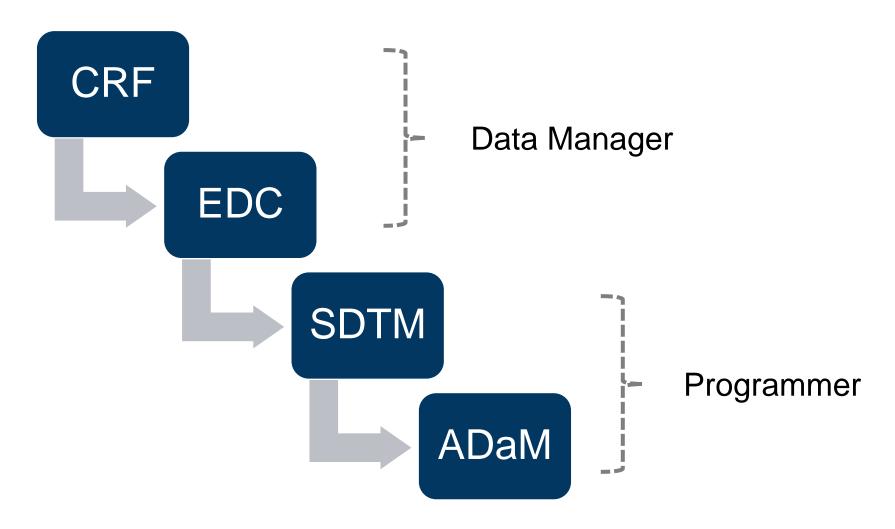


Central Metadata Repository for Automation in SDTM Dataset Generation

Naoko Izumi, Ajay Sinha 24Oct2019

Disclaimer

- All information provided in this slides is provided for information purposes only
- Views expressed in this presentation are those of the speaker and not necessarily of Novartis


Agenda

- Introduction
- Pre-requisite to start SDTM
- SDTM Process
- SDTM Automation Process
- Key Benefits

Introduction

- In a world of continual improvement in processes need for automated tool has become the next tag line. In context of data submitted to Health Authorities quality and consistency of data is of prime importance.
- In a properly managed setup, standards and metadata can be used to drive automation. This presentation describes metadata-driven approach that can be followed for generation of SDTM datasets.

Introduction - Data Flow

Pre-requisites to Start SDTM

- 1. SDTM-IG
- 2. Study Protocol
- 3. CRF
- 4. ALS (Architectural Load Sheet)
- 5. DQP (Data Quality Plan)
- 6. DTS (Data Transfer Specifications) for Vendor Data
- 7. Study Data Technical Conformance Guide
- 8. Data Standards Catalog

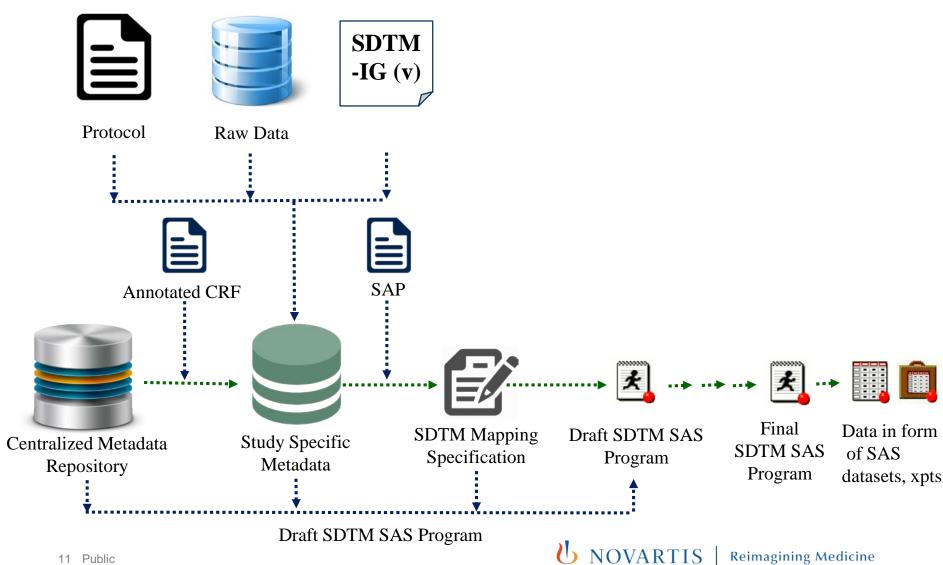
Pre-requisites to Start SDTM Contd...

9. Versions

- MedDRA
- WHO Drug Dictionary
- SNOMED-CT (Systematized Nomenclature of Medicine Controlled Terminology)
- NDF-RT (National Drug File Reference Terminology)
- UNII (FDA Unique Ingredient Identifier)
- Pinnacle 21
- Controlled Terminology

10. Raw data

SDTM Process


Completion of Trial Design Models (TDMs - TS, TA, TE, TV, TI, TD) Completion of CRF Annotation & Acceptance Checks for Raw data Creation of Mapping Specification Generation of SDTM Programs and Datasets for Development/QC Pinnacle 21 checks Development of define.xml for SDTM, Review & Development of SDRG

SDTM Automation Process

SDTM Automation Process

- SDTM Structure is pre-defined (SDTM-IG)
- SDTM Metadata can be generated using SDTM-IG
 - Ordering of variables
 - Datatypes of variables
 - Usage of variables
- Controlled Terminology freely available on Website (https://www.cancer.gov/research/resources/terminology/cdisc)

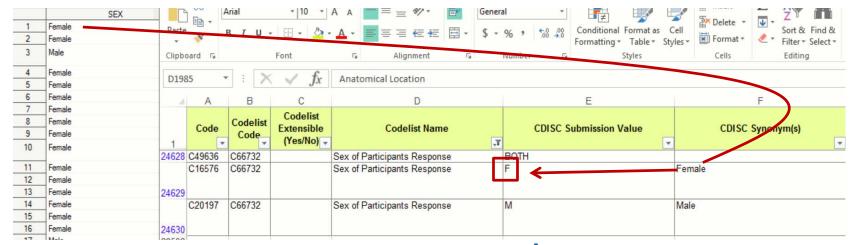
Working Model Steps

Centralized Metadata Repository

- 1. Repository created using SDTM-IG metadata
- 2. Availability of Sponsor defined variables
- 3. Precision values pre-defined
- 4. Origin of the variables pre-defined
- 5. Grouped into SDTM defined Class (including custom domains)
- 6. Ability to create study specific metadata using Raw data, Controlled Terminology Sheet

Study Specific Controlled Terminology

Raw data values can be easily compared with CT to get SDTM accepted values


Controlled Terminology Sheet

Raw data

Study Specific Controlled Terminology

SAS Raw Data

Controlled Terminology Sheet

Study Specific Metadata

Global Metadata

Raw data

Study Specific Metadata

	Status	Domain Name	Variable Name	Derivation Name	Derivation logic
El	DC	AE	AEACN	N/A	N/A
DI	RM	AE	AEACN	COPY	EDC.AE.AEACN
SI	MTD	AE	AEACN	COPY	DRM.AE.AEACN
Al	D	ADAE	AEACN	COPY	SDTM.AE.AEACN

	MEMLABEL	NAME	TYPE	LENGTH	VARNUM	LABEL
1	Adverse Events	AEACN	2	25	21	Action Taken with Study Treatment
2	Adverse Events	AEBDSYCD	1	8	17	Body System or Organ Class Code
3	Adverse Events	AEBODSYS	2	100	16	Body System or Organ Class
4	Adverse Events	AECAT	2	20	15	Category for Adverse Event
5	Adverse Events	AECONTRT	2	2	30	Concomitant or Additional Trtmnt Giver
6	Adverse Events	AEDECOD	2	200	9	Dictionary-Derived Term
7	Adverse Events	AEENDTC	2	20	34	End Date/Time of Adverse Event
8	Adverse Events	AEENDY	1	8	36	Study Day of End of Adverse Event
9	Adverse Events	AEHLGT	2	200	13	High Level Group Term
10	Adverse Events	AEHLGTCD	1	8	14	High Level Group Term Code

Categorization of SDTM Variables

- 1. Copy from Source data (may be change in datatype)
- 2. Rename Just rename the raw to SDTM variable
- 3. Codelist Apply study codelist to raw data to populate SDTM Variables with accepted values
- 4. Dates Direct copy with ISO 8601 format
- **5. Derive** Per SDTMIG provide generic derivation algorithm to get SDTM Variables from raw
- 6. Constant Assign a value for a variable

Categorization of SDTM Variables Contd..

Raw Environment

ABC, Datatype = C/N

1. Copy

SDTM Environment

ABC,
Datatype = C/N or N/C

ABC, Datatype = C/N

2. Rename

XYZ, Datatype = C/N

ABC, Datatype = C/N

3. Codelist

Controlled
Terminology Sheet

ABC,
Datatype = C/N
Data with Codelist Values

Categorization of SDTM Variables Contd..

Raw Environment

Date, Datatype = C/N

4. Dates

ISO 8601

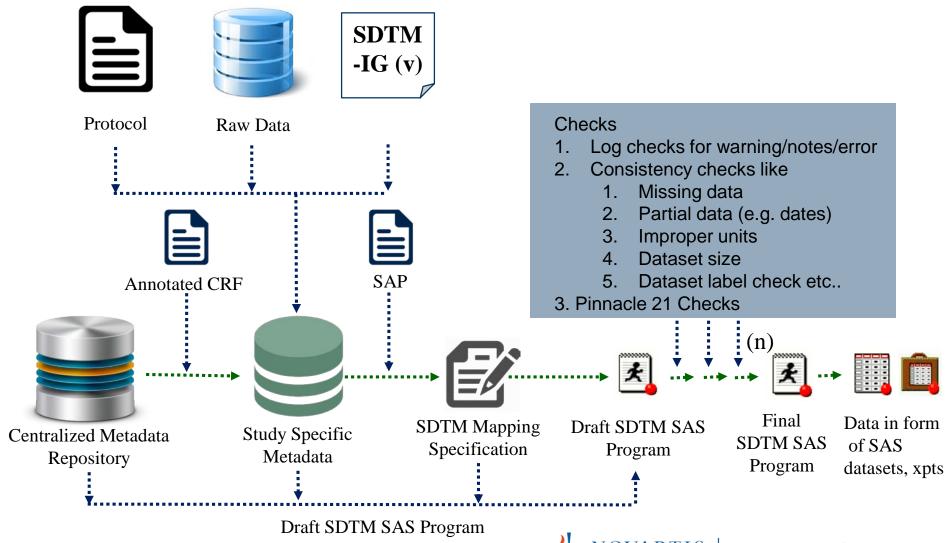
SDTM Environment

DTC, Datatype = C/C

ABC, Datatype = C/N

5. Derive

Derivation Logic
/ Algorithm


ABC/XYZ,
Datatype = C/N or N/C

6. Constant

Assigned Values

Assigned Value

Working Model Steps

SDTM Final Deliverables

- Define.xml
- Study Data Reviewers Guide (Pinnacle 21 Reports justified)
- Annotated CRF
- Pure SDTM xpt files

Key Benefits

- ✓ Greater consistency between CRF and SDTM
 Traceability of changes
- ✓ Easy to construct automation process

 Create dataset specification and programs from metadata automatically
- ✓ Maintenance of metadata by global standard team Centralize all changes made to metadata

Thank you