ABSTRACT

Graphs are gaining ground in usage for presenting data in oncology clinical trials. As the options in ODS graphics and Graph Template Language (GTL) have grown over the last few years, so has the demand for details in graphs. Improvements in ODS and GTL have also provided an opportunity to create various types of graphs with ease. This paper discusses different kinds of graphs like KM plots, waterfall plots, swimmer plots, etc. which are used to present data on survival, adverse events, and response. The paper also showcases our attempts to use the standardized ODS template for all the plots along with Graph Template Language templates.

INTRODUCTION

Clinical trials generate a large and diverse amount of data. To analyze these complex data better a concise visual presentation is very much essential. High quality graphs help us analyze and understand the data from different clinical trial domains. The graphs have to be well designed and carefully created to represent analysis data. Statistical Graphics (SG) and Graph Template language (GTL) provide many possible combinations of statements to create graphs. GTL has also made the task of including derived statistics values in the graph easier.

The goal of this paper is to discuss visual presentation of data in oncology clinical trials. We will show some sample efficacy data graphs, safety data graphs, and suggest some useful options to help customize the graphs.

Commonly generated graphs for the clinical trials include Kaplan Meier plots, scatter plot, bar chart, and line plots. Examples of these are shown below.

Kaplan Meier Graph

Kaplan-Meier estimate is one of the best options to be used to measure the fraction of subjects living for a certain amount of time after treatment. In oncology clinical trials the effect of an intervention is often assessed by measuring the number of subjects survived or free of progression after that intervention over a period of time. The Kaplan Meier Graph below was generated using ODS template with GTL graph template. This plot shows the survival rate by time in weeks for two treatment groups. The summary statistics can be displayed within the graph.

Figure 1. Kaplan Meier Graph with two treatment groups.
We have tried to breakdown the code explaining every option used in the code.

- **GraphLabelFont** – Axis labels can be modified using this option.
- **GraphTitleFont** – This is used for titles within the graph.
- **GraphFootnoteFont** – This is used for footnotes within the graph.
- **Graphdata1** - Graphdata8 can be used with different marker symbols, line styles, and line color.

Since there are 2 treatment groups in Figure 1, we are using 4 separate graphdata statements to define the linestyles and marker symbol separately. This synchronizes with the plot statements used in the GTL graph template. The reason to use linestyle before marker symbols is because graph template has step plot as the first plot statement and scatter plot as the second plot statement.

GTL graph template for the Figure 1 is given below:

```plaintext
proc template;
define statgraph km_ar;
mvar c1r0 c2r0 c3r0 c4r0 c5r0
c1r01 c2r01 c3r01 c4r01 c5r01
c1r1 c2r1 c3r1 c4r1 c5r1
begingraph / designwidth=9in designheight=4.5in;
entrytitle 'Sample Graph';
entryfootnote 'Sample footnote';
layout lattice / rowweights=(0.85 0.05 0.1);
/* Defining the y-axis, x-axis and plot statement*/
layout overlay / yaxisopts=(label='Survival Rate' linearity=linear)
cycleattrs=true
xaxisopts=(label='Time (Weeks)' offsetmin=0.01 offsetmax=0.01
linearopts=(viewmin=0 tickvalue=(&xvals.)));
stepplot x=aval y=survival / group=&strat name='km' lineattrs=(thickness=2pt) ;
scatterplot x=aval y=survival / group=trt2pn name='cen' legendlabel="Censored Subjects";
/*Defining the Legends*/
discretelegend 'km' / location=inside halign=left pad=(right=190 bottom=30
valign=bottom across=1 border=false valueattrs=(size=8pt));
discretelegend 'cen' / location=inside halign=left valign=bottom
order=columnmajor border=false valueattrs=(size=8pt); 
/*Positioning the dynamic variables within the graph*/
layout gridded /valign=bottom halign=left border=false opaque=false columns=5
order=rowmajor ;
entry halign=center c1r0 / pad=(left=80) textattrs=(size=8pt color=black);
entry halign=center c2r0 / pad=(left=80) textattrs=(size=8pt color=black);
```
Options which are used in the above code are explained below:

- **mvar** – dynamic macro variables. C1ro-c5r2 is gridded within the graph. They are used for statistical interpretation.
- **Layout Lattice** – is used for a multi-cell grid of graphs.
- **Rowweights** – Represents the area for each lattice. In the above template we have 3 lattices. We are using 85\% for scatter plot and step plot, 5\% for 'N at Risk' and 10\% for the block plot.
- **Yaxisopts(linearopts)** – able to define the max and min value for Y axis
- **Yaxisopts(cycleattrs=true)** – this specifies whether the default visual attributes of lines, markers, symbols and area fills in nested plot statements automatically change from plot to plot. When it is true, all applicable plot statements are sequentially assigned the next unused GraphDataN style statement.
- **Xaxisopts(offsetmin=0.01)** – Specifies the amount of offset space between the first tick and the edge of the plot. The value represents as proportion of total length of the axis. 0.01 refers as 1\%
- **Xaxisopts(offsetmax=0.01)** – Specifies the amount of offset space between the last tick and the edge of the plot. The value represents as proportion of total length of the axis. 0.01 refers as 1\%
- **Xaxisopts(viewmin=0)** - Represents the minimum value in the X axis
- **Xaxisopts(Tickvalueslist=)** – Represents the tick values on X axis
- **Group** – treatment groups
- **Name** – This is the name of the discrete legend. In this case discretelegend 'km' is created for step plot; 'cen' is created for scatter plot. The name option in the plot statement and name of the respective discretelegend has to be same.
- **Discretelegend** – Creates a Legend. In this case, we are using 2 separate discretelegend statements because we have stepplot and scatterplot. In the first discretelegend statement the pad bottom value specified as 30. By allowing the padded space we can prevent legends overlapping.
- **Location** – allows positioning the legend inside or outside the graph.
- **halign** – allows to move the legend position horizontally to left or right.
- **Pad** – Specifies a dimension to use for the extra space at left/right/top/bottom of the legend perimeter.
• Valign – allows to the legend position veritcally to top or bottom.
• Valueattrs – allows controlling the font and size of the legend.
• Across=1 – specifies to place all entries in one column and start as many new rows as necessary.
• Layout gridded – Used to place the value of N, Events, Median and 95%CI inside the graph. Using the layout gridded sentence inside the layout overlay statement, allows the gridded values to be inside the graph layout.
• Blockplot – 2 separate blockplot statements to print the N at risk values 2 groups.
• Display= (values label) – This allows the values and labels to be displayed as block.
• Class – creates a separate block plot for each unique value of the specified column.
• Valuehalign – specifies the horizontal alignment of the value text within the blocks.

Waterfall plot

Waterfall plots are widely used in oncology trials. It is the traditional way of showing the tumor reduction. The following waterfall plot is used to represent the % of Tumor reduction from baseline. Each bar represents the % change in the tumor size from baseline. The bars belonging to the same dose group are represented by same color. The treatment status and objective response can be represented on the bars using special symbols.

In the above waterfall plot the bars in the graph are sorted by % change in tumor from baseline. To plot the graph in this format the dataset that is passed to the sgrender procedure is sorted by descending order of % change in tumor reduction from baseline.

```latex
data finalgrp;
  set finalgrp(drop=x);
  by descending chpcttr;
  x+1;
run;
```

The same waterfall graph can be represented by dose group. In the graph below the bars are first sorted by dose and then by % change in tumor from baseline. In order to get this sorting order on the graph the dataset that passes to the sgrender procedure is sorted by treatment and descending order of % change in tumor reduction from baseline.

```latex
data finalgrp;
  set finalgrp(drop=x);
  by trtnum descending chpcttr;
  x+1;
run;
```
Figure 2. Waterfall Plot

Following is the template code for the waterfall graph:

```sas
proc template;
  define statgraph wf;
  mvar _x _y _ysp1 _ysp2 _ysp3 _idx _grp;/*dynamic variables*/
  begingraph /designwidth=9.2in designheight=4.6in;
    entrytitle " ";
    /*Defining X-axis and Y-axis options*/
    layout overlay / yaxisopts=(type=linear linearopts=(viewmin=-100 viewmax=400 tickvalue=(list=-100 -50 0 50 100 150)))
      griddisplay=on label='Tumor Size (% Change from Baseline)'
      offsetmax=0.05 offsetmin=0.05
      xaxisopts=(label='Individual Patients' display=(label) )
      cycleattrs=true;
    barchart y=_y x=_x / display=(fill) barwidth=0.1 index=_grp group=_grp
      skin=modern datatransparency=0.05 name='trt';
    /*Drawing reference lines*/
    referenceline y=-50 / lineattrs=(pattern=1);
    referenceline y=0 / lineattrs=(pattern=2);
    referenceline y=50 / lineattrs=(pattern=1);
    %if &cryn. %then %do;
      scatterplot x=_x y=_ysp1 /markerattrs=graphdata7 name='cr';
    %end;
    %if &pryn. %then %do;
      scatterplot x=_x y=_ysp2 /markerattrs=graphdata8 name='pr';
    %end;
    %if &ongoing. %then %do;
      scatterplot x=_x y=_ysp3 /markerattrs=graphdata9 name='ongoing';
    %end;
  endlayout;
  endgraph;
end;
run;
```

Dose Group (mg/kg)

- Dose 1
- Dose 2
- Dose 3
- Dose 4
- Dose 5
- Dose 6
- CR
- PR
- On Treatment
Duration of treatment figure:

The following graph represents the duration of treatment for each subject, on-treatment and off-treatment status and response information. The length of each bar represents the number of weeks the subject was on treatment. Different symbols and line patterns are used to represent the treatment status and response information.

Figure 3. Duration of treatment figure

Following is the template code for Figure 3:

```sas
/* Defining legend options */
discretelegend 'trt' %if &cryn. %then %do; 'cr' %end; %if &pryn. %then %do; 'pr' %end; %if &ongoing. %then %do; 'ongoing' %end;/
title="Dose Group (mg/kg)" titleborder=true across=2 location=inside halign=right valign=top order=rowmajor border=false;
endlayout;
endgraph;
run;

%let xmax = 36;        ** Max value (in weeks) to be displayed on the X-axis ***;
%let xview = %sysevalf(&xmax + 0.5); *** Value (in weeks) for the X-axis. ***;
%let xby = 3;                     *** Incrementing value (in weeks) for the X-axis*;
proc template;
define statgraph vector1 ;
dynamic _y;
begingraph / designwidth=9.0in designheight=4.5in;
entrytitle " ";
layout overlay / yaxisopts=(type=linear linearopts=(viewmin=0 viewmax=&ymax
tickvaluelist=(3 7 20 27))
label='Part A' offsetmax=0 offsetmin=0)
xaxisopts=(type=linear linearopts=(viewmin=-0.1 viewmax=&xview
tickvaluesequence=(start=0 end=&xmax increment=3))
display=all label='Weeks on Treatment' ) cycleattrs=true;
%do i = &xby. %to &xmax.-&xby. %by &xby. ;
referenceline x=&i / lineattrs=(pattern=2); %end;
```

Treated Patients (N=24)
- Dose 1
- Part 1 Dose 1
- Status 1
- Status 2
- Status 3
- Status 4
- Status 5
- Status 6
- Status 7
- Status 8
The analysis of hematology lab values is of higher importance in oncology trials. For any given lab test the mean and the standard deviation values for various dose levels can be represented on a graph. The following graph represents the % change in the platelets value by cohort. The different dose cohorts are shown on the x-axis and the percentages on the y-axis. The standard deviation values are represented on the graph by drawing the error bars.

- **Tickvaluesequence** - is used to add the tick values on the y axis. In the above template a list of values are given and the tick marks for the dose are drawn at the values specified in the option list.

Mean (SD) Max % Platelets Change by Cohort

The analysis of hematology lab values is of higher importance in oncology trials. For any given lab test the mean and the standard deviation values for various dose levels can be represented on a graph. The following graph represents the % change in the platelets value by cohort. The different dose cohorts are shown on the x-axis and the percentages on the y-axis. The standard deviation values are represented on the graph by drawing the error bars.
Following is the template code for Figure 4:

```plaintext
proc template;
define statgraph barchartparm;
begingraph / designwidth=9.2in designheight=4.75in;
entrytitle '';
/* Defining the X-axis and Y-axis options */
layout overlay / xaxisopts=(label='Treatment Dose')
yaxisopts=(label='Maximum Percent Change of Platelets from Baseline (Cycle 1)(%)'
linearopts=(tickvaluesequence=(start=50 end=-100 increment=25)
viewmin=50 viewmin=-100));
barchartparm x=arm y=mean / group=sex name='bar' outlineattrs=(color=black);
scatterplot x=arm y=mean / yerrorlower=l_std yerrorupper=h_std markerattrs=(size=0)
name='scatter' errorbarattrs=(thickness=2)/ * error bars */
datatransparency=0.6;
endlayout;
endgraph;
```

- The errorbarattrs option is used to draw the error bars on the graph.

Graph for Duration of Worst Grade Treatment-Emergent AE (SOC) by Patient

In oncology trials we often see there will be some specific AE’s which are treatment emergent and will require some intensive analysis. The graph below represents the duration of a specific AE grouped by system organ class (SOC). Each patient is represented by a line on the graph and the length of the line represents the duration. The line changes color depending upon the change in the toxicity grade. The dots in the graph represent the dosing cycles.
Figure 5. Duration of Worst Grade Treatment-Emergent AE (SOC) by Patient

The template code for the Figure 5 is shown below

```sas
proc template;
define style aerr ;
parent=rtftnr10;
*--------------------------------------------------------------------*
| **Analysis Specific** |
| Colors for lines in BYGROUPS |
*--------------------------------------------------------------------*;
style GraphData1 from GraphData1 / contrastcolor=violet;
style GraphData2 from GraphData2 / contrastcolor=green;
style GraphData3 from GraphData3 / contrastcolor=blue;
style GraphData4 from GraphData4 / contrastcolor=white;
end;
run;

proc template;
define statgraph aedur;
mvar temp;
begingraph/designwidth=7.5in designheight=4.0in border=false;
entrytitle "";
/*** plotting the dose on the y-axis***/
layout overlay/ yaxisopts=(linearopts=(tickvaluelist=(2 5 8 11 12 14 )
tickvalueformat=revdose.) tickvalueattrs=(size=8 weight=bold)
label="")
xaxisopts=(label="Study Day"
linearopts=(tickvaluesequence=(start=-7 end=300 increment=14)
viewmin=-7.0 viewmax=300.0));
vectorplot x=aeendy y=subj_ae_id xorigin=aestdy yorigin=subj_ae_id/
arrowheads=false group=aetoxgr index=index1 name='sev'
legendlabel="Severity" lineattrs=(thickness=2 pattern=solid)
datatransparency=0.1;
```
CONCLUSION

This paper gives a basic understanding of ODS template and how the options are selected when used with Graph template. These graph templates can be used as a base which further can be used to build different kind of graphs. GTL has numerous options which help the graph creation easier and efficient. GTL has also allowed a reduction in the quantity of annotations which are used in ODS graphics.

REFERENCES

4. Manish Kumar Goel, Pardeep Khanna, and Jugal Kishore. “Understanding survival analysis: Kaplan-Meier estimate”.

ACKNOWLEDGMENTS

We would like to thank Gordon Fancher, Manager at Seattle Genetics Inc. for his technical guidance on GTL.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Avani Kaja
Enterprise: Seattle Genetics, Inc.
Address: 21823 30th Drive Southeast
City, State ZIP: Bothell, WA 98021
E-mail: akaja@seagen.com

Name: Murali Kanakenahalli
Enterprise: Seattle Genetics, Inc.
Address: 21823 30th Drive Southeast
City, State ZIP: Bothell, WA 98021
E-mail: mkanakenahalli@seagen.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.