

1

PharmaSUG 2018 - Paper QT-18

Quickly create your own format with hundreds of values and other tips

Sergey Sian, IQVIA, Cambridge, MA

ABSTRACT

Writing SAS® code which automatically defines format(s) with hundreds of values, and using defined
format for report is not new. However, this is sometimes a necessary and certainly useful tool to use.

INTRODUCTION

Part I: create your own format with hundreds of values.

It’s pretty common in late phase research and clinical trials to report concomitant medications used by
patients. Usually you get this information from WhoDrug (dictionary of medicinal product information)
SAS® dataset, which might look like:

There is also an Rx lookup SAS® dataset (www.fda.gov/Drugs/InformationOnDrugs/, www.drugs.com,
www.rxlist.com, etc.) with drugs’ names, NDC (National Drug Code), form of usage, strength and other
information.

Quickly create your own format with hundreds of values and other tips, continued

2

Usually NDC is a 10-digit code, in this example it’s 8-digits for simplicity. Please, notice that drug
Symbyax (Olanzapine) in lines 10 through 14 has different NDCs depending on its strength. Say, you
want to know what are the most common deceases (indications) treated by certain drug (on NDC level).
You need to define your own format like:

Proc format ;

 Value $drugtrt

 “01214774” = “Analgesic”

 “01210657” = “Analgesic”

 “01439654” = “Antidepressive”

 “00040058” = “Anxiety”

 “00543532” = “Anxiety”

Etc.

;

quit ;

run ;

The $drugtrt. format is supposed to have hundreds of values, so you likely will want to automate it.

 Step 1: sort out and merge WhoDrug and Rx_lookup SAS® datasets by DRUG_NAME. Save results in
pharmsug.rxlookup dataset.

Step 2: create a “drug_class_treat_1” SAS® dataset as:

data drug_class_treat_1 ;

 set pharmsug.rxlookup ;

 retain fmtname "$drugtrt" type "C"; /* Type "C" - for Character */

 start = ndc ;

 label = FORM__INDICATION ;

 output;

run;

Step 3: Delete possible duplicate values in “ndc” variable:

proc sort data = drug_class_treat_1 out = drug_class_treat(where = (NDC ne ' ')) nodupkey ;

 by ndc ;

run ;

After step 3 “drug_class_treat” SAS® dataset will look like:

Quickly create your own format with hundreds of values and other tips, continued

3

Step 4: create the $drugtrt. format which can be saved (in a format catalog in which you want to store it)
permanently in defined directory or temporarily in “work” directory as in below code:

proc format library = work

 cntlin = drug_class_treat ;

run;

Please note that “cntlin” option in proc format allows to create a format from a SAS® dataset that contains
value information (called a control data set). After this procedure you’ll get in LOG window:

2203 proc format library = work

2204 cntlin = drug_class_treat ;

NOTE: Format $DRUGTRT has been output.

2205 run;

NOTE: PROCEDURE FORMAT used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

NOTE: There were 5931 observations read from the data set WORK.DRUG_CLASS_TREAT.

To look at all values defined in “$DRUGTRT.” format run:

title 'Custom $ DRUGTRT. format' ;

proc format library = work ;

 select $drugtrt ;

run ;

Finally, to accomplish our ultimate goal of finding out what the most common deceases (indications) are
treated by certain drug (on NDC level):

proc freq data = pharmsug.rxlookup noprint ;

tables WHODRUG_CODE__DRUG_NAME*ndc / missing list out =
WHODRUG_CODE_DRUG_NAME_ndc ;

format ndc $drugtrt. ;

title "Distribution on 'WHODRUG_CODE__DRUG_NAME*ndc' " ;

title2 "The 'pharmsug.rxlookup' dataset" ;

run ;

Quickly create your own format with hundreds of values and other tips, continued

4

The results are:

Part 2. Define hundreds of formats from “code” extract from EDC (Electronic Data Capture)
system.

EDC system keeps and allows to extract various files (baseline, follow up, medical history, etc.) for further
analysis. One of the extracted file is “code” which has the list of possible values for every field in all files. It
looks like:

Step1: Read in CSV 'codes' file and sort out created SAS® dataset.

data csv_file1 ;
 length code_type my_code_type $50 code sequence $2 meaning my_meaning $135 meaning_numeric
8 meaning_1 $50 ;

 infile "&pass_to_the_folder.\&csv_file..csv" missover dsd lrecl= 500 ;

 input my_code_type $ code $ sequence $ my_meaning $;
 meaning = compress(my_meaning,"'") ;
 my_length = length(my_code_type) ;

 /* If "code_type" ends with "number" replace it */
 /* with "_" since format can't end with "number" */
 if substr(my_code_type,my_length,1) in ('0','1','2','3','4','5','6','7','8','9')
 then do ;
 code_type = tranwrd(my_code_type,'0','_') ;
 code_type = tranwrd(my_code_type,'1','_') ;

Quickly create your own format with hundreds of values and other tips, continued

5

 code_type = tranwrd(my_code_type,'2','_') ;
 code_type = tranwrd(my_code_type,'3','_') ;
 code_type = tranwrd(my_code_type,'4','_') ;
 code_type = tranwrd(my_code_type,'5','_') ;
 code_type = tranwrd(my_code_type,'6','_') ;
 code_type = tranwrd(my_code_type,'7','_') ;
 code_type = tranwrd(my_code_type,'8','_') ;
 code_type = tranwrd(my_code_type,'9','_') ;
 end ;
 else code_type = my_code_type ;

 meaning_1 = compress(meaning," ") ;
 if substr(meaning_1,1,2) in ('99') then meaning_numeric = 99 ;
 else if substr(meaning_1,1,1) in ('0','1','2','3','4','5','6','7','8','9') then
 meaning_numeric = put(meaning_1, 8.) ;
 else meaning_numeric = . ;

 drop my_meaning my_code_type my_length meaning_1 ;
 if _n_ ge 2 then output; run;
Proc sort data = csv_file1 out = codes nodupkey ;
 by code_type sequence;
run;

The above SAS® data step “identifies” if variable can/will have a “numeric” or “character” format. The
work.codes SAS® dataset looks like:

Step 2: Create the makeformat.sas program, which can be run to create a FORMAT catalog in “formats”
folder.

Data _null_;
 set codes end=last ;
 by code_type;

file "&path_to_the_folder.\makeformat.sas" ;

if _n_=1 then do;
 put '/**/';
 put "/**Protocol &name_of_the_protocol. **/";
 put "/**Company &name_of_the_company. **/";
 put '/**Program Create_Format.sas **/';
 put "/* Purpose: Creates Formats for Project &name_of_the_project. */";

Quickly create your own format with hundreds of values and other tips, continued

6

 put "/* Created by: &name-of_the_programmer. &sysdate. */";
 put '/**/';
 put ;

 put 'Proc Format library = formats cntlout = formats.fmtdata; ';
 put ;
end;

if first.code_type then do;
 if substr(compress(meaning," "),1,2) in ('99') then do ;
 put 'Value ' @7 code_type ;
 put @2 code @4 " = '" @9 meaning_numeric @14 "'";
 end ;
 else if length(compress(meaning," ")) <= 2 AND substr(compress(meaning," "),1,1)
 in ('0','1','2','3','4','5','6','7','8','9') then do ;
 put 'Value ' @7 code_type ;
 put @2 code @4 " = '" @9 meaning_numeric @14 "'";
 end ;
 else do ;
 put 'Value $F' @9 code_type ;
 put "'"@2 code @4 "' = '" @9 meaning @145 "'";
 end ;
end;
else do ;
 if substr(compress(meaning," "),1,2) in ('99') then put @2 code @4 " = '"
 @9 meaning_numeric @14 "'";
 else if length(compress(meaning," ")) <= 2 AND substr(compress(meaning," "),1,1)
 in ('0','1','2','3','4','5','6','7','8','9') then put @2 code @4 " = '"
 @9 meaning_numeric @14 "'";
 else put "'"@2 code @4 "' = '" @9 meaning @145 "'";
end ;

if last.code_type then do;
 put ';' ;
 put;
end;
if last then put 'quit; run ; ' ;
run;

The automatically created “makeformat.sas“ program looks like:

Quickly create your own format with hundreds of values and other tips, continued

7

CONCLUSION

The above code shows how to automatically define format(s) with hundreds of values either using the
WhoDrug (dictionary of medicinal product information) and Rx lookup SAS® datasets, or from a “code”
CSV file extracted from EDC (Electronic Data Capture) system.

The described approach will take care of 2 or 2000 distinct formats without error prone typing and time
consuming “copy-and-paste” procedure.

ACKNOWLEDGMENTS

A special thank you to David Franklin, Sr. Manager statistical programming, who has provided valuable
suggestions and inputs to my paper. I’m also grateful to Greg Tebbenkamp, Director of statistical
programming, whose support and encouragement has helped me to write this paper. SAS® code for part 2
was implemented together with my colleague Evguenia Jilinskaia – a Sr. statistical programmer at IQVIA.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Sergey Sian
Enterprise: Quintiles
Address: 201 Broadway
City, State ZIP: Cambridge, MA 02139, USA
Work Phone: 1-617-715-6854

Quickly create your own format with hundreds of values and other tips, continued

8

Fax: 1-617-621-1620
E-mail: sergey.sian@quintilesims.com
Web: www.iqvia.com

SAS® and all other SAS® Institute Inc. product or service names are registered trademarks or trademarks
of SAS® Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

