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ABSTRACT 

Non Linear M ixed Ef fects Model (NONMEM) data set is w idely used for pharmacokinetics (PK) / pharmacodynamics 

(PD) modeling and simulation, w hich studies the drug concentration in the body over time (measured in terms of 

absorption, distribution, metabolism, and excretion [ADME]) and the body’s pharmacological response to a drug 

(measured in terms of adverse events [AE] and eff icacies). In a very specif ic pre-defined format, the NONMEM data 
set includes a chronological mixture of dosing records, PK/PD observations and covariates of the dosing and 

observation records. To create NONMEM data sets, it takes tremendous programming efforts for programmers to 

derive dosing history, order PK/PD observations and merge various types of covariates. The variables required for 

NONMEM data are often complicated and come from different source data sets. It is a tough challenge to perform 

data validation and cleaning. Good quality NONMEM data is critical in PK/PD analysis and errors from a small portion 

of the data can redirect the conclusion of a study. To guarantee the accurate and meaningful PK/PD analysis, data 

cleaning is essential and crucial for quality control in NONMEM data set production. Graphs are visual summaries of 

data and very effective to describe essential features than tables of numbers. This paper illustrates some commonly 

used graphs to virtualize the data errors and questionable records in both raw  clinical data and NONMEM data set. 

Scientif ic programmers and pharmacometricians w ith minimal programming skills can apply these graphs to check 

data issues and examine data thoroughly. 

INTRODUCTION 

In the f ield of population pharmacokinetics / pharmacodynamics (pop PK/PD) modeling and simulation, NONMEM 

softw are is the leading tool w idely used to model and predict the effect of drug on the target population of patients 

(Shen et al., 2007; Ette et al., 2013). Pharmacokinetics (PK) describes w hat the body does to a drug by observing the 

drug concentration in the body over time (). Depending on the drug distribution, PK measurements include the drug 

concentration in the plasma of  blood, urine, target issues and drug concentration in plasma is the most common PK 

measurement. Pharmacodynamics (PD) is the study of w hat the drug does to the body. PD measurements might be 

AEs, biomarkers and eff icacies. PK/PD analysis describes the relationship of drug-effects over time, and can be 

affected by many factors, such as gender, race, food status, biomarkers, etc. These factors affecting PK/PD modeling 

are called covariates. 

To perform pop PK/PD analysis, a NONMEM-ready data set (hereafter also referred to as NONMEM data set) needs 

to be created based on the modeling specif ications (Boeckmann et al., 2011). The data structure of NONMEM data 

set is very complicated and different from other clinical data sets such as case report tabulation (CRT), Study Data 

Tabulation Model (SDTM) and Analysis Data Model (ADaM) data sets. In NONMEM data set, PK/PD observations 

and dosing events are the key components ordered chronologically and decide the total number of records. The 

observation records contain the results from the laboratories and the actual dates and times of all the samples taken 

for PK/PD analysis. Dosing records consist of the actual and nominal dates and times of each drug administration. 

When a NONMEM data set is generated, the potential covariates influencing on the modeling result w ill be also 

included as additional variables in the f inal data set. Covariates are typically classif ied as time-independent 
covariates and time-dependent covariates. The time-independent covariates usually contain basic demographic 

information, vital sign measurements and lab data collected at the screening phase, etc. They are subject level 

variables presented as one record per subject in clinical data sets. The time-dependent covariates are recorded over 

time and usually collected at the time w hen observation and/or dosing events are taken. A part of typical NONMEM 

data set is show n Figure 1. In this example, the records consist of a single oral dose follow ed by a couple of PK 

measurements. The dose administration is highlighted in blue as the f irst record. The PK observations are show n in 

orange after dosing record. The conserved variables in this example are ID, EVID, TSFD, DV, MDV and AMT. The 

timing variables, TSFD, NTSFD, TAD and NTAD are used to order the records chronically w ithin each ID. 

Demographic information is also added as covariates. 

NONMEM data set creation is usually complicated and time consuming (Arthur et al., 2010). First, the volume of 

NONMEM data set can be huge due to the number of records and variables. Because population studies are usually 

performed on large number of subjects, a single NONMEM data set might consist of multiple clinical trials ranging 

from studies f irst on human (phase 1) to long-term safety and side-effect (phase 4) of clinical drug development. 

Based on therapeutic area and study design, variety of study-specif ic covariables can be included in a single 

NONMEM data set. Second, the input data usually come in different formats depending on the maturity of data and 

the development of clinical trial. The source data can come from but not limit in raw  data set from clinical data 

management team, raw  excel sheet from lab scientist, CRT, SDTM and ADaM data sets. Therefore, tremendous 

programming efforts are needed to pool data from multiple clinical studies, merge data coming in diverse formats, 



combine and validate records in a single SAS output data set. Third, NONMEM data set production is usually driven 

by the pharmacometricians based on the modeling analysis plan (MAP), but ad hoc requests come in many 

scenarios, i.e., interim analysis for eff icacy concerns, and data querying by Medical Monitoring Committees for safety 

reasons. In addition, pharmacometricians may update NONMEM data specif ication frequently due to modeling 

purpose. Data refreshes for the purpose of data set development also make reproduction, debugging, and 

revalidation time consuming. All of these causes the high complexity and time-consuming in the generation of 

NONMEM data set.  

 

Figure 1. Example of records and variables in a NONMEM data set.  

Data cleaning is the essential key to guarantee the good quality of NONMEM data set and especially required w hen 

integrating heterogeneous data sources (Bonate et al., 2012). Many data issues can be found in the source data and 

the f inal NONMEM data set, such as the incorrect observation results, incomplete data collections, improperly format, 

missing information, inconsistencies, etc. Even though data management team, programmers and 

pharmacometricians examine data for f law s by using rules, algorithms, and look-up tables systematically, some 

hidden data issues are still present in the f inal production and impact the accurate and meaningful analysis of PK/PD 

modeling and simulation.  

Graphical methods provide visual representations of data and are more quickly and completely to show  the general 

trend and relationships of variables. In pop PK/PD analysis, graphs play an important role in show ing the drug’s 

concentration profiles and drug-effect relationships. Moreover, it also provides insight for the analyst into the data 

issues and errors. This paper applied some common used graphs to detect the data issues of PK/PD observations 

and covariates. Scientif ic programmers and pharmacometricians w ith minimal programming skills can also apply 

SAS/GRAPH® to visualize data issues in the early stage of clinical trials.  

CASE 1: EXAMINE PK CONCENTRATION BY INDIVIDUAL PK-TIME PLOT 

The individual PK-Time plot provides a quick view  of the general trend of the drug concentration over time. It is very 

effective to check the potential data errors of PK concentration at the early stage of the study by examining individual 

PK-time plot. The sample codes below  can simply plot the dose and PK observation over time and the output graphs 

are show n in Figure 2.   

PROC SGPANEL DATA = nm01 ;  

 WHERE evid = 1 ; * Plot the dosing records ;  

 PANELBY an / ONEPANEL COLUMNS = 2; * show in onepanel with two columns ; 

 SCATTER x = tsfd y = amt / GROUP = peri ; * group by period ; 

 SERIES  x = tsfd y = amt / GROUP = peri ; 

RUN ;  

PROC SGPANEL DATA = nm01 ;  



 WHERE evid = 0 ; * Plot PK concentrations ; 

 PANELBY an / ONEPANEL COLUMNS = 2; 

 SCATTER x = tad y = dv / GROUP = peri ;  

 SERIES  x = tad y = dv / GROUP = peri ; 

RUN ; 

  

Figure 2. Dose vs Time and PK vs Time show Dose-PK relationship.  

As show n in the plot of Actual Dose Amount vs the Actual Time Since First Dose (TSFDA) in the left panel of Figure 
2, each subject in this treatment group w as administrated w ith a single IV dose in each of the three study periods. 

Therefore, the PK concentration over the Actual Time After Dose (TAD) w ill be expected as a nice curve w ith a long 

declined tail of distribution and elimination phase. Any spots aw ay from the curve w ill be recognized as questionable 

records. For example, the PK concentrations are close to zero and PK curve is f lat as a horizontal line in the period 2 

of subject AN24 (highlighted by the box of red dotted line). The distribution and elimination phase w ere not observed 

in this period. These unusual PK concentrations should be examined further and reported to pharmacometrician.  

Besides plotting the PK concentration over TAD, w e can also plot PK concentration over the TSFDA to examine the 

PK profile thoroughly: 

PROC SGPANEL DATA = nm02 NOAUTOLEGEND ;  

WHERE evid = 0 & regm = 2 ;   

PANELBY an / ONEPANEL ROWS = 3 ; 

SCATTER x = tsfd y = dv ;  

SERIES  x = tsfd y = dv ; 

RUN ;

In this study, six subjects w ere administrated w ith four oral doses based on protocol and PK observations w ere 

collected before and after each dose. As expected, there’re four absorption peaks in the PK profile of each subject in 

Figure 3 (E.g., AN4 and AN16). How ever, some subjects have either extra or missing absorption peaks, w hich are 

not present in a typical PK curve as expected. For example, subject AN1 has no absorption peak after the second 

dose; there’s an unexpected PK concentration peak for subjects AN9 and AN11 betw een 3000 and 3500hr of TSFDA 

since there’s no additional dose at the mean time upon protocol. These PK concentrations in subject AN1, AN9 and 

AN11 should be reported to pharmacometrician. In addition, the missing records in PK curve indicated the early 
discontinuation in subject AN15. Therefore, the termination status needs to be confirmed by data management team. 

Otherw ise, these missing collections should be confirmed by lab specialist.  
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Figure 3. PK Profile Over Actual Time Since First Dose . 

CASE 2: EXAMINE PK CONCENTRATION BY POPULATION PK PLOT 

It is time consuming to detect each individual PK-Time plot w hen sample size is large, such as the individual PK 

profiles from phase 2b and phase 3 studies. Alternatively, w e can examine the overall distribution of PK concentration 

and check the outliers in population level. It is eff icient to oversight the range of PK concentrations and statistical 

outliers over this range are suspected as the questionable records. Three useful graphs, histogram, box plot and 

scatter plot, w ill be applied to examine the overall distribution of PK concentration.  

In a phase 3 study w ith over 800 patients in treatment group, subjects took one tablet of the study medicine daily w ith 

meal and the trough plasma PK samples w ere collected after 12-hour fast and voiding in eight visits during the 
treatment phase. Due to the unusually long half -life of the drug, the follow -up PK concentrations w ere also collected 

every three months up to tw o years after treatment termination. Obviously, it’s not feasible to go over individual PK 

profile one by one for all of the 800 subjects. Because the trough PK is the low est concentration that a drug reaches 

before the next dose is administered, w e should expect the low er PK concentrations in the visits of treatment phase. 

Then, any outliers of unusual high concentration might be questionable PK concentrations. The graphical methods 

show ing the range of population distribution, such as histogram, box plot, scatter plot can be the good tools.   

The sample code below  w as used to generate the histograms of trough PK in treatment phase: 

PROC SGPANEL DATA = nm02 ;  

 WHERE visit <= 26 ; * visits in treatment phase ;  

 PANELBY visit / ONEPANEL ROWS = 2 ;  

 HISTOGRAM dv ;  

RUN ; 

As w e can see from the histogram of PK distribution per visit in Figure 4, the trough PK concentrations under the 

treatment phase range from 0 to 5000 nmol/L w ith a few  outliers over 5000 nmol/L. The high concentration doesn’t 

merely indicate the questionable PK records because PK concentrations vary cross subjects and can be affected by 

many covariates. To rule out high concentration caused by the variety response of individual effect and covariates, 

the PK records of subjects having PK concentration over 5000 nmol/L w ere pooled and the box plots  (Figure 5) of PK 

concentration for each subject are used to examine the outliers over 1.5 IQR (interquartile range) w ithin each subject. 

Four subjects had PK concentration greater than 1.5 IQR under treatment phase. The visit number is used to label 

the outliers of each box. Further inspections are necessary for these four subjects. The sample codes below  are used 

to pool the questionable records and create box plot by subject. 

PROC SQL ; 

 CREATE TABLE hightrconc AS  

SELECT * FROM nm02 WHERE an in  

(SELECT distinct an FROM nm02 WHERE dv > 5000) ; 

QUIT ; 

PROC SGPANEL DATA = hightrconc ;  
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 PANELBY an / ONEPANEL ROWS = 1 ;  

 VBOX dv / DATALABEL = visit ; * label the outliers by visit ;  

RUN ; 

 

Figure 4. Distribution of PK concentration by visit in treatment phase.   

 

Figure 5. Box plot of PK concentration from the subjects w ith concentration higher than 5000 nmol/L.   

In some cases, it’s very common in pop PK/PD analysis to use the natural logarithm of pk concentration to model the 

PK profile and PK-PD relationship. How ever, the logarithm of PK concentration is not a good source data if the 

primary purpose is to catch concentration outliers. In statistics, the transformation of logarithm is w idely applied to 

normalize and centralize the uneven skew  distribution. Thus, the unusual concentrations or outliers might not be 

noticed after being converted to logarithm. In addition, only the positive values have logarithm, if  the concentration is 

zero, it w ill be missing if logarithm is used to generate PK profile. Therefore, raw  data w ithout any mathematical 
conversion is favored to create graphs for the overview  of data distribution.  

The unusual PK concentrations collected in the follow -up phase can be also detected by graphical methods. In this 

study, plasma PK w as tested every three months up to tw o years after treatment termination. Due to the long 

elimination half-life of the drug, the PK curve enters a slow er phase of disappearance after treatment termination. 

Therefore, the slow er decline is present in the PK profile due to the irreversible drug elimination or clearance. 

Because PK curve enters decline phase, histogram by visit is not a good idea to identify the unusual high 

concentration in elimination. Alternatively, w e can create scatter plot of PK concentrations collected in the tw o 

consecutive visits, such as the PK concentration at a certain visit over the concentration at the visit prior to the certain 
visit. 

* lag PK concentration by tsfd within each subject ; 
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PROC SORT DATA = nm02 ;  

BY an tsfd ;  

RUN ;  

DATA nm02 ; 

 SET nm02 ; 

 BY an tsfd ; 

 LABEL lst_dv = "PK conc. at the previous visit"  

          dv = "PK conc. at the current visit" ; 

 lst_dv = lag(dv) ;  

 if first.an then lst_dv = 0 ;  

RUN ; 

* create scatter plot of current pk conc. vs last pk conc. 

PROC SGPANEL DATA = nm02 noautolegend ;  

WHERE visit > 26 & lst_dv < dv & lst_dv > 0 ; * follow-up phase ;  

 PANELBY visit / onepanel columns = 4 ; 

 SCATTER x = lst_dv y = dv ;  

 LINEPARM x =0 y = 0 slope = 1 / LINEATTRS = (color = blue) ; 

 LINEPARM x =0 y = 0 slope = 1.5 / LINEATTRS = (color = orange) ; 

 LINEPARM x =0 y = 0 slope = 2 / LINEATTRS = (color = red) ; 

RUN ; 

The reference line of equal concentration betw een tw o consecutive visits is added to discriminate the PK 

concentrations higher than that collected at previous visit. In the scatter plots show n in Figure 6, the PK concentration 

at the current visit vs the visit prior to the current one (current visit vs last visit) is created and three reference lines 

are added to indicate 1 (blue), 1.5 (orange) and 2 (red) times of current concentration over the last one. For example, 

if  the current concentration is equal to or low er than the last test, the spot locates betw een the 45-degree line (blue) 

and horizontal axis. Otherw ise, the spots presenting betw een the 45 degree line and vertical axis suggest the 

increase of PK concentration after treatment termination, w hich is unexpected in the elimination phase. In this plot, 

only the spots betw een the vertical axis and the 45-degree line are displayed since all the spots on the other side of 

45 degree line show  the decrease in PK concentration after last visit. Similarly, the spots over the orange and red 

reference lines can be recognized as the high panic concentration because the values are 1.5 and 2 times of last test.  

 

Figure 6. Scatter plot of PK concentrations in two consecutive visits.   

For instance, there’s one spot over the red line at visit 30 indicating that the PK concentration tested at visit 30 is over 

tw o times of PK concentration tested at visit 29 for the certain subject. All the observations of subjects w ith PK 

concentration located betw een the vertical axis and red line w ere pooled to data set dv2. Then the PK curve of 
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subject 17695 in dv2 is show n in Figure 7 as an example. We can see the concentration bump at visit 30, w hich is 

found to be the questionable record. 

PROC SQL ; 

 CREATE TABLE dv2 AS 

 SELECT * FROM nm02 WHERE an in  

(SELECT distinct an FROM nm02 WHERE dv > lst_dv*2 & lst_dv > 0 & visit > 

26 )  

; 

QUIT ;  

PROC SGPLOT DATA = dv2 NOAUTOLEGEND ;  

WHERE an = 17695 ; 

 SCATTER x = tsfd y = dv / DATALABEL = visit ;  

 SERIES x = tsfd y = dv ;  

RUN ;  

 
 

Figure 7. Example of individual PK profile to show the concentration bump after treatment termination 

CASE 3: CHECK THE CONSISTENCY OF ACTUAL TIME AND NOMINAL TIME 

In NONMEM data set, the observations and dosing administrations are ordered based on the chronological sequence 

of these events w ithin each subject. Thus, timing variables are critical for accurate and meaningful analysis of PK/PD 

modeling and simulation. Tw o types of timing variables are collected, nominal time and actual time. A nominal time is 

the planned sampling or dosing time. For instance, the planned time for PK/PD observation can be “PREDOSE”, “12 

hours POST DOSE”, the scheduled time for dose administration can be “Period 2 Day 3”. In addition to the nominal 

time, the actual date and time is also recorded by the healthcare professional w hen an event is c onducted. Thus, the 

actual date and time can be used to calculate the actual time after dose for a special event. It is important to examine 

the consistency betw een the actual and nominal time in case sample and dose dates and times are messed up.  

Tw o graphical methods are applied to evaluate the consistency betw een nominal and actual time. One method is to 

check the distribution of the difference betw een nominal time and actual time.  

DATA nm03 ;  

SET nm03 ;  

d = abs(tsfda-tsfdn) ;  

RUN ;  

PROC SGPANEL DATA = nm03 ;  

 PANELBY npanel peri / ONEPANEL UNISCALE = column ROWS = 1 ; 
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 HISTOGRAM d / SCALE = count ;  

RUN ; 

 

In Figure 8, the absolute difference betw een actual and nominal time since f irst dose are calculated and the 

histogram of difference by visit is plotted. We can tell from the distribution that, the differences betw een actual and 

nominal time are consistent in the most of the cases and are closed to zero. How ever, the huge differences at panel 2 

and 3 are observed, w hich indicates the inconsistency betw een nominal and actual time.  

 

Figure 8. Distribution of absolute difference between actual time and nominal time.  

The other method is to create the scatter plot of the tw o types of times directly and look for the spots aw ay from the 

45 degree line w hich indicates the actual time is identical to the nominal time.  

PROC SGPLOT DATA = nm03 ;  

WHERE npanel = 2 & peri = 2  ; 

 SCATTER x = ntsfd y = tsfd / GROUP = regm ;  

 LINEPARM x=0 y=0 slope=1 ;  

XAXIS GRID ;  

YAXIS GRID ; 

RUN ;  

As Figure 9 show n, most of the spots are located along the 45-degree diagonal line, w hile a few  spots are above or 

under this reference line. The spot presenting at 10000 hours of nominal time needs to be further inspected.   

  

Figure 9. Scatter plot of actual time vs nominal time to show the discrepancy between the two types of time. 
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CONCLUSION  

With pow erful data visualization methods, programmers can catch the data issues in the early stage of clinical trial. 

SAS graphical methods also provide timely visual access for data exploration to pharmacometricians. Changing data 

types and repeatedly transferring data betw een functional teams are not required since SAS is the major data type 

used in clinical trial data sets. User-friendly SAS graphical tools require minimal graphic programming skills from SAS 

programmers and pharmacometricians. 
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