PharmaSUG China2017 - 59

Create Zero Observation data set to achieve maximum metadata resolution in
CDISC Submission

M K Sinha (Ajay), Incedo Technology Solutions Limited, Bangalore, India

ABSTRACT

In a world of systematic and efficient programming the success of project delivery largely depends on the accuracy of
data and implementation of approved standards. The metadata across all the files (analysis/mapping specification
file, raw data and final data) need to match for standardization and traceability. CDISC standards for all most all of the
data structures clearly states metadata information of a variable, its order of appearance in a dataset, variable length
etc. In order to achieve the same metadata as is specified by company or CDISC standard files, programmers need
to be very careful while generating the data set at the final stages. Most of time we enter into situations where
number of variables are more, or the order or metadata is different from one actually required in the final data set.

Also since these data sets (say SDTM, ADaM) in most cases are developed from SAS coding after referring the
analysis/mapping specification file, end moment change in the specification file may not be carried over to these data
sets. One approach to limit this error and generate the deliverables per standards is to first develop the
analysis/mapping speciation file as per guidelines and then import this file into SAS to create a metadata from these
analysis/mapping file. Use these metadata to assign the metadata for final data set. This paper elaborates on the
technique of first creating a zero observation data set with the metadata as same as specified in the
analysis/mapping specification spreadsheet and then to use this data set to create the final data set. In this approach
the analysis/mapping specification file needs to be current and the resulting data sets will be generated as per
standard. A review of final data set will double check the metadata consistency not only in the resulting data sets but
also on the analysis/mapping specification file.

INTRODUCTION

Development of specification files predominantly is the statistician work, and in order to achieve result (data set) in
desired format statistician also should pay attention from the initiation of project. Use CDISC (Clinical Data
Interchange Standard Consortium) specification file available online and customize it as per requirement or develop a
customized specification file per requirement. Import this spreadsheet in SAS and generate a zero observation data
having same metadata as specified in specification file and later club it with the programmer’s final data set to
generate the standardized data set. In the productive environment where the challenge is to generate data set
following algorithms, doing complex analysis if metadata consistency is somehow automated will be a great help for
the programmers. By developing a macro which can take care of metadata consistency of final dataset programmers
are set free to concentrate only on programming to generate quality output. This method not only eliminates the
rework which a programmer has to do every time there is any update to specification file but also create a solid link
between specification file and data set. With the current specification file that is used to generate the standardize
dataset, generation of define.xml also becomes scalable.

CREATION OF SAS IMPORT-TABLE SPREADSHEET

Use a 97-2003 format spread sheet as this is very stable platform to rely on. Online available CDISC datasets
metadata files can be used and the information can be copied in the former spread sheet. Use any process available
in SAS to import the information in a form of SAS dataset. A proper parity can be maintained between the variables
that need to be displayed in the final datasets and variables for which presence is uncertain. Several checks can be
introduced to capture only the variables which a statistician is comfortable with. Some variables which are uncertain
can be controlled not to be carried over to final dataset by these checks. (One such check can be carrying only those
variables from spreadsheet which are in UPPER CASE). It is also important to set some bench mark rule or rule for
SAS log error when any metadata is not consistent with specification file. e.g. introduce a check in the SAS macro
which throws error in SAS log whenever the length for any variable is specified more than 40. These checks can
validate the data/metadata even before final data set is generated which in turn improves the quality of data
generated and eliminates last minute hustle due to these issues.

Create Zero Observation data set to achieve maximum metadata resolution in CDISC Submission, continued

Display 1. is an example of Specification Spreadsheet.
Label Subject-Level Analysis Dataset
Key Variables STUDYID USUBJID
Dataset Structure One record per subject
Author I K SINHA [AdAY)
Note

ADaM Standard
Variable Hame Variable Label Variable Type Length MNotes Origin Mapped

ﬂ Variable

STUDYID Study dentifier O, STUCHID [STUDYID] IDEMTIFIER
SITEID Situdy Site |dentifier Char 4 OM. SITEID IDEMTIFIER
USUEJID Unique Subject [dentifier Char 21 oM. JSUEJID IDEMTIFIER
BIRTHOT Giirth Dlate (M) Mum 5] OM.ERTHOTC TIMING
CONSOTC Consent Date Char 1 OS.CONSOTC TIMING
CONSOTH Consernt Date [N) Mum i CONSOTC TIMING
RANDDOTC Randamization Date Char 1 RO.R&NOOTC TIMING
RAMDOOTR Randomization Date (M) Mum g RAMDOTC TIMIMNG
TRMSOT Oate of First Exposure in Bun-In Mum 5] Ex EXOTC TIMING
TRO1STM Time of First Exposure in Pun-In MNum] Ex.EXSTMC TIMING
TROSOT.
TROISOTM Oatetime of First Exposure in Fun-In Mum 5] TRTO1STM TIMING
TROEOT Oate of Last Expasure in Bun-in Mum [Ex.EXOTC TIMING
TROETM Time of Last Expozure in Fun-In MNum g Ex.EXSTMC TIMING
TROIEOT,
TROEOTM Oatetime af Last Expozure in FBun-In Mum 5] TRTOETM TIMING

Display 1. Snapshot of Specification Spreadsheet

IMPORT SPECIFICATION SPREADSHEET

Various data models developed by CDISC like SDTM and ADaM can be developed using the mapping specification
or analysis specification spreadsheet. SAS has different procedures to import these spreadsheet and the easiest
approach will be to use “PROC IMPORT”

Sample Code:
** call required tab data from excel specification **;

%macro tabcall(tab=);
PROC IMPORT OUT= work.&tab
DATAFILE= "&spec_loc"
DBMS=EXCEL REPLACE;
SHEET="&tab$";
GETNAMES = NO;
RUN;
%mend tabcall;

Display 2. is an example of SAS Imported Specification Spreadsheet.

F1 [F2 [F3 [F4 F5 F&
1 Label Subject-Level Analysis Dataset
2 Key Wariables STUDYID USUBJID
3 Dataset Structure One record per subject
4 Author M K SINHA {AJAY)
5 MNote
& ADaM Standard .
7 Variable Name Varable Label Varable Type . Motes on Mapping Origin
8 STUDYID Study Identifier Char 12 DM.STUDYID
9 SITEID Study Site |dentifier Char 4 DM.SITEID
10 UsSuUBJID Unigue Subject |dentifier Char 21 DM.USUEBJID
10 BIRTHDT Birth Date (M) MNum 8 DM.BRTHDTC
17 CONSDTC Consent Date Char 11 DS.CONSDTC
13 CONSDTN Consent Date (M) MNum 8 CONSDTC
14 RANDDTC Randomization Date Char 11 RD.RANDDTC
15 RANDDTM Randomization Date (M) Mum 8 RAMDDTC
16 TRO1SDT Date of First Exposure in Run-in Mum g EX.EXDTC
17 TRO1STM Time of First Exposure in Run-in Mum 8 EX.EXSTMC
18 TRO1SDTM Datetime of First Exposure in Run-In Mum 8 TRO1SDT, TRTO1STM
19 TROAEDT Date of Last Exposure in Run-In Mum 8 EX EXDTC
20 TRO1TETM Time of Last Exposure in Run-in Mum 8 EX EXSTMC
21 TRO1IEDTM Datetime of Last Exposure in Run-In MNum 8 TRO1EDT, TRTO1ETM
EZ)

Display 2. Snapshot of Specification Spreadsheet after import in SAS

Create Zero Observation data set to achieve maximum metadata resolution in CDISC Submission, continued

AUTO DIFFERENTIATE BETWEEN SUBJECT LEVEL DATASET AND BASIC DATA STRUCTURE

One of the major difference between subject level analysis dataset (ADSL) and other analysis datasets is the
presence of common/core variables in other dataset. Create an auto call to differentiate between ADSL and Basic
Data Structure (BDS).

Sample Code:

%if &dsn ne adsl %then %do;

** __ Call analysis dataset tab -- **;
%tabcall (tab = &&dsn);
** .. Call Common Variables tab -- **;
%tabcall (tab = COMMON_VARIABLES);

%end;

%else %do;
** .. Call analysis dataset tab -- **;
%tabcall (tab = &&dsn);

%end;

MACRO VARIABLE TO STORE DATASET LABEL, AND NAME

To make the process automated it's always good to use the resources available in SAS itself. One of the efficient way
is to use SAS dictionary or sashelp library. These are real time resources which gets updated depending on SAS
usage. Use the view files in sashelp (like vcolumn, vtable etc) to extract real data. Create a global macro variable to
store the name and label of data set that can be used later depending on usage.

Sample Code:
*% *%
ANALYSIS DATASETS METADATA CREATION
*% *k-

** Create a macro variable to store analysis dataset label, and name **;
proc sql noprint;
select f2 into: dsnlabel
from &dsn_
where seq = 1;
%let dsnname = &dsn_;
%put &dsnname;
%put &dsnlabel;
quit;

Display 3. is an example of macro variable capturing data set name and label.

LOGIC(MZOBS): ZLET (variable name i=s DSN_)
LOGIC(HMZOBS): XPUT &d=sn_
d=1
LOGIC(HMZOBS): ZXLET (variable name iz DSHNAME)
LOGIC(MZDBS): ZXPUT &d=nname =
d=1
LOGIC(HMZOBS): XPUT &dsnlabel
ubject-Level finaly=sis Dataset
OTE: PROCEDURE SOL used (Total process time):
real time 0.00 zeconds
cpu time 0.00 seconds

Display 3. Snapshot of SAS Log capturing resolved values of data set name and label

Create Zero Observation data set to achieve maximum metadata resolution in CDISC Submission, continued

VARIABLE TO HOLD METADATA ATTRIBUTES

Once the import of spreadsheet and storage of data set name and label into a macro variable is complete the next
target is to create a mask of dataset with the metadata as is defined in the spreadsheet. The variable need to be
defined with the same metadata as present in spreadsheet.

Sample Code:

**create variable to hold the attributes and metadata **;
data &dsn;
set &dsn(where =(upcase(fl)= f1));
length var $200;
&dsnname = strip(&dsnname);
if f1 ne ";
varl = compbl(strip(f1)||"[|strip(f3)||'(||strip(put(f4,8.)[|") '|| 'label="||strip(""||f2));
var = strip(strip(var1)||"™);
if strip(upcase(f3)) = 'CHAR' and upcase(strip(f8)) = 'I1SO8601' then var2 = strip(var)||' format =
$'||strip(put(f4,best.))||"."|| " informat = $'||strip(put(f4,best.))||".";
if var2 ne " then var = var2;
run;

CREATE MACRO VARIABLE THAT HOLDS ALL VARIABLE NAME

There is a requirement from programming perspective to keep only the variables that are present in the spreadsheet
in final data set. In the heat of programming often this is missed out. So it's a good approach here to create a macro
variable which holds all the variable name sequentially as per spreadsheet, which can be used later depending on
requirement.

Sample Code:

proc sql;
select f1 into : var separated by " " from &dsn_;
quit;

%put &var;
** create Zero Observation dataset **;
proc sql noprint;
select var into :varl separated by ', ' from &dsn_;
quit;

Display 4. is an example of a macro variable capturing all the variables in sequential order.

MLOGIC(MZOBS): ZPUT &var
BTUDYID SITEID USUBJID BIRTHDT CONMSDTC CONSDTHN RAMDDTC RAMDDTH TRO1SDT TROISTM TRO1SDTHM TROIEDT
TRO1ETH TRO1EDTH
NOTE: PROCEDURE SOL uwsed (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

Display 4. Snapshot of SAS Log capturing resolved values of macro variable Var - All the variables name in
same order as in spreadsheet

CREATE ZERO OBSERVATION DATSET

Once the above mentioned requirement is full filled the ultimate step will be to create a zero observation data set.
This data set will not have any observation, but only the metadata as defined in the imported spreadsheet. Once the
final programming is completed by a SAS programmer this zero observation data set can be merged with the final
data set in such a way that the resultant data set captures the metadata from zero observation data set and data from
the final data set. In this way the resultant data set will be as per spreadsheet requirement, eliminating various
programming tasks. This will result in increasing the quality of data with programmer concentrating on the derivation,
analysis etc and not on metadata.

Sample Code:

proc sql;
create table z&dsn (label = "&dsnlabel") (&varl);
quit;

Create Zero Observation data set to achieve maximum metadata resolution in CDISC Submission, continued

Display 5. is an example of zero observation data set.

M -
Fie Edit Vew Tock Dt fohtors Wirsow Help =

| dopsmanaz>r-* 110 GEEAE®

- | Jdosmadier o x 2O BREEAE®
frplorer = | _STUOWMD |SITEID| USUBSD | ESRTHDT | COMSDTC |CONSOTH | RANDOTC | RAMODOTM | TROVSOT | TROISTM | TROISOTM | TROIEDT | TRMETM | TROIEDTM
Corterts of "Work

L] SaEmaT Lacw

Variables in Creation Order

#* Variable Type Len Label

1 STUDYID Char 12 Study Identifier

2 SITEID Char 4 Study Site Identifier

3 usuBdJ ID Char 21 Unique Subject ldentifier

4 BIRTHDT Num 8 Birth Date (N)

. CONSDTC Char 11 Consent Date

H CONSDTN Num 8 Consent Date (N)

7 RANDDTC Char 11 Randomization Date

8 RANDDTN Num 8 Randomization Date (N)

9 TRO1SDT Num 8 Date of First Exposure in Run=In

10 TRO1STH Num 8 Time of First Exposure in Run-=In

11 TRO1SDTH Num 8 Datetime of First Exposure in Run=In
12 TROIEDT Num 8 Date of Last Exposure in Run-In

13 TROIETH Num 8 Time of Last Exposure in Run-In

14 TROIEDTH Num 8 Datetime of Last Exposure in Run=In

Display 5. Snapshot of Zero Observation SAS Data set with metadata as defined in spreadsheet

CREATION OF COMMON VARIABLES

For BDS data there is requirement of common variable. In this regard the imported Common variable tab from the
specification spreadsheet can be a good source to create a macro variable. These common variables can be later
added along with core variable for that dataset to generate a zero observation dataset that will have common and
core variable together which can be masked with the dataset generated by a programmer to form final dataset as per
spreadsheet.

Sample Code:
*% *k
COMMON VARIABLES CREATION
*%, *%

data cmnvar ;
set COMMON_VARIABLES;
if upcase(fl) = f1;
run;
proc sql;
select f1 into : cmnvar separated by " " from cmnvar;
quit;
%put &cmnvar,

Create Zero Observation data set to achieve maximum metadata resolution in CDISC Submission, continued

Display 6. is an example of common variable tab of spreadsheet.

Label Common Varaibles

Key Variable: STUDYID USUBJID

Dataset Strug One record per subject

Author M K SINHA {AJAY)

Nore

A0aM Standard ADaM Standard

Varkabde Nams Varkabs Label

STUDYID Study Identifier Char

SITEID Study Site Identifier Char 4 AOSL
UsUEJID Unigue Subject ldentifier Char 19 AOSL
SLUEJID Subject ldentifier For the Study Char E A0sL
COMSOTS | Consent Date Char 0 A0sL
COMSOTH | Consent Date (M) Mum i A05L
TRTSTOT Dlate of Fisrt Dose Tum E] AOSL
TRTTM Time of First Dose Tum E] AOSL
TRTSTOTM | Datetime of First Dose Mum g A0sL
AGE Age Mum] A0sL
AGEL Age Units Char 10 A05L
SEX Sen Char 1 ADOSL

| RACE Race Char 40 ADOSL
RACEOTH [Race - Other Char 200 ADSL
ETHMIE Ethnicity Char 40 ADSL
EMRLFL Enrolled Population Flag Char 1 A0SL
SAFFL Safety Population Flag Char 1 ADOSL
MITTFL Modified Intent-to-Treat Population Flag Char) A05L
EFFFL Efficacy Population Flag Char 1 AOSL
FFROTFL | Per-Protocol Fopulation Flag Char 1 AOSL
TRTM Treatment Char 40 A0sL
TRTOIM Treatment (M) Mum] A0sL
HEIGHT Enroliment Height [cm] Mum i A05L
WEIGHT Enrcliment wWeight [ka] Mum g ADOSL
DsCamMF Completed Protocol Char 1 AOSL
OSYISHUM | Mumber of last visit completed Char 40 A0sL
OSREASOMN | Reason for Early Study Termination Char 200

OOSEMURM | Mumber of Dogses Administerad Mum]

Display 6. Snapshot of Common Variable Spreadsheet for BDS

Display 7. macro variable capturing all the common variables in sequential order.

MLOGIC(MZOBS): ZPUT &cmnvar

STUDYID SITEID USUBJID SUBJID CONSDTC CONSDTH TRTSTDT TRTTHM TRTSTDTH AGE AGEU SEX BACE RACEOTH
ETHNIC ENBLFL SAFFL MITTFL EFFFL PPROTFL TRTO1 TRTOIN HEIGHT WEIGHT DSCOMF DSV ISNUM DSHREASON
DOSENUM

) —

Display 7. Snapshot of SAS Log - Global Macro Variable CMNVAR resolved to capture all common variables

USAGE IN MAIN DATASET SAS PROGRAM

Develop an automatic approach to define your libraries (using SAS admin). Create a macro variable which captures
the name of SAS program, let’s call this macro variable as dsn. The tab on specification spreadsheet has the same
name as of resultant data set and so dsn macro variable can be triggered in such a way that it automatically imports
the required tab into SAS once the data set SAS program is run for it. Later through the macro create a zero
observation data set, so if this macro is run on adsl , then ZADSL will be created in work library with all the metadata
as per spreadsheet. Later merge this ZADSL with the dataset created during programming to achieve the
requirement.

Sample Code:
%zobs(dsn = “&dsn”);

**Your SAS Program to create final data set let’s call the final generated data set by a programmer as
FINAL**;

** create data set as per spreadsheet requirement**;
data derived.adsl(label="&dsnlabel" keep = &var);
retain &var;

Create Zero Observation data set to achieve maximum metadata resolution in CDISC Submission, continued

set z&dsn final;
run;

CONCLUSION

In the programming world SAS programmers often miss the variable metadata as is required for submission. There
are chances that some variables are either missed or not populated well in the data set. This can be captured during
dual programming, but if there is an easy way out and if this can be eliminated at first instance itself then
programmers can concentrate on the quality of data rather than metadata. Though this approach seems easy
various other methods can be clubbed with it to make it robust. This can be later extended to run all the data set
programs together and generate the resultant ouput.

CONTACT INFORMATION <HEADING 1>

Your comments and questions are valued and encouraged. Contact the author at:

Name: M K SINHA (AJAY)

Enterprise: INCEDO TECHNOLOGY SOLUTIONS LIMITED
Address: BANGALORE, INDIA

City,StateZIP: BANGALORE , KARNATAKA 560103

Work Phone: +91-9886161421/ 80-6708 5878

Fax;+91 80 6708 5839

E-mail:mk.sinha@incedoinc.com, mksinhacr@gmail.com
Web:https://www.incedoinc.com/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:mk.sinha@incedoinc.com
mailto:mksinhacr@gmail.com
https://www.incedoinc.com/

