
1

PharmaSUG China 2017 - Paper 64

How to read RTF files into SAS® datasets?
Chunpeng Zhao, Boehringer-Ingelheim, Shanghai, China

ABSTRACT
There are two ways to develop summary tables and listings for SAS® programmers. One is through SAS® ODS. The
other is through SAS® LISTING (i.e. generate SAS® LISTING outputs first. Then convert SAS® LISTING outputs into
RTF or PDF files).

For summary tables and listings generated through SAS® ODS, Michiel Hagendoorn etc. gave solutions to read RTF
files into SAS® datasets in the paper “Save Those Eyes: A Quality-Control Utility for Checking RTF Output
Immediately And Accurately” already.

For summary tables and listings generated through SAS® LISTING, how read the data from an indicated RTF file into
a SAS® data set? This pager will provide a solution.

INTRODUCTION
There are two ways to develop summary tables and listings for SAS® programmers. One is through SAS® ODS. The
other is through SAS® LISTING (i.e. generate SAS® LISTING outputs first. Then convert SAS® LISTING outputs into
RTF or PDF files). In RFT files created through SAS® ODS, data can be selected by column, but not in RFT files
created through SAS® LINSTING.

During validation, commonly input datasets in REPORT procedure are compared with independently generated
Quality Control datasets via the COMPARE procedure. Then visually check cosmetic format of summary tables’ and
listings’ layouts.

Actually there are gaps from input datasets in REPORT procedure to summary tables and listings. New statistics
columns or rows can be created through REPORT procedure. User-defined formats can be assigned to variables in
REPORT procedure. Observations could be re-sorted by sorted variables through REPORT procedure. And
Observations will be split into different pages by page-break-variables in REPORT procedure. So input data used in
REPORT procedure could be different from that in summary tables and listings.

Usually an agreement about input dataset used in REPORT procedure will be made between developers and
validators. I.e. the names of variables corresponding to columns in summary tables and listings will be specified. The
values of variables and the order of observations should be exactly same as that in summary tables and listings. It
requires that some functions are not allowed to be used in REPORT procedure, e.g. user-defined formats in DEFINE
statement, Summary and Statistics for variables, etc. And communication to get the agreement also consumes extra
effort of both developers and validators. Even if the agreement is followed, it is still difficult to find some discrepancy
issues via COMPARE procedure, which are generated in REPORT procedure, e.g. observation sorted issue, and
page split issue (i.e. incorrect page-break variable used) etc. Manual check work on these discrepancies will be
unavoidable.

For validation, it is a better way to focus on final summary tables and listings instead of intermediate input dataset in
REPORT procedure. I.e. read RTF files into SAS® datasets. Then compare these SAS® datasets with independently

Table and Listing
Shells

Developer

Input dataset in
REPORT procedure

Validator

QC dataset

RTF files of Tables
and Listings

Validator

Visually check gaps

PROC
COPARE

Gaps through PROC REPORT

New rows created

New columns created

User-define format

Observation re-sorted

Page-break

How to read RTF files into SAS® dataset? continued

2

generated Quality Control datasets via the COMPARE procedure. In this way, communication time between
developers and validators on the data structure of input dataset in REPORT procedure, and validators’ manual check
work on gaps from input dataset in REPORT procedure to RTF file will be saved.

For summary tables and listings generated through SAS® ODS, Michiel Hagendoorn etc. gave solutions to read RTF
files into SAS® datasets in the paper “Save Those Eyes: A Quality-Control Utility for Checking RTF Output
Immediately And Accurately”. For summary tables and listings generated through SAS® LISTING, how read the data
from an indicated RTF file into a SAS® data set? This pager will provide a solution.

Summary tables and listings are generated through SAS® LISTING. Then SAS® LISTING outputs are converted into
RTF files by adding RTF control words. The control words are visible as below figure when the RTF file is viewed in a
text editor like Notepad on Windows. Unlike RTF files directly generated through SAS® ODS, for SAS® LISTING
converted RTF files, there are not RTF control words to identify the page, the title, the table header, the body of the
table, the rows of the table, the cells of the table, and the footnotes. It is a real challenge to read SAS® LISTING
converted RTF files into SAS® datasets.

What information is needed to be read from RTF files into SAS® datasets for validation? Let’s focus on the body of
the table and subgroups, which are located between the title and the table header commonly. RTF control words are
invisible in Microsoft Word®. The title, the table header and the footnotes are exactly same across pages, which can
be visually compared to the shells of summary tables and listings.

SAS® LISTING converted RTF files follow the same hierarchy structure as RTF files directly created by SAS® ODS,
i.e. the page, subgroups of sections, the body of the table, the rows of the table and the column of the table, although

Table and Listing
Shells

Developer

Input dataset in
REPORT procedure

Validator

QC dataset

RTF files of Tables
and Listings

PROC COPARE SAS dataset read
from RTF file

How to read RTF files into SAS® dataset? continued

3

there is not corresponding RTF control words to identify them in SAS® LISTING converted RTF files. If there is a way
to identify the hierarchy structure in SAS® LISTING converted RTF files, RTF files can be read into SAS® datasets.

IDENTIFYING THE TITLE, THE TABLE HEADER AND THE FOOTNOTES
The title, the table header and the footnotes are exactly same and located at the same rows across pages in a RTF
file. If a row has the same contents across pages in a RTF file, this row will be assumed as a part of the title, the table
header and the footnotes. Only variant parts across pages will be read into SAS® datasets. Invariant part across
pages can be visually checked.

IDENTIFYING COLUMN TEXT
Read a RTF file as a plain text file into a SAS® dataset. Remove RTF control words. Remove page numbers.
Remove subgroups. Remove the title, the table header and the footnotes. Only keep the body of the table. Then try to
split each row into different columns. Columns are segregated by blank characters. If vertical bars consisting of blank
characters, runs through from the first page until the last page, then each row will be split into different columns.

PROGRAM FLOW AND DETAILS
Logic steps are roughly outlined as follows.

1. Read a SAS® LISTING converted RTF file as a plain text file into a SAS® dataset.

2. Remove RTF control words.

3. Extract page numbers into a variable.

4. Remove the title, the table header and the footnotes, which are exactly same and located at the same rows
across pages.

5. Extract subgroups into category variables.

6. Split the table into columns.

The sections below provide a step-by-step review of the macro code. Presenting the entire code is beyond the scope
of this paper. The code segments discussed here were selected to provide a sense of how to read RTF files into a
SAS® data set that is ready for a PROC COMPARE.

1. Read a RTF file into a SAS® dataset.

Read a RTF file as a plain text file into a SAS® dataset.

filename rtf "&filename";
infile rtf missover length = l lrecl = 2000;
input STRING $varying2000. l;

2. Remove RTF control words.

 if index(STRING,'\par {\f0\fs18')>0;
 TEXT=substr(STRING, 16);
 if substr(TEXT, lengthn(TEXT))="}" then

substr(TEXT, lengthn(TEXT))=" ";
3. Extract page numbers into a variable.

 PATID = prxparse("/\(Page\s*\d*\s*of\s*\d*\)/");
 PAGE=input(scan(substr(TEXT, prxmatch(PATID,TEXT)+1), 2), best.);

4. Remove the title, the table header and the footnotes.

How to read RTF files into SAS® dataset? continued

4

/*Read the Row Number and Content of each row*/
proc sql noprint;
 create table PAGE1 as
 select LINE_N, TEXT
 from rtf_1
 where PAGE=1;

/*If a row appear in all pages, the sum of the page number with the row should be equal a constant, i.e. the sum
of all page numbers in the RTF file */
 create table PAGE1_1 as
 select a.LINE_N, a.TEXT, sum(distinct b.PAGE) as SUM_P
 from page1 as a
 left join rtf_1 as b
 on a.LINE_N=b.LINE_N and
 a.TEXT=b.TEXT
 group by a.LINE_N, a.TEXT;

 create table rtf_2 as
 select a.*, SUM_P
 from rtf_1 as a
 left join PAGE1_1 as b
 on a.LINE_N=b.LINE_N and
 a.TEXT=b.TEXT
 where SUM_P not in (select sum(distinct PAGE) from rtf_1) and
 a.TEXT ne " "
 ;
quit;

5. Extract subgroups into category variables.

How to read RTF files into SAS® dataset? continued

5

/*Different subgroups are put into different variables (RETAIN_STR&i) in dataset retain_str. And merge it with
RTF dataset. Then retain subgroup values. &SPLIT_NUM is number of subgroups */
 %do i=1 %to &SPLIT_NUM;
 %let LENGTH_STR=&LENGTH_STR RETAIN_STR&i;
 %end;
proc sql;
 create table rtf_3 as
 select a.*, %sysfunc(tranwrd(%sysfunc(compbl(&LENGTH_STR)), %str(), %str(,)))
 from rtf_2 as a
 %do i=1 %to &SPLIT_NUM;
 left join (select distinct RETAIN_STR&i
 from retain_str
 where not missing(RETAIN_STR&i)) as b
 on left(a.TEXT)=left(b.RETAIN_STR&i)
 %end;
 order by N;
quit;

data rtf_4;

length %sysfunc(tranwrd(%sysfunc(compbl(&LENGTH_STR)), %str(RETAIN_STR), %str(CAT)))
$200;

retain %sysfunc(tranwrd(%sysfunc(compbl(&LENGTH_STR)), %str(RETAIN_STR), %str(CAT))
);
 set rtf_3;
 %do i=1 %to &SPLIT_NUM;
 if not missing(RETAIN_STR&i) then
 do;
 CAT&i=RETAIN_STR&i;
 delete;
 end;
 %end;
run;

6. Split the table into columns.

How to read RTF files into SAS® dataset? continued

6

/*Suppose the linesize=120. Read the body of table into 120 columns. Each column contains 1 character. Retain
120 variables. If some variables’ values are still missing, then these columns will be blank vertical bars run
through all rows. Each row will be split by these blank vertical bars into different columns*/
data rtf_5;
 length COL_NULL $480;
 retain COL1-COL120;
 array COL{120} $1 COL1-COL120;
 set rtf_4 end=lastobs;

 do i=1 to 120;
 if COL(i)<substr(TEXT, i, 1) then
 COL(i)=substr(TEXT, i, 1);

 if lastobs then
 do;
 if missing(COL(i)) then
 COL_NULL=catx(",", COL_NULL, i);
 end;
 end;

 if lastobs then
 call symputx("COL_NULL", COL_NULL);
run;

data rtf_6;
 length TEXT_NEW $120;
 array COL{120} $1 COL1-COL120;
 retain COL_NUM 0;
 set rtf_5 end=lastobs;
 do i=1 to 120;
 COL(i)=substr(TEXT, i, 1);
 end;

 do i=&COL_NULL;
 COL(i)="|";
 end;

 TEXT_NEW=cat(of COL1-COL120);

 TEXT_LEN=length(TEXT_NEW);

 T_NUM=count(compbl(tranwrd(tranwrd(TEXT_NEW, " ", "00"x), "|", " ")), " ")
 -(substr(TEXT_NEW, length(TEXT_NEW), 1)="|" and substr(TEXT_NEW, 1, 1)="|")
 +(substr(TEXT_NEW, length(TEXT_NEW), 1) ne "|" and substr(TEXT_NEW, 1, 1) ne
"|");
 if COL_NUM<T_NUM then
 COL_NUM=T_NUM;

 if lastobs then
 call symputx("COL_NUM", COL_NUM);
run;

data &outds;
 array COLS{&COL_NUM} $120;
 set rtf_6;
 COL_NUM= &COL_NUM;
 CAT_NUM= &SPLIT_NUM;
 do i=1 to &COL_NUM;
 COLS(i)=scan(TEXT_NEW, i, "|");
 end;
 keep PAGE LINE_N CAT: COLS: TEXT: COL_NUM
 ;
run;

How to read RTF files into SAS® dataset? continued

7

THE REPORT CONTAINS MORE COLUMNS THAN FITS ON ONE PAGE
When the report contains more columns than fits on one page, the 1st pages of all rows can be read firstly, then the
2nd ones, 3rd ones…. Different pages containing different columns are read into different SAS® datasets. Then merge
them into one SAS® dataset by ID columns whose values are able to identify unique rows.

SUBSEQUENT WOK
After a RTF file is read into a SAS® dataset, some subsequent work is needed as follows.

Populate Order variables’ values
Value of an order variable should be populated repeatly from one row to the next until the value changes.

Wrap multiple rows into one

When value of a variable is too long, this value will flow into multiple rows. These multilple rows are needed to be
wrapped back into one row in SAS® dataset.

CONCLUSION
As shown in the paper, SAS® LINSTING converted RTF files can be read back into SAS® datasets standalone,
without referring developer’s SAS® code. Then validators are able to focus on final RTF files. Communication time
between developers and validators on the data structure of input dataset in REPORT procedure, and validators’
manual check work on gaps from input dataset in REPORT procedure to RTF file will be saved.

REFERENCES
Michiel Hagendoorn, Jonathan Squire and Johnny Tai “Save Those Eyes: A Quality-Control Utility for Checking RTF

Output Immediately And Accurately” http://www2.SAS®.com/proceedings/sugi31/066-31.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. The SAS® code can be sent upon request. Contact the
author at:

Name: Chunpeng Zhao
Enterprise: Boehringer Ingelheim
Address: 29/F, Park Place 1601 Nanjing Road (West)
City, State ZIP: Shanghai, China
Work Phone: +86 (21) 5288-0209
E-mail: chunpeng.zhao@boehringer-ingelheim.com

SAS® and all other SAS® Institute Inc. product or service names are registered trademarks or trademarks of SAS®
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www2.sas.com/proceedings/sugi31/066-31.pdf

	Abstract
	Introduction
	IdentifyING the title, the table header and the footnotes
	IDENTIFYING COLUMN TEXT
	PROGRAM FLOW AND DETAILS
	the report contains more columns than fits on one page
	Subsequent wok
	ConclusiON
	References
	Contact Information

