
1

PharmaSUG2011 - Paper CC18

SYMply PUT: GET the most out of SYMPUTX and SYMGETN

Robert Howard, Veridical Solutions, San Diego, CA

ABSTRACT
SYMPUTX and SYMGETN are simple, yet extremely powerful and useful functions. The CALL SYMPUTX routine
allows you to quickly and easily store dataset values into macro variables, while the SYMGETN function retrieves
these values. Using these functions saves time and reduces the chance of data calculation errors in even the most
complex programs. By working through a practical example, you will see the utility and flexibility of these
indispensable functions.

INTRODUCTION
Though easily implemented, CALL SYMPUTX and SYMGETN are relatively unknown or under-used by many
beginning-to-intermediate-level SAS® software programmers. These versatile tools can simplify program structures,
reduce errors and allow for increased efficiency and economy in SAS coding. In this paper, we will explore the CALL
SYMPUTX routine and the SYMGETN function as they are used in SAS Version 9. We will begin with simple
examples that will introduce the syntax of each function. Later we will work through a more sophisticated program to
illustrate the utility and efficiency of these powerful tools.

CALL SYMPUTX ROUTINE
The CALL SYMPUTX routine is a quick and simple way to store or assign values into macro variables. Once stored,
these values can be accessed globally throughout a program and can be displayed in generated reports. The CALL
SYMPUTX routine is used in a DATA STEP with the following syntax:

 call symputx(macro-variable,value);

The macro-variable argument can be:
a) A character string in quotation marks
b) A character variable name

Values of the macro-variable argument must follow existing naming rules for macro variables.

The value argument can be:

a) A character or numeric value
b) A character or numeric variable name

Note: When using the CALL SYMPUTX routine, all leading and trailing spaces are truncated from both the macro-
variable and the value. The CALL SYMPUTX routine can be used repeatedly, at any point in the DATA step.

EXAMPLE 1: CALL SYMPUTX
In this example we will create a macro variable named &thisyear which will store the numeric value of 2011 and the
macro variable named &trt0 which will store the character value of “Placebo”.

data _null_;
 call symputx('thisyear',2011);
 call symputx('trt0','Placebo');
run;

A %PUT statement will show the value of &thisyear and &trt0.
%put &thisyear &trt0;

The log result displays: 2011 Placebo

2

EXAMPLE 2: CALL SYMPUTX
Now let’s examine a more sophisticated usage of the CALL SYMPUTX routine. We will use a character variable as
the macro-variable argument. Consider the following dataset named DSET1:

 DSET1

NAME is a character variable and the variable AGE is numeric.

Using the CALL SYMPUTX routine, we can use the variable NAME as the argument for
the macro-variable. The actual values of NAME will become the macro variable name.
If we use AGE as the argument for the value, then the values of AGE will be stored in
corresponding values of NAME. Looking at this closer:

 data _null_;
 set dset1;
 call symputx(name,age);
 run;

We now have the macro variables for each value of NAME: &chaz, &mac, &ellie, &savannah, &jillian, &alex,
&ayden, &quinn and &evan which contain the corresponding values of AGE.
A %PUT statement will return the value:

 %put &chaz &mac &ellie &savannah &jillian &alex &ayden &quinn &evan;

The log result displays: 16 15 10 7 7 6 6 4 1

SYMGET AND SYMGETN FUNCTIONS
The SYMGET and SYMGETN functions easily retrieve the values of previously stored macro variables and assigns
these values in new programmer-defined variables. The choice of SYMGET or SYMGETN is dictated by the data
type of the original macro variable value; SYMGET is used to store character values, while numeric values require
SYMGETN.

With SYMGET, the programmer-defined variable will be a character string; retrieving a character value from the
given macro-variable:

 <variable> = symget('macro-variable');

With SYMGETN, the programmer-defined variable will be numeric; retrieving a numeric value from the given macro-
variable:

 <variable> = symgetn('macro-variable');

As with the CALL SYMPUT routine, the macro-variable for both SYMGET and SYMGETN can either be:
a) The name of a macro variable with no ampersand (within the single quotation marks)
b) The name of a variable with values that have been assigned as macro variables. (Note that, with this usage,

the macro-variable will not be surrounded with single quotes.)

EXAMPLE 3: SYMGETN
First, let’s recall our example of the CALL SYMPUT routine where we assigned the macro variable &thisyear with
the numeric value 2011. We now want to create a new variable called YEAR that will be assigned the value of
&thisyear. Executing the following code will produce the dataset, DSET2, as displayed below:

 DSET2
 data dset2;

YEAR is a numeric variable with value 2011. year=symgetn('thisyear');
 run;

3

EXAMPLE 4: SYMGETN
Now let’s look at another example – one that uses a variable and its corresponding values. Previously, in Example
2, the CALL SYMPUTX routine was used to create macro variables using the following values for the variable
NAME: &chaz, &mac, &ellie, &savannah, &jillian, &alex, &ayden, &quinn and &evan. The corresponding numeric
AGE value has been stored in each of the macro variables. Now, consider the following dataset, labeled DSET3:

 DSET3 DSET4

We can use the SYMGETN function to create a numeric
variable AGE.

 data dset4;
 set dset3;
 age=symgetn(name);
 run;

The result is a new dataset, DSET4 (displayed to the right), with
the newly created numeric variable, AGE, which contains the
corresponding values associated with each instance of NAME.

Clearly, this is a simple exercise to illustrate the basic usage of this function. We can now look at a more
practical example.

PUT IT ALL TOGETHER: A PRACTICAL EXAMPLE COMBINING CALL SYMPUT AND SYMGETN
Consider the following dataset, DSET5, with 11 observations:

 DSET5
TREAT is a character variable with values of either “A” or “B”.
GENDER is also character variable with values of either “Male” or
“Female”. USUBJID is a numeric unique subject identifier variable.

Suppose we want to calculate the number and percentage of subjects
by gender for each treatment group. First we count the number of
subjects in each treatment group; this is accomplished through use
of the PROC FREQ function. This result will serve as our
denominator:

 proc freq data=dset5 noprint;
 tables treat / out=trtfreq;
 run;

The dataset TRTFREQ is created: TRTFREQ
There are 12 subjects assigned to
Treatment Group A and 3 subjects
assigned to Treatment Group B.

Using the CALL SYMPUT routine, we assign macro variables for the value of TREAT.

 data _null_;
 set trtfreq;
 call symputx(treat,count);
 run;

We now have the macro variable &A, which contains the value of 8, and the macro variable &B, which contains the
value 3. Both &A and &B are numeric because COUNT is numeric. We now have our denominators for both
treatment groups stored in macro variables.

4

To obtain the number of “Male” and “Female” subjects by Treatment Group, we will again use PROC FREQ.
The resulting dataset FREQ0 is shown on the left:
 FREQ0

 proc freq data=dset5 noprint;
 tables treat*gender / out=freq0;
 run;

To calculate the percentages of male and female subjects in each treatment group, we divide COUNT by the
number of subjects in each treatment group. We use the SYMGETN function to retrieve the total number of subjects
(the denominator) in each Treatment Group in a new DATA step:

 <new variable>=symgetn(treat);

Alternatively, we can use the SYMGETN function within the calculation to obtain the percentages:

 data final;
 set freq0;
 percent=put(count/symgetn(treat),percent7.1);
 run;

The dataset FINAL is created with the new variable PERCENT. The SYMGETN function was used to retrieve the
denominator for the corresponding value of TREAT to calculate the percentages:

 FINAL

CONCLUSION
The CALL SYMPUTX routine and the SYMGETN and SYMGET functions are simple, yet powerful tools, readily
available within SAS Version 9. When used in concert, CALL SYMPUTX and SYMGETN prove to be an easy,
efficient, and effective method to store and retrieve macro variables, saving the programmer time, simplifying code,
and reducing data calculation errors. With these benefits, the use of the CALL SMPUTX routine and the SYMGETN
and SYMGET functions are sure to become of standard component of your programming practices.

CONTACT INFORMATION
Thank you for your time and interest. If you have any comments or questions please feel free to contact me:

Rob Howard
Veridical Solutions
P.O. Box 656
Del Mar, CA 92014
858.205.8284
E-mail: rob.howard@veridicalsolutions.com
Web: www.veridicalsolutions.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

mailto:rob.howard@veridicalsolutions.com�
http://www.veridicalsolutions.com/�

