changes in SDTM dataset at any stage
simply by updating the Excel® specification documents and rerunning all corresponding programs. This methodology is also
applicable to the submission package for ADaM.

Figure 1 shows the process flow.

 2

AN INTRODUCTION OF VERTEX MASTER SPREADSHEET FOR SD TM DOMAINS

Fig. 2 gives a sample specification document for AE domain filtered from the department tools library. The first part gives the
information on the variable selection and the order of the variables, the second part gives the variable attributes from CDISC
SDTM Implementation Guide standards, and the third part gives the variable attributes from Vertex SDTM Guide standards,
which includes the comments for generating the variable.

The Vertex controlled terminology is defined in the spreadsheets master_controlled_terms.xls from the department tools as
shown in Fig. 3.

Vertex_master.xls
Master_controlled_terms.xls

%cdiscspec %mk0obs

SDTM Dataset Template with
Zero Observation

SAS Global Macro Variables:
Stored List of Variables to be
Kept in SDTM Dataset and

their Attributes

%sdtm_attrib

SDTM Programming
Specification in RTF Format

SDTM Conversion
SAS Programs
(e.g., ae.sas)

%all_spec
%write_vars_info

Preparation for define.xml

Population into SDTM Dataset SDTM Conversion
& NDA Submission

define.xml for NDA
Submission

 %make_xls
 %definexml_create

Spreadsheet for Individual Domain

Variable Selection
and Order

Variable Attributes from
CDISC SDTM

Implementation Guide

Variable Attributes from
Vertex SDTM Guide

Figure 2 Sample Spreadsheet of Specification Implementation Guide

Figure 1 Overview of Process Flow

 3

If a specific domain exists in the master spreadsheet, it will be used to develop programming specification by selection of
variables and addition of the mapping rules and/or derivation rules to the SDTM Comments column. Otherwise, one existing in
the master spreadsheet can be used as a template for development of a new spreadsheet.

THE MACRO TO CREATE THE PROGRAMMING SPECIFICATION A ND THE ZERO OBSERVATION
DATASET

Each spreadsheet works for each domain. Hence the programming team can simultaneously work on different domains.

The macro %cdiscspec is used to generate the programming specification and a SAS dataset accommodating the variable
attributes:

%macro cdiscspec(
 PATH = , /* Path to all input files */
 INPUTFN = , /* Filename of the Excel work book
 containing the variable sp ecifications */
 SHEET = , /* Name of the Excel(INPUTFN) worksheet
 containing the variable sp ecifications */
 AREA = , /* Area of the worksheet cont aining the data */
 CTFN = , /* Filename of the Excel work book
 containing the controlled terminology */
 CTSHEET = , /* Name of the Excel workshee t
 containing the controlled terms */
 OUTPUTFN = , /* Filename of the Output RTF file */
 DATAOUT = , /* Library name for output SA S datasets */
 VDATOUT = , /* Output SAS datasets name
 containing Variable Descri ption */
 CTDATOUT = /* Output SAS datasets name
 containing Controlled Term inology Information */
);

Some samples of macro codes are shown as follows:
data spec(keep=f1-f29 memtype rename=(f1=var_sel f2 =var_def f4=varnumc
 f6=memname f8=name f9=label f10=type f12= origin f13=role
 f14=note f15=core f17=ver_stat f18=ver_ct f19=lenc f28=rmap));
 set xlsin."&sheet$"n
 (dbSasType=(f1 =char100 f2 =char100 f3 =char100 f4 =char100 f5 =char100
 f6 =char100 f7 =char100 f8 =char100 f9 =char100 f10=char100
 f11=char100 f12=char100 f13=char100 f14=char100 f15=char100
 f16=char100 f17=char100 f18=char100 f19=char100 f20=char100
 f21=char100 f22=char100 f23=char100 f24=char100 f25=char100
 f26=char100 f27=char100 f28=char400 0 f29=Char400)
);
 if missing(f6) then delete;
 if f2="Vertex Default Variable" or missing (f8) t hen delete;
 if substr(f6,1,4)='SUPP' then memtype=2;
 else memtype=1;
 *** Generate Hard Return Sign in RTF ***;
 F28=tranwrd(f28,'~','~n');
 format _character_;
run;
...
*** Creates a single record per codelist with all d omains including it;
Proc sort data=spec(where=(codelist ne ' ' and
 verify(codelist,'ABCDEFGHIJKLMNOPQRSTUVWXYZ_12 34567890 ')=0))
 out=codes(keep=codelist name) nodupkey; by cod elist name; run;
Proc transpose data=codes out=codes;
 by codelist;
 var name;

Figure 3 Spreadsheet of Controlled Terminology

 4

run;
Data codes;
 set codes;
 array col{*} $ col:;
 length vars $255;
 do i=1 to dim(col);
 if col{i} ne ' ' then vars = trim(vars) || ', ' || col{i};
 end;
 if length(vars) > 2 then vars = substr(vars,3) ;
 run;
...
**Create dataset containing information of TOC and Appendix of Control Terms;
Proc import datafile="&path&ctfn" out=ct;
 sheet="&ctsheet$";
 getnames=no;
run;
Data ct toc;
 set ct(rename=(f1=Cont_Term_Selected f2=Cont_T erm_Defualt f3=codelist
 f4=Varnum f5=_Controlled_Term f 6=_testcd f7=_test
 f19=singmult) keep=f1-f7 f19);
 if (Cont_Term_Default ne ' ' or Cont_Term_Sele cted ne ' ')
 and index(upcase(Cont_Term_Selected),'N') = 0 then output ct;
 *** Identifies all domains & existed supplemen tal qualifier domains ***;
 if upcase(codelist) = 'DOMAIN' and _testcd ne ' ' then do;
 output toc;
 _testcd = 'SUPP' || _testcd;
 output toc;
 end;
run;
...
Data spec;set spec ct;run;
Proc sql;
 create table toc2 as
 select a.secnum, a.basemem, a.memtype, a.memna me, toc._testcd, toc._test
 from (select distinct secnum, basemem, memtype , memname from spec) a
 left join toc on a.memname=toc._testcd
 order by basemem, memtype, _testcd;
quit;
Data toc;
 set toc2 toc(where=(_testcd='CONTTERM') in=cte rm);
 if _testcd=' ' then _testcd = memname;
 if cterm then do;
 basemem = 'ZZZZ';
 secnum = "See Section &CTSEC";
 end;
run;

The programming specification consists of three sections, including Table of Contents, is shown as follows:

 5

The comments column guides programming activities of both SDTM conversion and validation by providing the mapping rules
and derivation rules. A SAS dataset containing the attributes of each variable defined in each spreadsheet is output, and it is
converted into a zero observation data set.

Figure 5 shows a dataset containing the attributes of the variables.

The sample of zero observation data set is shown in Figure 6.

Figure 4 RTF Specification

Figure 5 Intermediate Dataset Containing Attributes of the Variables

 6

The followings are the codes to generate the zero observation data set.

%macro mk0obs(input=,outlib=,showcontents=N);
 Proc sort data=&input out=vars;by memname varnum name;run;
 Data _null_;
 length t $1 type $8;
 set vars;
 by memname varnum name;
 if first.memname then call execute("data &ou tlib.." || left(memname)
 || '; ' || 'attrib ');
 if upcase(substr(type||'N',1,1)) = 'C' then t = '$';
 else t = ' ';
 if len = ' ' then do;
 if t = '$' then len = '1';
 else len = '8';
 end;
 call execute(name || ' length=' || compress(t||len) || ' label="' ||
 trim(left(translate(label,"'",'"'))) || ' ');
 if last.memname then call execute("; stop; r un;");
 run;

 %if %upcase(%substr(&showcontents,1,1)) = Y %then %do;
 Proc contents data=&outlib.._all_;
 run;
 %end;
%mend;
%mk0obs(input=,outlib=,showcontents=N);

A MACRO TO CREATE GLOBAL MACRO VARIABLES FOR SELECT ION OF VARIABLES AND THEIR
ATTRIBUTES

After an individual RTF programming specification is created, the programmers append the RTF specification as the third part
to the end of an individual Word specification, which contains the general information as the first part and the study specific
information as the second part. The programming specification in MS Word format will be reviewed by the team. After the
team’s approval, the programmers can generate the final SDTM datasets following the mapping rules and derivation rules by
using the zero-observation dataset.

The macro % sdtm_attrib generates four global macro variables: keep, keep_supp, attrib, and attrib_supp from a zero-
observation dataset, which give the variables kept in the final domain and supplemental domain, and their attributes,
respectively.

%macro sdtm_attrib(dsin = ,
 libin = ,
 template = ,
 domain = ,
 suppqual =
);
 %local domain suppqual;
 %global attrib keep attrib_supp keep_supp drop_qc drop_sys;
 *** Creates a datasets summarizing the content of all 0-obs datasets ***;
 Proc contents data=&template.._all_ out=_cont_tem plate noprint;
 run;
 Data _vars; *** Extract Vertex SDTM specification for all datasets ***;
 set &libin..&dsin;
 run;

Figure 6 Zero Observation Data Set for SDTM AE and SUPPAE

 7

 %*** Get output dataset(s) variable attributes ****;
 Proc sql noprint;
 select trim(left(name)) into: keep separated by ' '
 from _vars
 where upcase(memname) = (upcase("&domain"))
 order by varnum;
 select trim(left(name)) into: keep_supp sepa rated by ' '
 from _cont_template
 where upcase(memname) = (upcase("&suppqual"))
 order by varnum;
 select trim(left(name)) into: drop_qc separa ted by ' '
 from _cont_template
 where upcase(memname) = (upcase("&suppqual"))
 and upcase(name) not in ('STUDYID','USUBJI D')
 order by varnum;
 select trim(left(name)) || " label='" || tri m(left(label)) || "'
 length=" ||
 case when type = "Char" then '$'
 else ' '
 end || trim(left(len)) into: attrib s eparated by ' '
 from &libin..&dsin
 where upcase(memname) = (upcase("&domain"))
 order by varnum;
 select trim(left(upcase(name))) || " label=' " || trim(left(label)) ||
 "' length=" ||
 case when type = 2 then '$'
 else ' '
 end || trim(left(put(length,best.))) into: attrib_supp
 separated by ' '
 from _cont_template
 where upcase(memname) = (upcase("&suppqual"))
 order by varnum;
 quit;

A SAMPLE OF SAS CODES FOR AE DOMAIN TO POPULATE VAR IABLES AND THEIR ATTRIBUTES FROM
GLOBAL MACRO VARIABLES

Four global macro variables: &keep, &keep_supp, &attrib, and &attrib_supp, generated from %sdtm_attrib , will be applied
into SDTM mapping programs. A sample of SAS codes for AE domain below shows how these macro variables are used to
generate SDTM variables specified in Vertex Master Spreadsheet. The methodology simplifies and facilitates the SAS
programming for both production and validation, and results in significant reduction of programming work load and error-prone
manual process to develop and validate the required variables and their attributes for SDTM.

%let domain = AE;
%let suppdomain = suppae;
%let pre = ae_;
*** Extract the attributes of the variables from 0- observation dataset ***;
%sdtm_attrib(dsin=&pre.vars, libin=sdtmspec, templa te=sdtmtmpl, domain=&domain.,
suppqual=&suppdomain.);
*** Create the SDTM domain ***;
Data &domain.;
 attrib &attrib.;
 retain &domain.seq 0;
 set rawdata(where=(&pre.aeterm ne ''));
 by &pre.site &pre.subjid;
 domain = upcase("&domain.");
 studyid = "&study_lbl.";
 usubjid = trim(left("&study_lbl.")) || "-" || substr(trim(left(&pre.subjid)),1,3) ||
 "-" || trim(left(&pre.subjid));
...
run;
...
*** Output SDTM datasets ***;
Data wsdtm.&domain(keep=&keep label='Adverse Events');
 attrib &attrib.;
 set &domain;

 8

run;
data wsdtm.supp&domain(keep=&keep_supp label='Supplemental Qualifier for
 AE');
 attrib &attrib_supp;
 set supp&domain;
run;

The resolutions of these four macro variables above inside AE.log are as follows.
%put &keep;
STUDYID DOMAIN USUBJID AESEQ AESPID AETERM AEMODIFY AEDECOD AEBODSYS AESEV AESER AEACN
AEREL AEOUT AECONTRT AESTDTC AEENDTC AEENRF

%put &attrib;
STUDYID label='Study Identifier' length=$20 DOMAIN label='Domain Abbreviation' length=$2
USUBJID label='Unique Subject Identifier' length=$4 0 AESEQ label='Sequence Number' length=
8 AESPID label='Sponsor-Defined Identifier' length= $8 AETERM label='Reported Term for the
Adverse Event' length=$120 AEMODIFY label='Modified Reported Term' length=$120 AEDECOD
label='Dictionary-Derived Term' length=$120 AEBODSY S label='Body System or Organ Class'
length=$120 AESEV label='Severity/Intensity' length =$8 AESER label='Serious Event'
length=$2 AEACN label='Action Taken with Study Trea tment' length=$40 AEREL
label='Causality' length=$20 AEOUT label='Outcome o f Adverse Event' length=$40 AECONTRT
label='Concomitant or Additional Trtmnt Given' leng th=$2 AESTDTC label='Start Date/Time of
Adverse Event' length=$20 AEENDTC label='End Date/T ime of Adverse Event' length=$20 AEENRF
label='End Relative to Reference Period' length=$20

%put &keep_supp;
STUDYID RDOMAIN USUBJID IDVAR IDVARVAL QNAM QLABEL QVAL QORIG QEVAL

%put &attrib_supp;
STUDYID label='Study Identifier' length=$20 RDOMAIN label='Related Domain Abbreviation'
length=$2 USUBJID label='Unique Subject Identifier' length=$40 IDVAR label='Identifying
Variable' length=$8 IDVARVAL label='Identifying Var iable Value' length=$8 QNAM
label='Qualifier Variable Name' length=$8 QLABEL la bel='Qualifier Variable Label'
length=$40 QVAL label='Data Value' length=$200 QORI G label='Origin' length=$20 QEVAL
label='Evaluator' length=$40

AUTOMATE CREATION OF SDTM PROGRAMMING SPECIFICATION FOR ALL DOMAINS

After each individual SDTM Programming Specifications is finalized, first a macro %all_spec is called to iteratively read and
convert each Excel® specification document into a SAS data set, and combine these SAS data sets into one, which will be
used to create one final RTF specifications by another macro %write_spec. The combined SAS dataset, called
ALLSPECS.sas7bdat, will be used to prepare variable metadata for define.xml later.

%write_spec reads ALLSPECS.sas7bdat and spreadsheets for controlled terminologies, and generates TOC (table of
contents), Programming Specifications, and controlled terminology for SDTM Programming Specifications in RTF format,
shown in Figure 4.

%let sheet = V3.1.1 Domains;
%let allspecs = ae cm co ct dc dm ds eg ex fs hc hu ie lb mh pe qs sa sc se
 sq sv ta te ti ts tv vd vs xp;
%macro all_spec;
%let j=1;
%let onespec=%scan(&allspecs,&j," ");
%do %while (%quote(&onespec)^=());
 libname xlsin excel "E:\Final\data\sdtm\specs\&on espec._master_950108.xls"
 mixed=yes scantext=no dbmax_text=32000 ge tnames=no;
 data temp;
 set xlsin."&sheet$"n (dbSasType=(...));
 length driver $10;
 retain dnum &j;
 ...
 driver=upcase(strip("&onespec"));
 keep f1-f29 driver dnum memtype;
 run;

 proc append base=allspecs new=temp;run;
 %let j=%eval(&j + 1);
 %let onespec=%scan(&allspecs,&j," ");
%end;

 9

%mend all_spec;
%all_spec;

PREPARATION FOR DEFINE.XML AND GENERATION OF VARIAB LE LEVEL SPREADSHEET FROM AN
EXCEL® SPECIFICATION DOCUMENT

Metadata file define.xml will be created by invoking macros %make_xls and %definexml_create, developed in-house. These
macros need information including Study Level Spreadsheet, Domain Level Spreadsheet (Dataset Metadata), Variable Level
Spreadsheet (Variable Metadata), Value Level Spreadsheet (Value Level Metadata), Computational Algorithm Spreadsheet,
and Controlled Terminology/Format Spreadsheet,

The department tools library already provides five Excel file samples. All samples, except variable metadata, can be easily
prepared. However vars_info_general.xls, as shown in Figure 7, is the most difficult to manually be prepared. There are large
numbers of variables in clinical studies. For example, there are more than 550 variables in one of our studies for NDA
submission. Another reason is that COMMENT column and ORIGIN column in the variable level spreadsheet are different
from one study to another. They are study-specific. ALLSPECS.sas7bdat from Spreadsheet for SDTM Domains will be used
to generate vars_info_general.xls by a macro %write_vars_info, shown as follows.

%let excel_path = E:\esub\convert\define\tabulatio ns;
libname sdtm "E:\esub\source\data\sdtm";
libname allspecs "&excel_path.";
%macro write_vars_info(libname=,dsin=);
proc sort data=&libname..&dsin.(rename=(f6=memname f8=name f9=label
 f10=type)) out=allspecs;
 by memname name;
 where not missing(memname) and
 (upcase(f1)='Y' or (upcase(f2)='D' and upca se(f1) ne 'N'));
run;
*** Generate a line with characters long enough to avoid the truncation ***;
*** When reading the generated vars_info excel by t he department macros ***;
data longline;
 length longline $4000 memname $100 name $100;
 name = ' ';memname = ' ';longline = repeat("*" ,4000);
run;
data allvars(rename=(name=variable));
 merge allspecs (in=a) longline (in=b);
 by memname name;
 length DOMAIN $10 DATATYPE $20 ORIGIN $300 ROLE $ 20 CODELIST $20 MANDATORY
 $10 COMMENT $4000 VALUELIST $20 COMPUTATIO NMETHOD $20;
 retain varnum;
 if first.memname and not missing(memname) then va rnum = 0;
 else if not missing(memname) then varnum + 1;
 ** The line with characters long enough should be output in the first row;
 if a then sort=2;
 if b then sort=1;
 if index(upcase(type), "NUM") then datatype="flo at";
 if index(upcase(type), "CHAR") then datatype="tex t";
 *** Use Vertex Origin, if it is missing, use CDIS C SDTM Origin ***;
 if not missing(f29) then origin = strip(f29);
 else origin = strip(f12);
 role = strip(f13);
 codelist = strip(f18);
 length = input(strip(f19),best.);
 if b then comment = strip(longline);
 else comment = strip(f28);
 domain = strip(memname);

Figure 7 Preparation of define.xml – Variable Level Spreadsheet (vars_info_general.xls)

 10

 if upcase(f17) = 'REQ' then mandatory = 'Yes';
 else mandatory = 'No';
 if memname ne ' ' then do;
 if substr(strip(name),3) in ('ENRF','STRF','EN DY','STDY','DY') and
 strip(name) not in ('MHENRF')
 then ComputationMethod = substr(strip(name),3) ;
 else ComputationMethod = ' ';
 if substr(strip(name),3) in ('TESTCD') and str ip(name) ne 'IETESTCD'
 then do;
 valuelist = 'Yes';
 codelist = ' ';
 end;
 else if strip(name) = 'QNAM' then valuelist = 'Yes';
 else ValueList = ' ';
 if substr(strip(name),3) in ('SEQ','DY') or
 strip(name) in ('VISITNUM','VISITDY','TAETO RD')
 then datatype = "integer";
 end;
 comment = strip(tranwrd(comment,'~',''));
 *** Define codelist ***;
 if strip(upcase(codelist)) not in ('SEX','NY','NY NULL') and
 strip(upcase(scan(codelist,1,'.'))) not in ('M EDDRA','WHODD')
 then codelist = ' ';
 keep domain varnum name label datatype origin rol e comment length codelist
 mandatory valuelist ComputationMethod sort;
run;
proc sort data=allvars;by sort domain varnum;run;
%mend;
%write_vars_info(libname=allspecs,dsin=allspecs);

Define.xml is generated by calling %definexml_create. Figure 8 (a) shows an example of TOC for define.xml. The detailed
mapping rules, derivation rules, and origin information in the programming specification, in addition to variable attributes, are
shown in Figure 8 (b).

(a) The Table of Contents (TOC)

 11

(b) The Data Definition Table

CONCLUSION

Since the SDTM dataset structure, the programming specification, and define.xml are all generated from the Excel®
specification documents, the methodology used in our NDA submission ensures the consistency in the entire study from
SDTM Conversion to NDA Electronic Delivery, and achieve the high quality of submission. When any revision and/or adding
new domains are needed in the late stage, updating and/or adding a new Excel® specification for domains, and rerunning all
corresponding SAS programs can accomplish the tasks.

This paper introduced a streamline process to generate SDTM dataset programming specifications for SDTM Conversion and
QC activities, and prepare information for define.xml from Vertex SDTM Master Spreadsheet. The methodology guarantees
the consistency among the specifications, SDTM dataset, and SDTM metadata file define.xml, enhances the submission
quality, and achieves the cost-effectiveness and the efficiency. We hope the methodology and the SAS codes provided in this
paper can assist you in saving your time and resources for clinical study reporting, especially for NDA submission.

REFERENCES

1. CDISC Submission Data Standards Team. “Study Data Tabulation Model Implementation Guide: Human Clinical Trials”,
August 2005.
http://www.cdisc.org/content1605

2. Ellen Xiao. (2010). “SDTM Attribute Checking Tool”. SAS Global Forum, April 2010.

3. Alan Meier. (2009) ” Implementation Plan for CDISC SDTM & ADaM Standards at MedImmune”, PharmaSUG, June 2009.

4. Misha Rittmann. (2010) “Automating the Link between Metadata and Analysis Datasets”, PharmaSUG, May 2010.

ACKNOWLEDGEMENTS

Appreciation goes to SDTM Working Group for SDTM Master Spreadsheet, and Dean Gittleman and Kelly Blackburn for their
review and comments.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Xiangchen (Bob) Cui, Ph.D.
Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street
City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-6069
Fax: 617-460-8060

Figure 8 Sample of define.xml

 12

E-mail: xiangchen_cui@vrtx.com

Name: Scott Moseley, M.S.
Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street
City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-6162
Fax: 617-460-8060
E-mail: scott_moseley@vrtx.com

Name: Min Chen, Ph.D.
Enterprise: Vertex Pharmaceuticals, Inc.
Address: 88 Sidney Street
City, State ZIP: Cambridge MA, 02139
Work Phone: 617-444-7134
Fax: 617-460-8060
E-mail: min_chen@vrtx.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

