
Paper 8480-2016
Have SAS® Annotate Your Blank CRF for You! Plus Dynamically Add Color

and Style to Your Annotations
Steven Black, Agility Clinical Inc., Carlsbad CA

ABSTRACT
Annotating a blank Case Report Form (blankcrf.pdf, which is required for a nondisclosure agreement with
the US Food and Drug Administration) by hand is an arduous process that can take many hours of
precious time. Once again SAS® comes to the rescue! You can have SAS use the Study Data Tabulation
Model (SDTM) specifications data to create all the necessary annotations and place them on the
appropriate pages of the blankcrf.pdf. In addition you can dynamically color and adjust the font size of
these annotations. This approach uses SAS, Adobe Acrobat®’s forms definition format (FDF) language,
and Adobe Reader to complete the process. In this paper I go through each of the steps needed and
explain in detail exactly how to accomplish each task.

INTRODUCTION
If not familiar with the process of submitting data to the FDA for approval of a drug, here is quick
rundown: Data for the clinical trial of a drug is collected either on paper forms or electronically. Exactly
what data is collected is determined by various forms called Case Report Forms (CRFs). These forms
are then used to set up the database where the data is being held. For analysis purposes this data is
then reformatted/standardized into specific domains. These domain datasets and process are collectively
called the Standardized Data Tabulation Model (SDTM).

These SDTM datasets are then used to create the analysis datasets used to create the tables, listings,
and figures needed for submission. The FDA has requested that the CRFs be re-annotated based on
these STDM domains to illustrate which SDTM domain variables come from which pages in the CRFs.
Some variables are collected on multiple pages of the CRF such as information collected at each visit
throughout the study these are noted on the subsequent CRF pages to refer to the first page of which
they occur.

The FDA also requests a document that illustrates that mapping of each variable collected on the CRF
and how it fits into the standardized data tabulation model. This document, usually collected in MS Excel
®, is termed the SDTM specification document. The process of creating the SDTM specification
document and annotated CRFs vary in the industry, some organizations annotate the CRF’s first per
SDTM requirements and then use this annotation to create the SDTM specification document, whereas in
this paper I use the specification document to create the annotations for the CRF.

Figure 1. Process flow of SDTM annotation for Blank CRFs.

There have been a few papers already published on the topic of auto-annotation as shown in the
reference, I thought that providing some additional details on how I accomplished this task may be of use
to others. This paper will separate the tasks into 7 steps, starting with the SDTM setup and ending with
the final annotation of the CRFs in pdf.

Blank CRFs
created/annotated

and data is
collected in a

database.

SDTM specification
document created
using annotated

CRFs and raw
datasets.

SAS program
creates annotation
code for Blank CRF

using the SDTM
specification data.

SDTM annotations
are imported into

Blank CRF
document and
then finalized.

1

STEP ONE: A SEMI-SETUP SDTM SPECIFICATION FOR EACH DOMAIN NEEDED
From my experience most companies use MS Excel to hold their SDTM specifications and it is generally
assumed that each of the various SDTM domains are held in their own respective tab within the Excel
workbook. For each domain I only need to use the columns: Variable Name, and Origin. In the excel
workbook I use the tabs: table of contents (TOC), Value level data and Supplemental (SUPP) data (when
applicable), and any domains that are non-trial specific (DM, MH, etc.). I’m only interested in those
variables that have a specific CRF page assigned to them in the Origins column. Essentially even a very
simple SDTM specification document will work for this process.

Figure 2. Screenshot of simplified SDTM specifications document for the DM domain.

STEP TWO: IMPORTING THE SDTM DATA AND GETTING THINGS LINED UP.
I first import the table of contents (TOC) sheet to allow for a more dynamic approach to know which
domains have been used within the spreadsheet. Once all data from all the specified domains has been
imported, I set all the data into one dataset and have a simple dataset the looks like this:

2

Figure 3. Example of SDTM domain data set into one dataset.

This dataset contains the variables: Domain, Variable, Pages, and Num.

The variable Pages equals the page numbers noted in the origins column after having removed all other
character text.

The variable Num is the number of pages noted per each variable - created using the COUNTC function
counting the spaces and adding 1 (see appendix for code). Data is limited to only those with a page
number noted.

I then create a record per each page noted so that in the example above the variable DSSTDTC will have
two records one for page 57 and one for page 58. I then created a new variable called page with its
respective page number (see appendix for code).

I then create a new dataset which contains the distinct domains captured per each page. I then set with
the original data which contains the variable data per page. In this new data I have also created a variable
type which marks if the row is a domain header or variable data. I also drop any unneeded variables.

Figure 4. Example of combined domain header/page data (type=1) and variable/page data (type=2) after
sorting.

3

Next I count the number of domains per page (NCOUNT) and the number of variables per page
(COUNT). I also create the text to be used in the annotations. For those with type 1 (headers), I use the
description found in the TOC document per each domain. For those with type 2 (variables), I adjust the
values from the DM domain to contain the text ‘DM.’ if the value of the variable does not already have the
DM prefix (i.e. RACE becomes DM.RACE). Otherwise I create the text as the variable data (code
provided in appendix).

Figure 5. Example of new created TEXT variable for both header and variable data.

Lastly, I know in my final output I’ll need an annotation per each page in the BlankCRF.pdf so I create a
dummy dataset with page variable equal to 1 to 150. I then merge this onto the other data. I then reset
the variable TYPE to equal 3 and set these blank text rows to ‘For Annotations see PDF Page ’. The
exact reference page would be hand entered later once annotations have been placed on the page. The
max number (150) can be greater than the number of pages in the BlankCRF.pdf. Annotations that do
not match a specific page on the BlankCRF.pdf will be ignored, so having more annotations than pages is
fine. I’ve set this max number to be a macro parameter for easy modification.

Figure 6. Example of merged dummy dataset for each page in the CRF with no annotations noted (type=3).

STEP THREE: COLORS AND RECTANGLES.
So at this point, upon reaching step three we have all the annotations in a single dataset with the text
needed, page needed, a type variable, and a few counting variables. Next we need to create the finer
details for the annotations to be created in the pdf page.

It is easier to understand creating an annotation while looking at a single complete annotation. So in this
single example we have several variables: TEXT - Text used in annotation, PAGE - page number,
TEXTCOLOR - font color of annotation text, BACKGROUND – background color of annotation box, RECT
- size of annotation box, and FONT_SIZE – size of font of annotation text.

Figure 7. Example final annotation variables.

4

We will discuss each of these variables in detail starting with the TEXTCOLOR since the variable TEXT
and PAGE have previously been created.

Text/Font Color

I use two text colors in creating the annotations, #000000 (black) for the domain headers, and #FF0000
(red) for the variable names. Font colors use Hex Coloring schemes.

Background Color

Background colors are setup as Latex colors which can be hard to interpret but a handy reference for
both the Hex and Latex color assignment is http://latexcolor.com/. In our example we use (0.75 1.0 1.0)
which is a light blue color. I use around 10 different colors so I can color each of the domains a different
color. Here is quick list of some of my color choices.

1.0 1.0 0.0 - yellow

1.0 1.0 0.66 - light yellow

0.66 0.75 1.0 - purple

1.0 0.75 0.0 - orange

0.0 0.75 1.0 - blue

0.75 1.0 1.0 - light blue

1.0 0.66 0.75 - pink

1.0 0.75 0.66 - light orange

Some color combinations such as using a green/light green background with the red font color are difficult
to read and should be avoided.

Font Size

I use a larger font size (14) for the domain headers and a smaller size (11) for variable labels. I use a
macro parameter to dynamically set the base font size and increase the font for the headers, as some
CRF’s annotations may need to be set in a smaller font due to paper real-estate restrictions.

Rectangles

Creating the rectangle is the most complicated piece of code. The rectangle is the size and location of
annotation box which holds the annotation text. There are four numbers associated with the rectangle,
each contains the position of the x and y axis of two of the corners of the rectangle. In this example we
have a rectangle coordinates of 4 765 153 785.

Figure 8. Rectangle Coordinates: 1 - lower x-axis position, 2 - lower y-axis position, 3 - upper x-axis position,
4 - upper y-axis position.

How the coordinates fit on a pdf page.

A pdf document begins in the lower left hand side with the position 0, 0 while in portrait orientation, when
rotated 90° the orientation starting point also rotates. I have not needed to take this rotation into
consideration but may need to in the future with an additional macro parameters noting those pages
which are set to landscape position.

2

4
3

1

765

785

153

4

5

http://latexcolor.com/

Figure 9. Page coordinates in a pdf document.

The max x-axis position is 595 and max y-axis position can vary between 843 and 785. There is a little
trial and error regarding top placement, so I built this in as a macro parameter. 300 is essentially the
middle of the x-axis position in document page.

A rectangle height of 20 is generally large enough to hold Arial font size 12-14 and a height of 16 fits the
9-11 sized Arial font.

The length of the rectangle will depend upon the size of the text and font type used. This can be a bit
tricky but I’ve created a simple formula using font size and text length to create a constant variable to
multiply against the text length using Arial font type. Simply because the size of the rectangle will need to
grow/shrink according to the font size irrespective of the text length.

font_adjust=&font_size-10;
txt_l=length(strip(text));
if txt_l <6 then constant=10+font_adjust;
else if txt_l <10 then constant=9+font_adjust;
else if txt_l <23 then constant=8+font_adjust;
else if txt_l <36 then constant=7+font_adjust;
else constant=6+font_adjust;

Then for the length of the rectangle I use txt_l*constant.

So for my rectangle I want to start just over from the left side of the page and at the top. So I set lower x-
axis position to 4, then for my lower y-axis position I set to top page limit (785) - 20 = (765), my upper x-
axis position is set to the text length (17)* constant (9) = (153), finally my upper y-axis position is set to
the top page limit (785).

In the dataset I have two types of data domain headers and variable data. I have it set up so that the
domain header move from left to right from the top of the page and then down. The variable data is
located after the domain header data from top to bottom. This can be accomplished using the retain
statement hold the previous values and then beginning the next rectangle a few places over from the last
(code shown in appendix).

STEP FOUR: LEARNING FDF CODE
Adobe Acrobat has essentially created it’s own language called fdf. Luckily with just a bit of help, learning
the ins and outs of fdf is not too difficult. It helps that, if needed, we can take a pdf annotation and export
it and see what it looks like in fdf code.

For creating annotations, fdf code requires that we provide an opening wrapper code similar to html code,
second we create a place holder for each annotation we are going to be creating. Third we create each
annotation. Fourth we provide a closer wrapper to the file.

Creating the code:

Within SAS we create the code as a text string within the dataset, outputting the code as we go along.

*** create the code ***;
data _coding;length code $1000;

*** begin code ***;

0, 0

Page rotated clockwise
y-

ax
is

x-axis

595, 785

595, 785

0, 0

6

code='%FDF-1.2'; output;
code="1 0 obj<</FDF<</Annots["; output;

In this step we create reference numbers per each of the annotations to be created, these numbers are
set to the number of annotations +1, so our first annotation will be 2. For subsequent annotations we
would repeat the process. We then end this section.

code="2 0 R"; output;
code="3 0 R"; output;
code="4 0 R"; output;
...
code="]>>/Type/Catalog>>endobj"; output;

Now we create the annotation using the reference number we created above, placing in our background
color, text, font type, size, justification, and color, page number and rectangle area. We then close the
annotation.

 *** loop through number of annotations to be created ***;
 code="2 0 obj<<"; output; * open object 2 *;
 code="/C[0.75 1.0 1.0]"; output; * background color *;
 code="/Contents(DM = Demographics)"; output; * text of annotation *;
 code="/DS(font: italic bold Arial,sans-serif 14.0pt; text-align:left;
 color:#000000)"; output; * font type size alignment

 and color *;
 code="/F 4/Page 0"; output; * page number *;
 code="/Rect[4 765 153 785]"; output; * rectangle area *;
 code="/Subj(Text Box)/Subtype/FreeText/Type/Annot>>endobj"; output; * set
annotation type and close object 2 *;

Next annotation...

Finally we close the file.
*** end code ***;
code="trailer"; output;
code="<</Root 1 0 R>>"; output;
code='%%EOF'; output;

run;

In this example we created one annotation. In order to create all the needed annotations I loop through
each record using a macro and macrotize the data using PROC SQL (code shown in the appendix). As a
note, the page number is set to one page lower than noted on the SDTM specifications. This is due to an
auto-correction that is made when importing the data into the BlankCRF.pdf.

STEP FIVE: CREATE THE FDF CODE FILE
To create the final code to be used for the annotations I use a FILE statement removing any blank rows.

data _null_ ;
set _coding (keep=code where=(code ne ''));
FILE "output_file_location.fdf";
PUT code;
run ;

I’ve created the whole process as a macro with a limited number of parameters these include: name and
location of STDM specifications file, name and location of FDF code file, font size wanted, adjustable area
of top page, and max number of pages in the Blank CRFs (default set to 150).

7

STEP SIX: IMPORT THE FDF FILE INTO ADOBE READER AND BE AMAZED.
Open the Blank CRFs document in Adobe Reader (Version 11 was used for this paper). Click the
‘Comment’ option, this will create the comment tool sidebar. Once this is available click the small box
icon for Options. Select “Import Data File…” option.

Figure 10. Importing the annotations file into pdf.

Then browse to where you have saved the FDF file. Select the file and click open.

Figure 11. Locating and viewing the imported annotations.

This will then import all the annotations into the BlankCRF.pdf document and place them on the
respective page. The annotations will also appear in the comments box.

On those pages with annotations the headers will appear first followed by the variables per each header.
The Coloring of the domain will occur in the order specified in the color format.

Figure 12. Annotations as they appear in the pdf document.

Once done save the pdf with a new name. Time will still need to be taken to move the variable list near
the respective variable(s) in the pdf, but using SAS to create the annotations and the ease of importing

8

them saves all the time it would have taken to add each annotation to the page and ensures consistency
with all annotations created.

Additional tinkering may need to occur to get everything perfect, such as modifying the top page variable
and the spacing of the rectangles but with this information and code from this paper it should be very
manageable. If needed simply undo the import of the annotations and re-import with the updated file
once the modifications are completed.

CONCLUSION
Using SAS to create the annotations for the BlankCRFs.pdf can dramatically decrease the time it take to
complete the BlankCRFs. In this paper I illustrated how to set up the SDTM data, create the annotation
text and code, and finally how to import these annotations in the BlankCRF.pdf document. I also provide
some of the more granular information regarding coloring and sizing the annotations. I hope that the
paper is found useful for other who want to further use SAS to accomplish great things. A basic macro
template is provided in the appendix.

REFERENCES
Spruck, Dirk & Kawohl, Monika 2004 “Using SAS to Speed up Annotating Case Report Forms in PDF
Format” Proceedings of the 2004 Pharmaceutical SAS Users Group. Cary, NC: SAS Institute Inc.
www.lexjansen.com/pharmasug/2004/coderscorner/cc02.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Steve Black

Agility Clinical Inc.

6005 Hidden Valley Rd. Carlsbad CA, 92011

Work Phone: 760-658-5919

steven.c.black@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX
Example macro program:

*** begin macro call with parameters (default set for font size, top of the
page and the max page, if missing) ***;
%macro pdf_annotate
(sdtm_file,output_file,font_size=11,top_page=800,max_page=150);

PROC IMPORT DATAFILE = "&sdtm_file"
 OUT = _toc
 DBMS =XLSX REPLACE;
 GETNAMES = YES;
 SHEET='TOC';
RUN;

9

http://www.lexjansen.com/pharmasug/2004/coderscorner/cc02.pdf

*** macrotize TOC data to know what tabs to import ***;
proc sql noprint;
select Dataset, Description into: domain1 -:domain999,:descrip1- :descrip999
from _toc;
%let numdom=&sqlobs;
quit;

*** deleting any work data with a _ prefix ***;
proc datasets lib=work nolist;
delete _:;
quit;

%do x = 1 %to &numdom;

*** import specific tabs from SDTM file ***;
 PROC IMPORT DATAFILE = "&sdtm_file"
 OUT = prep
 DBMS =EXCELCS REPLACE;
 SHEET="&&domain&x";
 RUN;

*** sort _prep data limiting to where origin contains CRF text, removing
duplicates ***;
 proc sort data=prep (keep=Origin Variable_Name Define_Comment)
nodupkey;
 by Variable_Name Origin Define_Comment;
 where index(upcase(origin),'CRF');
 run;

*** create specific domain datasets, creating needed variables ***;
 data _&&domain&x;
 set prep;length domain $10 new_define_comments variable $300 pages
$100;
 domain="&&domain&x";
 pages=compress(origin,', ','kd');
 new_define_comments=define_comment;
 variable=Variable_Name;
 drop Origin Variable_Name Define_Comment;
 run;

*** end loop through each domain ***;
%end;

*** create format for domains based off of TOC data ***;
proc format;
value $descs
%do x = 1 %to &numdom;
"&&domain&x"="&&descrip&x"
%end;
;

*** create formats for background colors (see above for translation) ***;
value colors
1='0.75 1.0 1.0'
2='1.0 1.0 0.66'
3='1.0 0.75 0.66'

10

4='1.0 0.66 0.75'
5='0.66 0.75 1.0'
6='1.0 1.0 0.0'
7='0.0 0.75 1.0'
8='1.0 0.75 0.0'
9='0.75 1.0 0.75'
;

run;

*** set in all datasets (limit data to where domain ne missing) ***;
data _allin;
set _:;
if domain ne '';

*** create pages and num (the number of different pages mentioned in the
document) ***;
pages=strip(compbl(tranwrd(pages,',',' ')));
num=countc(trim(pages),' ')+1;
run;

*** macrotize max number of pages ***;
proc sql noprint;
select max(num) into: maxpages
from _allin;
quit;

*** set in _allin data the number of time per &maxpages using a limiting
statement to only select the data needed ***;
data _body;
set %do x =1 %to &maxpages;
_allin (in=x&x where=(num>=&x))
%end;
;

*** reset num to the set in occurrence number ***;
%do x = 1 %to &maxpages;
if x&x then num=&x;
%end;

*** create the true page number per annotation ***;
page=input(scan(pages,num,' '),best.);

run;

*** sort body data removing duplicate annotations ***;
proc sort data=_body nodupkey;
by page domain variable;
run;

*** create header data per page and domain ***;
proc sort data=_body out=_headers (keep=domain page) nodupkey;
by page domain;
run;

*** bring in header and body data into one dataset ***;
data _whole;

11

set _headers (in=a) _body (in=b);
if a then type=1;
if b then type=2;

drop num pages;
run;

*** sort by page and type ***;
proc sort data=_whole;
by page type;
run;

*** create count of data per page and type ***;
data _whole_count;
set _whole;
count + 1;
by page type;
if first.type then count = 1;
run;

*** re-sort data for merging ***;
proc sort data=_whole_count;
by page domain;
run;

*** needed to ensure coloring of header and body annotation is the same ***;
*** merging the header data back onto the whole data and creating a new count
variable ***;
*** this count variable becomes the coloring scheme ***;
data _prep; length text $300;
merge _whole_count (keep=domain page count type
where=(old_type=1) rename=(type=old_type count=ncount))
_whole_count;
by page domain;

*** modify the text presented in the annotation based on type ***;
*** fix DM variables to include DM. if missing ***;
if type=1 then text=strip(compbl(domain||' = '||put(domain,$descs.)));
else if type=2 then do;
 if upcase(domain)='DM' and strip(substr(upcase(variable),1,2)) not
='DM' then text='DM.'||strip(variable);
 else text=strip(variable);
end;

drop old_type;
run;

*** re-sort by page and type ***;
proc sort data=_prep;
by page type;
where page ne .;
run;

data _template;
do page = 2 to &max_page;
output;end;
run;

12

data _prep2;
merge _prep (in=a) _template (in=b);
by page;
if b and not a then do;
type=3;
text='For Annotations see PDF Page ';
count=1;
end;

run;

*** data to create the boxes for annotations ***;
data _rectangles;
set _prep2;length lrectx lrecty urectx urecty $5 textcolor $10 background $15
rect $50;
by page;

*** hold values of these variables ***;
retain h_x_adjust h_y_adjust b_x_adjust b_y_adjust;

*** adjust font size to be between 9-12 ***;
%if 8< &font_size >12 %then %let font_size=11;;

*** using the font size and length of text determine a constant value to
create the length of the box ***;
font_adjust=&font_size-10;
txt_l=length(strip(text));
if txt_l <6 then constant=10+font_adjust;
else if txt_l <10 then constant=9+font_adjust;
else if txt_l <23 then constant=8+font_adjust;
else if txt_l <36 then constant=7+font_adjust;
else constant=6+font_adjust;

*** create boxes for header annotations ***;
if type=1 then do;

font_size=&font_size+3;

 if count=1 then do;
 h_x_adjust=0;
 h_y_adjust=&top_page;
 end;

*** if the box is about to reach the end of page then drop and move down ***;
 if h_x_adjust > 500 then do;
 h_x_adjust=0;
 h_y_adjust=h_y_adjust-23;
 lrectx= put(h_x_adjust+4,5.0);
 lrecty= put(h_y_adjust-20,5.0);
 urectx= put(h_x_adjust+(txt_l*constant),5.0);
 urecty= put(h_y_adjust,5.0);
 h_x_adjust=input(urectx,best.);
 end;
 else do;
 lrectx= put(h_x_adjust+4,5.0);
 lrecty= put(h_y_adjust-20,5.0);

13

 urectx= put(h_x_adjust+(txt_l*constant),5.0);
 urecty= put(h_y_adjust,5.0);
 h_x_adjust=input(urectx,best.);
 end;

*** create rect, textcolor and background color variables ***;
 rect=strip(compbl(lrectx||lrecty||urectx||urecty));
 textcolor='#000000';
 background=put(count,colors.);
end;

*** create boxes for body annotations ***;
if type=2 then do;
font_size=&font_size;
 if count=1 then do;
 b_y_adjust=h_y_adjust-19;
 b_x_adjust=0;
 end;

*** if the annotations reach the bottom of the page then moves over to the
top of page ***;
 if b_y_adjust < 20 then do;
 b_x_adjust=b_x_adjust+120;
 b_y_adjust=h_y_adjust-19;
 lrectx= put(b_x_adjust+4,5.0);
 lrecty= put(b_y_adjust-16,5.0);
 urectx= put(b_x_adjust+(txt_l*constant),5.0);
 urecty= put(b_y_adjust,5.0);
 b_y_adjust=input(lrecty,best.)-2;
 end;
 else do;
 lrectx= put(b_x_adjust+4,5.0);
 lrecty= put(b_y_adjust-16,5.0);
 urectx= put(b_x_adjust+(txt_l*constant),5.0);
 urecty= put(b_y_adjust,5.0);
 b_y_adjust=input(lrecty,best.)-2;
 end;

*** create rect, textcolor and background color variables ***;
 rect=strip(compbl(lrectx||lrecty||urectx||urecty));
 textcolor='#FF0000';
 background=put(ncount,colors.);
end;
if type=3 then do;
font_size=&font_size+3;
 h_x_adjust=246;
 h_y_adjust=&top_page;
 lrectx= put(h_x_adjust+4,5.0);
 lrecty= put(h_y_adjust-16,5.0);
 urectx= put(h_x_adjust+(txt_l*constant+20),5.0);
 urecty= put(h_y_adjust,5.0);
 rect=strip(compbl(lrectx||lrecty||urectx||urecty));
 textcolor='#FF0000';
 background=put(count,colors.);
end;

run;

14

*** mactotize all data to use in the coding process ***;
proc sql noprint;
select count(*) into: max
from _rectangles;
%let max=&max;
select text, page, rect, textcolor, background, font_size into:
txt1 -: txt&max,: pg1-: pg&max,: rect1 -: rect&max,: txtclr1 -: txtclr&max,:
bkgnd1 -: bkgnd&max,: fontsz1 -: fontsz&max
from _rectangles;
quit;

*** create the code ***;
data _coding;length code $1000;

*** begin code ***;
code='%FDF-1.2'; output;
code="1 0 obj<</FDF<</Annots["; output;

*** loop through number of annotations to be created ***;
%do x= 1 %to &max;
 code="%eval(&x+1) 0 R"; output;
%end;

code="]>>/Type/Catalog>>endobj"; output;

*** loop through number of annotations to be created ***;
%do x = 1 %to &max;
 code="%eval(&x+1) 0 obj<<"; output;
 code="/C[%trim(&&bkgnd&x)]"; output;
 code="/Contents(%str(&&txt&x))"; output;
 code="/DS(font: italic bold Arial,sans-serif &&fontsz&x...0pt; text-
align:left; color:%trim(&&txtclr&x))"; output;
 code="/F 4/Page %trim(%eval(&&pg&x-1))"; output;
 code="/Rect[%trim(&&rect&x)]"; output;
 code="/Subj(Text Box)/Subtype/FreeText/Type/Annot>>endobj"; output;
%end;

*** end code ***;
code="trailer"; output;
code="<</Root 1 0 R>>"; output;
code='%%EOF'; output;

run;

*** outputs the final code as an fdf document ***;
data _null_ ;
set _coding (keep=code where=(code ne ''));
FILE "&output_file..fdf";
PUT code;
run ;

*** ends pdf_annotate macro ***;
%mend;

%pdf_annotate (SDTM_FILE =C:\\Example\SDTM_FILE.xlsx, output_file =
c:example\pdf annotations, FONT_SIZE = 12,TOP_PAGE=785,MAX_PAGE=4);

15

Figure 13. Screenshot of simple table of contents (TOC) tab

Figure 14. Screenshot of simple MH domain SDTM specification.

16

	Abstract
	Introduction
	Step One: A semi-setup SDTM specification for each Domain needed
	Step Two: Importing the SDTM data and getting things lined up.
	Step Three: Colors and rectangles.
	Step Four: learning fdf code
	Step Five: Create the fdf code file
	Step Six: Import the fdf file into adobe reader and be amazed.
	Conclusion
	References
	Contact Information
	Appendix

