
1

PharmaSUG 2014 - Paper AD09

Macro Programming via Parameter Look-Up Tables

Joseph Hinson, Accenture Life Sciences, Berwyn, PA, USA

ABSTRACT

SAS® Macros provide a unique means of creating one-size-fits-all programs and many large institutions rely on
secure non-editable macros for generating standardized clinical reports. In such situations, programmers are shielded
from the standard macros and are instead simply made to manipulate an external source of parameters in order to
produce customized reports. This approach can further be extended by organizing report macros into domain-neutral
classes based only on the structural layout of the reports, and another set based on analysis types, such that a call to
a parameter look-up table would provide the appropriate combination of structural and analysis class macros
pertinent to a particular report. With such an approach, just a dozen macro classes can rely on a large set of
parameters in a look-up table to generate hundreds of different customized report across domains and therapeutic
areas. The present paper aims to offer the concepts behind such an approach with the hope that application
developers and programmers can gain from them innovative ideas for efficient macro programming for the generation
of clinical reports.

INTRODUCTION

Often in very large organizations, SAS® programmers are made to rely on standard macros, especially for reports, in
order to attain consistency and production speed. In such situations, the standard macros, to some extent, rely on
parameters from spreadsheets maintained by users. In spite of such systems, organizations still find themselves
dealing with several hundreds of standard macros.

This idea of maintaining a core set of standard, non-editable macros, and having the parameters supplied via an
external document accessible to programmers can further be extended by changing the entire programming
paradigm: considering reports as possessing dual entities, layout and analysis. Many report tables and listings share
common structural features regardless of the domain or statistical analysis that was performed. Thus by making
parameters indicate which combination of layout and analysis is needed, only a handful of macros would be required
to produce hundreds of reports. A parameter look-up table can therefore be the workhorse in disguise, providing
analysis and layout data to global macros that transform them into report-specific programs. This is the main concept
behind this paper.

The paper is organized into three sections:

1. The use of a Parameter Library to configure global macros

2. The classification of reports according to structural layouts and analysis types

3. The coordination of the entire process with the %Pilot macro

I. THE PARAMETER LIBRARY

Macros typically depend on parameters for functioning. When just a handful of parameters are required, it is quite
convenient to simply list parameters as arguments in the macro definition statement. Others choose to create macro
variables with the %LET command at the top of the macro body. However, there are often situations where macro
parameters can run into hundreds. Parameters that define a custom report could include titles, row-labels, column
headers, footnotes, as well as data sources, treatments, visit names, etc. For such situations, a parameter look-up
table, called in this paper “Parameter Library”, could be very convenient. This ordinarily would be an Excel
spreadsheet that acts as a look-up table and is accessible to all programmers. The rows in the spreadsheet are
organized into blocks of parameter data, with each block having its own ID (“BlockID”). Each block is assigned to a
particular report output and would contain all the information that would configure the standard macros for that unique
output.

A section of the Parameter Library (colored green in Table 1 below) is a reserved block with global parameters and
locked from editing, except by the macro standards team. This is the block that would hold the standard macro
names as well as various global data that are applicable to any report.

Macro Programming via Parameter Look-Up Tables, continued

2

Table 1. The Parameter Library as a look-up table

Each row of the library would have a “ParameterName” and a “ParameterValue” column. The parameter value is the
data retrieved by a macro (through a helper macro called “%GetParamValue”) from the library, using the BlockID and
the parameter name.

INFORMATION RETRIEVAL FROM THE PARAMETER LIBRARY

Hash objects are great as look-up tables and are used for retrieving specific parameters from the Parameter Library.
First, the entire Parameter Library Excel sheet (Table 1) is read into SAS®, becoming the dataset “paramlibrary” ,
which is then loaded into a hash object. The hash method object.find() then presents BlockID and ParameterName
as keys, which then triggers the ParameterValue associated with the ParameterName to be returned. The entire
code is wrapped in the helper macro %GetParamValue, as shown below:

%macro GetParamValue(blockid, pname);

data _null_;

 length blockid $11 parametername $27 parametervalue $58;

 if(1=2)then set paramlibrary;

 call missing(of _all_);

 declare hash pl(dataset:"paramlibrary");

 pl.defineKey("BlockID","ParameterName");

 pl.defineData("ParameterValue");

 pl.defineDone();

 rcc=pl.check(key:&blockid., key:&pname.);

 if rcc eq 0 then do;

 rcf=pl.find(key:&blockid.,key:&pname.);put ParameterValue=;

 end;

run;

%mend GetParamValue;

Macro Programming via Parameter Look-Up Tables, continued

3

CALLING THE MACRO TO OBTAIN PARAMETER VALUES:

%GetParamValue("&blockid.","Title1");

%GetParamValue("&blockid.","DatasetName");

%GetParamValue("&blockid.","ByVariables");

%GetParamValue("&blockid.","WhereClause");

%GetParamValue("&blockid.","ReportType");

%GetParamValue("&blockid.","Domain");

%GetParamValue("&blockid.","Protocol");

%GetParamValue("&blockid.","Footnote1");

%GetParamValue("&blockid.","Footnote2");

%GetParamValue("&blockid.","ProgrammerName");

LOG SHOWING IMPORTATION OF THE PARAMETER LIBRARY EXCEL SHEET INTO SAS®:

193 proc import file="C:\Documents and Settings\jhinson\Desktop\ParameterLibrary.xls"

193! out=paramlibrary dbms=xls replace;

194 run;

NOTE: The import data set has 41 observations and 6 variables.

NOTE: WORK.PARAMLIBRARY data set was successfully created.

RETRIEVED PARAMETER VALUES (IN BLUE) DISPLAYED IN THE LOG:

308 %GetParamValue("&blockid.","Title1");

parametervalue=A Multi Center Double-Blind Randomized Cross Over Trial

309 %GetParamValue("&blockid.","DatasetName");

parametervalue=ADVS

310 %GetParamValue("&blockid.","ByVariables");

parametervalue=usubjid, treatment, visit

311 %GetParamValue("&blockid.","WhereClause");

parametervalue=where (TRTEMFL="Y")

312 %GetParamValue("&blockid.","ReportType");

parametervalue=Summary

313 %GetParamValue("&blockid.","Domain");

parametervalue=VS

314 %GetParamValue("&blockid.","Protocol");

parametervalue=CRC123

315 %GetParamValue("&blockid.","Footnote1");

parametervalue=N=total number of treated subjects

316 %GetParamValue("&blockid.","ProgrammerName");

parametervalue=John Doe

II. CLASSIFICATION OF REPORTS ACCORDING TO LAYOUTS AND ANALYSES

Even though large organizations streamline their coding needs by reliance on standard macros, often the number of
such macros easily runs into several hundred. This is mainly because reports are seen as unique entities, often with
the user only supplying titles and footnotes. A novel concept being promoted in this paper is that reports have dual
characteristics: analysis type AND layout type.
Let’s consider the three tables below:

(1) VS: Trt-A Trt-B (2) AE: Trt-C Trt-D (3) LB: Grade 0 Grade 1 Grade 2

RESP.RATE CARDIAC xx xx HEMATOLOGY

 N xxx xxx Palpitations x x Hemoglobin xx xx xx

 Mean xx xx Tachycardia x x WBC xx xx xx

 SD x.x x.x CHF x x RBC xx xx xx

 Median xx xx Arrhythmia x x Hematocrit xx xx xx

 Min xx xx Angina x x Neutrophil xx xx xx

 Max xx xx Atrial Fib. x x Platelet xxx xxx xxx

Macro Programming via Parameter Look-Up Tables, continued

4

One can see that they all have a similar pattern of row labels: “One-Parent Several-Children Rows” or “pcRows”.
So programmatically they all belong to the same layout class, regardless of the number and type of columns. By
classifying reports according to structural layouts, only a few layout macros would need to be created.

Analysis types:

Most clinical reports involve just a handful of analysis types, mostly: descriptive-statistics, inferential-statistics,
categorical-frequency, shift-tables, survival-analysis, etc. The Parameter Library can therefore make available a few
analysis macros classes. So for a specific report, a block would contain the proper combination of the analysis macro
class and the layout macro class particular for that report as illustrated by the two tables below for Adverse Events
and Vital Signs. From the Parameter Library the two tables retrieve the same class of layout macro: “%pcRows”, but
different classes of analysis macros: “%Counts” for Adverse Events and “%DescStats” for Vital Signs. The actual row
labels and column headers would be data-driven and not dependent on the macros. However, a programmer can
choose to include those in the Parameter Library as well, retrievable by a helper macro.

Figure 1. AE Summary Table with Layout Macro Class “pcRows” and Analysis Macro Class “%Counts”.

Macro Programming via Parameter Look-Up Tables, continued

5

Figure 2. VS Summary Table with Layout Macro Class “pcRows” and Analysis Macro Class “%DescStats”.

The problem of varying number of columns:

A robust report program should be able to accommodate a varying number of columns to be useful, and yet output
procedures like Proc Report, by the nature of their syntax, require a fixed number of items in the COLUMN statement
and a corresponding fixed number of DEFINE statements. The macro facility allows this problem to be easily solved
as shown below:

First, items for the column statement are retrieved from the Parameter Library:

%GetParamValue("&blockid.","ColumnHeaders");

which would yield, for BlockID T3007, &columnheaders as: TRT-A, TRT-B, TRT-C, TOTAL.

Using the countw function, the number of items can be computed, enabling a macro do loop and the %scan function
to iterate to supply the items for the column statement, as well as the items for the define statement, as shown below:

%macro ReportGenerator();

%GetParamValue(“&blockid.”,”ColumnHeaders”);

%let itemcount=%sysfunc(countw("&columnheaders", ","));

%do n=1 %to &itemcount;

%let item&n=%scan(%bquote(&columnheaders.),&n.,",");

%end;

proc report data=RRD nowd;

column %do n=1 %to &itemcount;&&item&n %end;;

%do n=1 %to &itemcount;define &&item&n / width=10;%end;

run;

%mend ReportGenerator;

%ReportGenerator;

Macro Programming via Parameter Look-Up Tables, continued

6

III. COORDINATING THE ENTIRE PROCESS

Even with the aid of an external look-up table like the Parameter Library, the process of generating clinical reports
can be quite intricate. Several helper macros might need to be involved to manage not only access to various
sources of input data and to perform “housekeeping” functions, but also to synchronize the various macro calls. A
coordinator macro, called “%Pilot” is proposed in this paper for such roles.

The central concept presented in this paper is that, macros involved in the clinical report generation are global in
scope, but become study-specific as they receive parameters from the Parameter Library. The process, coordinated
by %Pilot, is illustrated in the schematic (Figure 3) shown below:

Figure 3. A high-level schematic of the concept of driving four stages of report creation with a parameter
look-up table, coordinated by %Pilot

1. %Pilot accepts a BlockID (eg. "T1234") as parameter which then becomes available to the auxiliary global
macros.

2. The auxiliary macros use the BlockIDs to retrieve study-specific parameters from the Parameter Library.

3. %Pilot also triggers "housekeeping" functions such as initialization, which configures the programming
environment, establishing libnames, macro paths, SAS® options, SDTM and ADaM data paths, format
catalogs, etc.

4. Input processing auxiliary macros bring in ADaM dataset files (ADxx) converting them to work datasets,
and selecting appropriate records by subsetting according to study and analysis-specific parameters
supplied by the Parameter Library via the BlockID.

5. Specific classes of analysis macros are also invoked from the Parameter Library by macros based on the
BlockID.

6. The report-generating macro also retrieves report-specific parameters from the Parameter Library to
create a specific table, listing, or figure. Figure is an example of a display or screen capture.

Macro Programming via Parameter Look-Up Tables, continued

7

The schematic below (Figure 4) illustrates the process of information retrieval with the blockID.

Figure 4. BlockID-based Retrieval of Information by Macros

All the auxiliary macros of %Pilot use %GetParamValues to obtain their specific parameter values the BlockID (“bid”)
and the ParamerName (“pname”) are passed to a hash table as earlier described. %GetParamValues creates global
macro variables using Call Symputx:

%macro GetParamValue(bid, pname);

 data _null_;

 length blockid $11 parametername $27 parametervalue $58;

 if(1=2)then set paramlibrary;

 call missing(of _all_);

 declare hash pl(dataset:"paramlibrary");

 pl.defineKey("BlockID","ParameterName");

 pl.defineData("BlockID", "ParameterName", "ParameterValue");

 pl.defineDone();

 rcc=pl.check(key:&bid., key:&pname.);

 if rcc eq 0 then do;

 rcf=pl.find(key:&bid.,key:&pname.);put ParameterName= ParameterValue=;

 end;

 call symputx(ParameterName,ParameterValue,'g');

 run;

 %mend GetParamValue;

Macro Programming via Parameter Look-Up Tables, continued

8

The calling auxiliary macros then directly use the parameter macro variables for processing. For example,

(a) the %Analyzer macro would request values for dataset name, domain, and report type as follows:

%macro analyzer();

 %GetParamValue("&blockid.","DatasetName");

 %GetParamValue("&blockid.","ReportType");

 %GetParamValue("&blockid.","Domain");

(b) then the macro variables are used within the macro to select the appropriate analysis procedure

%if ((&domain. in DM VS LB EG CM PE PM) AND (&reporttype. in Summary)) %then

 %do;

 proc means data=&datasetname.;

 class param;

 var basex;

 output out=dstax;

 run;

 %end;

%mend analyzer;

Thus, data from the Parameter Library are able to cause the selection of a particular analysis type by an analysis
macro.

THE HIERARCHY OF MACRO CALLS

Figure 5. Key Macro Calls Involved in Parameter Library-mediated Report Processing

Macro Programming via Parameter Look-Up Tables, continued

9

CONCLUSION

The present paper has proposed a novel approach for handling macro-based clinical report creation. The approach
involves the reliance on an external look-up table containing a variety of macro parameters, which are retrieved by a
few global macros. The proposed approach has also considered the classification of clinical reports based on
structural layouts as well as analysis types. The author believes by having available to macros an external table with
a large body of parameters, just a few global macros are requires to generate a large collection of diverse report
types. Maintenance, updates, and troubleshooting also become more manageable since parameters are separated
from the body of the macro program.

A few of the concepts discussed are already in use in some large organizations. However the concepts are by no
means restricted to such organizations, where they deal with just one “client”, which is themselves. Contract
Research Organizations (CROs), which tend to deal with a variety of clients, each with its own unique requirements
for clinical reports, could also implement the ideas presented in this paper. It is quite conceivable that a CRO could
create a separate Parameter Library for each client, and if the global macros are well designed for flexibility, could
even utilize the same set of global macros for all clients.

Future considerations for enhancement of the approaches presented include using machine learning and other
artificial intelligence techniques for analyzing and classifying report layouts, for the sake of robust global macro
design.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Joseph W. Hinson, PhD
Accenture Life Sciences
1160 W. Swedesford Rd
Berwyn, PA 19312
1-610-407-7580
joehinson@outlook.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:joehinson@outlook.com

