
 1

PharmaSUG 2011 - Paper TT02

Create a Format from a SAS® Data Set
Ruth Marisol Rivera, i3 Statprobe, Mexico City, Mexico

ABSTRACT

Many times we have to apply formats and it could be hard to create them specially if there are a lot of values to consider. But if
you have all the values on a SAS data set you can pull them from there instead of creating the format manually (typing the
data). This paper shows how to do that just by saying which variable you are going to use for the start of the range values (or a
single value) and which value you want to receive back (a variable value or a pre-established value).

INTRODUCTION

The formats can be used for doing a lot of things; one useful application is having one format with a couple of values that can
be matched with a data set (so you can avoid a merge statement).

For example suppose that you have to show a listing which has 3 SAS data sets as source

Let’s see what the listing specification may look like:

Listing of reactions during next five days after taken Medicine “A”.

Patient

Reactions.pat
ient

Type of reaction
Reactions.reac_
type

Day
number
Reactions.
day

Had it?
Reactions.resp
onse

Maximum
duration of
reaction
maxdur.max_
dur

Did the patient
decide to
discontinue?
discont.disconti
nued

1 Pain 1 Yes 2 Yes
 2 Yes
 3 No
 4 Yes
 5 No
 Fever 1 No 1
 2 No
 3 No
 4 Yes
 5 No
2 Pain 1 No 1 No
 2 No
 3 Yes
 4 No
 5 No
 Fever 1 Yes 3
 2 Yes
 3 Yes
 4 No
 5 No

Note: The response for Did the patient decide to discontinue? should only appear in the first row for each patient.

 2

SAS data sets:

Data set REACTIONS:

Patient Reac_type response Day
1 PAIN YES 1
1 PAIN YES 2
1 PAIN NO 3
1 PAIN YES 4
1 PAIN NO 5
1 FEVER NO 1
1 FEVER NO 2
1 FEVER NO 3
1 FEVER YES 4
1 FEVER NO 5
2 PAIN NO 1
2 PAIN NO 2
2 PAIN YES 3
2 PAIN NO 4
2 PAIN NO 5
2 FEVER NO 1
2 FEVER NO 2
2 FEVER NO 3
2 FEVER NO 4
2 FEVER NO 5

Data set DISCONT:

Patient Discontinued
1 YES
1 YES
2 NO
2 NO

 3

POSSIBLE WAYS TO DO IT

1. With the “traditional” way (doing a merge) we would have to do this:

1 Do a PROC SORT to take care of duplicated records on REACTION and DISCONT datasets.
2 Merge these two data sets.

proc sort data=reactions ; by patient reac_type response day; run;
proc sort data=discont ; by patient discontinued; run;

data all;
 merge reactions discont;
 by patient;
run;

Note that if we are not aware about duplicate records we can get this in the log:

NOTE: MERGE statement has more than one data set with repeats of BY values.

And we also get the new value on ALL records (instead of just one as we need for the listing).

 4

2. Using a format you only need to do this (please see the complete macro code at the end of the paper on appendix A):

1 Create a format for DISCONT.
2 Use a simple data set statement to put the formatted values on the corresponding row.

%doafmt (fmtname=discon, dsn=discont, start=patient, label=discon, type=N,
perm=N, end=, other=, print=N);

It will create a format like this:

And then just create the new variable with the value we want (in the place we want):

data all;
 set reactions;
 if first.patient then discont=put(patient,discon.);
run;

And then we’ll have our data set ready to be printed:

 5

CONCLUSION

This is the text for the paper’s conclusion.

When you are pulling a small amount of data, or even just one value, from multiple datasets, creating formats and using them
in a simple DATA step statement can be easier than sorting them (taking care of duplicates), sometimes renaming the
variables (when they have identical names on the different data sets) and merging them (which involves checking that all the
BY variables are correct). And talking about time-consuming- it’s much more efficient to use a single DATA step with a PUT
function than a data set MERGE , especially if we’re dealing with thousands of records.

ACKNOWLEDGMENTS

Thank you to Nancy Brucken for her feedback when building this paper. I really appreciate it!

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Ruth Marisol Rivera
Enterprise: i3 Statprobe
Address: Insurgentes Sur #416 4th floor, Col Del Valle
City, State ZIP: 03100, Mexico, DF
Work Phone: ´52(55) 5005 5525
E-mail: Marisol.rivera@i3statprobe.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

 6

APPENDIX A

Code for the macro %doafmt.

/* --
MACRO NAME: %doafmt
DESCRIPTION: This macro creates a format from a SAS data set or view.
USAGE: %doafmt(NAME, DSN, START=, LABEL=, TYPE=, PERM=, END=, OTHER=, PRINT=);
PARMS: - Required -
NAME - Name of format. ("$" not needed see "TYPE" below).
(i.e.: MYFMT equates to $MYFMT for character formats or MYFMT for numeric formats.)
DSN - Name of SAS data set or view used to create format.
Single level name assumes "work."
(i.e.: "sasuser.myfmt" pulls from libref "SASUSER" while "myfmt" pulls from "WORK."
)
START - Name of the variable used for the start of the range values or single value. (
Left-of-equal-sign value)
(i.e.: START=MODEL where MODEL is a variable on DSN)
LABEL - Name of the variable used for the formatted-value (label)
or a quoted value. (right-of-equal-sign value)
(i.e.: LABEL=DESC where DESC is a variable on DSN or LABEL="YES" see selection example
below)
 - Optional _
TYPE - Type of format. N = Numeric Format
 P = Picture Format
 I = Numeric Informat
 C = Character Format (Default)
 J = Character Informat
When type is "C" or "J" the resulting format is prefixed with a dollar sign ($).
PERM - Flag to create a permanent or temporary format.
 N = temporary format created. (Default)
 Y = permanent format created must have libref "LIBRARY" allocated via libname statement.
END - Name of the variable used for the end of the range values. (left-of-equal-sign
value)
OTHER - A quoted value for the OTHER option of formats.
PRINT - Flag to print formats as they are created.
 N = Do not print format. (Default)
 Y = Print the format.
 EXAMPLES: %doafmt(myfmt, sasuser.myfmt, start=model, label=desc); Generates a
character format called "$myfmt" from dsn "sasuser.myfmt" using the variable "model" for
range values and the variable "desc" for label values.
 %doafmt(myfmt, sasuser.myfmt, start=model, label="YES");
Generates a character format called "$myfmt" from dsn "sasuser.myfmt" using the variable
"model" for range values and assigns "YES" as label values constants.

 --- */

 7

%macro doafmt
 (fmtname, dsn, start=, label=,
 type=C, perm=N, end=, other=, print=N);

 %let type = %upcase(&type);
 %let perm = %upcase(&perm);
 %let print = %upcase(&print);
 %let other = %quote(&other);
 %if %substr(&fmtname, 1,1) eq %str($) %then %do;
 %let type = C;
 %let fmtname = %substr(&fmtname, 2);
 %end;

 DATA WORK._FMT_; /* create a dsn used on cntlin= of PROC FORMAT */
 LENGTH START LABEL $200;
 RETAIN FMTNAME "&fmtname" TYPE "&type";
 KEEP FMTNAME TYPE START LABEL
 %if &other ne %str() %then %str(HLO);
 %if &end ne %str() %then %str(END);
 %str(;);
 SET &dsn END=EOF;
 START = &start;
 %if &end ne %str() %then %str(END=&end;);
 LABEL = &label;

 OUTPUT;
 %if &other ne %str() %then %do;
 IF EOF THEN DO;
 START = 'OTHER';
 LABEL = "&other";
 HLO='O';
 OUTPUT;
 END;
 %end;
 RUN;

 PROC SORT DATA=WORK._FMT_ NODUPKEY; /* remove dups on the start value */
 by START;
 RUN;

 PROC FORMAT CNTLIN=WORK._FMT_
 %if &perm eq %str(Y) %then %str(LIBRARY=LIBRARY);
 %if &print eq %str(Y) %then %str(FMTLIB);
 %str(;);
 RUN;
 %mend doafmt;

