
1

PharmaSUG 2014 - Paper TT12

Let the CAT Out of the Bag: String Concatenation in SAS 9
Joshua Horstman, Nested Loop Consulting, Indianapolis, IN

ABSTRACT
Are you still using TRIM, LEFT, and vertical bar operators to concatenate strings? It's time to modernize and
streamline that clumsy code by using the string concatenation functions introduced in SAS 9. This paper is an
overview of the CAT, CATS, CATT, and CATX functions introduced in SAS 9.0, and the new CATQ function added in
version 9.2. In addition to making your code more compact and readable, this family of functions also offers some
new tricks for accomplishing previously cumbersome tasks.

INTRODUCTION: STRING CONCATENATION BEFORE SAS 9
String concatenation refers to the joining of two or more character strings into a single, longer string. This is a
common task performed frequently by most programmers. As such, it’s important for the programmer to have the
best tools at his or her disposal for accomplishing this task.

Prior to the release of version 9 of the SAS software in 2002, string concatenation was typically performed using the
double vertical bar operator (||). This operator is frequently used in conjunction with the TRIM and LEFT functions in
order to remove any leading or trailing blank characters. The LEFT function left-aligns a string by moving leading
blanks to the end. The TRIM function then removes all trailing blanks. Thus, it is common to see SAS code of the
following form:

 newvar = trim(left(var1))||trim(left(var2))||trim(left(var3));

While there is nothing wrong with this code, it can become unwieldy to read and edit. Fortunately, SAS 9 provides
new options for accomplishing this rather mundane task. In this paper, we will review some of the new functions
available in SAS 9 that facilitate string concatenation. We will see that these new methods are often more convenient
and produce more compact code that is easier to understand and maintain. We will also discuss examples where the
clever use of these techniques can simplify code that was previously cumbersome.

NEW FUNCTIONS IN SAS 9
THE STRIP FUNCTION
One new function introduced in SAS 9 is the STRIP function. The STRIP function removes both leading and trailing
blanks from a string, thus combining the functionality of TRIM and LEFT. This allows us to simplify the code above to
the following:

 newvar = strip(var1)||strip(var2)||strip(var3);

The STRIP function gives us an incremental improvement over using TRIM and LEFT. Technically, STRIP(var)
returns the same result as TRIMN(LEFT(var)). This is slightly different from TRIM(LEFT(var)) if var is a blank
string because the TRIM function will return a single blank. In contrast, the STRIP function, like the TRIMN function,
will return a zero-length string.

THE CAT FAMILY OF FUNCTIONS
A more significant addition to SAS 9 is the CAT family of functions. These functions include CAT, CATS, CATX, and
CATT, all available in version 9.0, along with CATQ, which came along in SAS 9.2. We’ll look briefly at each one
first and then discuss the advantages and limitations of using these functions.

2

CAT: The CAT function is the most basic string concatenation function. It takes any number of character strings as
arguments and simply joins them all end-to-end. The result is the same as that obtained using the double
vertical bar operator: CAT(var1, var2, var3) is equivalent to var1||var2||var3.

CATT: The CATT function is similar to the CAT function, but it removes any trailing blanks from each string before
joining them together. This is equivalent to calling the TRIM function on each argument prior to concatenation,
so it may be helpful to think of the final T in CATT as an abbreviation for TRIM. Thus, CATT(var1, var2,
var3) is equivalent to TRIM(var1)||TRIM(var2)||TRIM(var3).

CATS: The CATS function is another variation on CAT in which both leading and trailing blanks are removed before
the arguments are concatenated. The result is the same that would be obtained by invoking the STRIP
function on each argument before joining them, so one can think of the final S in CATS as standing for STRIP.
As discussed above, the STRIP function is equivalent to calling TRIMN and LEFT. The corresponding syntax
for CATS(var1, var2, var3) prior to SAS 9 would be
TRIMN(LEFT(var1))||TRIMN(LEFT(var2))||TRIMN(LEFT(var3)).

CATX: The CATX function goes one step further than CATS. In addition to removing leading and trailing blanks,
CATX will also insert a specified delimiter before concatenating the other arguments. The delimiter is the first
argument to CATX. One might consider the X in CATX as indicating that the function inserts something
“eXtra”.

In general, one can consider CATX(' ',var1, var2, var3) as being equivalent to
TRIMN(LEFT(var1))||' ' ||TRIMN(LEFT(var2))||' '||TRIMN(LEFT(var3)). However, this is
not completely true because CATX is a bit more sophisticated. While the traditional syntax will produce
consecutive duplicate delimiters when dealing with blank strings, CATX will automatically eliminate the
redundant delimiters.

CATQ: The CATQ function is a veritable Swiss army knife of string concatenation functions. Its default functionality
is similar to that of CATX, but the CATQ function adds quotation marks to any string that contains the
specified delimiter. The Q in CATQ might be thought of as referring to quotation marks.

However, the CATQ offers numerous options to modify its behavior, including the ability to remove leading
and/or trailing blanks before concatenation. A full discussion of the various features of CATQ is beyond the
scope of this paper. Refer to the SAS documentation for more details.

ADVANTAGES OF USING CAT FUNCTIONS
The CAT functions offer several advantages over the traditional syntax commonly used prior to version 9. As can be
seen above in the descriptions of each function, the syntax is typically more compact and easier to read. This can be
a great help to someone unfamiliar with the code who needs to understand what it does and possibly make changes.

In addition, the CAT functions offer several additional conveniences to the programmer. First, all of the CAT
functions support the OF syntax. This shorthand notation allows the programmer to refer to an entire group of
sequentially numbered variables without listing each one. For example, instead of writing X1||X2||X3||X4||X5 or
even CAT(X1,X2,X3,X4,X5), the programmer can simply write CAT(OF X1-X5).

Secondly, the CAT functions eliminate the need to write complex logic to prevent duplicate delimiters that come about
because of blank strings. As mentioned above, the CATX and CATQ functions handle this automatically.

Finally, numeric values which are passed as arguments to any of the CAT functions are automatically converted to
strings without any additional notes to the log. This conversion is equivalent to using the PUT function with a
BEST12 format. While the traditional concatenation operators will also perform this automatic conversion, they will
generate a “NOTE: Numeric values have been converted to character values …” in the log unless explicitly converted
(e.g. using the PUT function). This can be important when a clean SAS log is necessary.

NOTE ABOUT VARIABLE LENGTHS
Another important way in which the CAT functions differ from the traditional syntax has to do with the handling of
variable lengths. When a concatenation operator is used, the variable returned has a length equal to the sum of the

3

lengths of the values being concatenated, unless otherwise specified. In contrast, the CAT functions always return a
variable with a length of 200 unless the variable was previously assigned another length. In certain circumstances,
this can cause the results to differ between the two methods. In either case, it’s important to check the attributes of
variables being created to ensure that data is not being truncated due to insufficient length.

USING THE NEW FUNCTIONS TO SIMPLIFY YOUR CODE
We will now discuss two examples in which clever use is made of the CAT family of functions to simplify the code.
The first example is adapted from one given in a 2012 paper by Marje Fecht, and the second is based on ideas from
a 2009 paper by Mike Zdeb (see references below).

EXAMPLE #1: THE SETUP
Consider the clinical laboratory results data below. For brevity, only one subject and three lab tests are included.

For this example, we aren’t interested in the actual lab result, but only in a series of flag variables, each of which
holds a 0 or 1 value:

HIGHFLAG – Value of 1 indicates the lab result is high (i.e. above the normal range)
LOWFLAG – Value of 1 indicates the lab result is low (i.e. below the normal range)
BLFLAG – Value of 1 indicates the lab result represents a baseline value (i.e. prior to treatment)
CSFLAG – Value of 1 indicates the lab result is clinically significant
WPBFLAG – Value of 1 indicates the lab result is the worst post-baseline value.

The goal of this exercise is to create a new variable, FLAGLIST, which lists the applicable flags for each record,
separated by commas, to be used in a report. In this list, the flags are to be coded as H, L, B, CS, and WPB,
respectively. That is, FLAGLIST should have a value of “H,B” for the first record, should be blank for the second
record, and should contain “L,CS,WPB” for the third record.

EXAMPLE #1: OLD SCHOOL SOLUTION
There are many ways to solve this problem. Below is one way a programmer might have commonly handled this task
prior to SAS 9. Notice the extensive logic pertaining to the placement of commas. This is necessary to ensure that
commas do not appear at the start or end of the list and that multiple commas do not appear between flag codes.

data lab2a;
 set lab;
 need_comma = 0;
 length flaglist $12;
 if highflag then do;
 flaglist = 'H';
 need_comma = 1;
 end;
 if lowflag then do;
 if need_comma then flaglist = trim(left(flaglist))||',';
 flaglist = trim(left(flaglist))||'L';
 need_comma = 1;
 end;
 if blflag then do;
 if need_comma then flaglist = trim(left(flaglist))||',';
 flaglist = trim(left(flaglist))||'B';
 need_comma = 1;
 end;
 if csflag then do;
 if need_comma then flaglist = trim(left(flaglist))||',';
 flaglist = trim(left(flaglist))||'CS';
 need_comma = 1;
 end;

LAB Dataset

SUBJECT LABTEST HIGHFLAG LOWFLAG BLFLAG CSFLAG WPBFLAG
1 Bilirubin 1 0 1 0 0
1 Calcium 0 0 0 0 0

1 Potassium 0 1 0 1 1

4

 if wpbflag then do;
 if need_comma then flaglist = trim(left(flaglist))||', ';
 flaglist = trim(left(flaglist))||'WPB';
 end;
run;

Below is a brief report generated using the dataset created above. The FLAGLIST variable was populated correctly.
proc print data=lab2a noobs;
 var subject labtest flaglist;
run;

 subject labtest flaglist
 1 Bilirubin H,B
 1 Calcium
 1 Potassium L,CS,WPB

EXAMPLE #1: MODERNIZED SOLUTION
Take a look at the alternative version below. This code produces the exact same results, but is dramatically shorter.
Not only have we reduced 28 statements to 4, but we’ve vastly simplified the logic and eliminated the need for an
extra variable.

This is accomplished through the use of the CATX and IFC functions. The IFC function, also new in SAS 9, is not a
string concatenation function, but it is often a handy method for conditionally determining the value of a character
variable. Note that the IFC function passes a blank string into CATX whenever one of the flag values is 0 and CATX
conveniently only adds commas between the non-blank strings corresponding to the flag values of 1.

data lab2b;
 set lab;
 flaglist = catx(',',
 ifc(highflag,'H' ,''),
 ifc(lowflag ,'L' ,''),
 ifc(blflag ,'B' ,''),
 ifc(csflag ,'CS' ,''),
 ifc(wpbflag ,'WPB','')
);
run;

The output below confirms that this method produces the same results as the traditional code above.
proc print data=lab2b noobs;
 var subject labtest flaglist;
run;

 subject labtest flaglist
 1 Bilirubin H,B
 1 Calcium
 1 Potassium L,CS,WPB

EXAMPLE #2: THE SETUP
Our second example deals with the responses to a series of a yes/no questions posed to potential subjects in a
clinical trial. Any affirmative response is considered a criterion to exclude the subject from participation in the trial.
We wish to produce a list of subjects who have responded positively to one or more questions. Based on the data
below, our list should include subjects 1 and 3.

5

EXAMPLE #2: OLD SCHOOL SOLUTION
Again, we’ll start with a traditional approach to this task. The code below creates an array of the five response
variables and then loops through the array for each record until a “Y” is found. The record is written to the output
dataset only if the loop terminates early, which means a “Y” response was encountered

data excluded_subjects;
 set exclusion_data;
 array e(5);
 do i=1 to 5 until (e(i) = 'Y');
 end;
 if i < 6;
 drop i;
run;

The output below includes only subjects 1 and 3 as expected.
proc print data=excluded_subjects noobs;
 var subject;
run;

 subject
 1
 3

EXAMPLE #2: MODERNIZED SOLUTION
The modernized code below uses the CAT function and the OF syntax in conjunction with the FIND function (also
new in SAS 9). In a single statement, all the responses for a given record are concatenated and the row is written to
the output dataset only if the combined string contains a “Y”.

data excluded_subjects2;
 set exclusion_data;
 if find(cat(of e:),'Y');
run;

Notice that this code would require no changes if additional responses were added later, so long as the existing
naming convention were followed. The traditional code above would have to be modified based on the number of
responses. (It would be possible to alter the traditional code to automatically detect the number of responses, but
doing so would make the code even more complex.)

Once again, we generate a simple report to confirm that the code has produced the desired result.
proc print data=excluded_subjects2 noobs;
 var subject;
run;

 subject
 1
 3

EXCLUSION_DATA Dataset

SUBJECT E1 E2 E3 E4 E5
1 N N N N Y
2 N N N N N
3 Y Y N Y Y

6

CONCLUSIONS
The CAT family of functions offers tremendous convenience to the SAS programmer. Used properly, these functions
can simplify and shorten code while making it easier to understand and modify. The CAT functions also offer some
new ways to solve old problems.

This is not to say that these functions are the right choice in all situations. The traditional double vertical bar operator
and legacy functions such as TRIM and LEFT continue to be a useful part of the SAS programmer’s collection of
tools. The savvy SAS programmer will be well-versed in the use of all of the above and will select the most
appropriate tool based on the task at hand.

REFERENCES
Fecht, Marje. Quick Hits - My Favorite SAS® Tricks. Proceedings of the SouthEast SAS Users Group, Durham, NC,

2012.

Hadden, Louise S. Purrfectly Fabulous Feline Functions. Proceedings of the SAS® Global Forum 2010 Conference.
Cary, NC: SAS Institute Inc., 2010.

SAS Institute Inc. SAS® 9.4 Functions and CALL Routines: Reference. Cary, NC: SAS Institute Inc., 2013.

Zdeb, Mike. Searching for Variable Values with CAT Functions: An Alternative to Arrays and Loops. Proceedings of
the NorthEast SAS Users Group, Burlington, VT, 2009.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Joshua Horstman
Enterprise: Nested Loop Consulting
Phone: 317-815-5899
E-mail: jmhorstman@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

	Introduction: STRING CONCATENATION BEFORE SAS 9
	the STRIP FUNCTION
	THE CAT Family of functions

	Advantages of using cat functions
	note about variable lengths
	example #1: THE SETUP
	example #1: old school solution
	example #1: MODERNIZED SOLUTION
	example #2: THE SETUP
	example #2: old school solution
	example #2: modernized solution

