PharmaSUG 2012 - Paper DS22-SAS

Harnessing the Power of SAS ISO 8601 Informats, Formats, and the CALL
IS8601 _CONVERT Routine

Kim Wilson, SAS Institute Inc., Cary, NC, USA

ABSTRACT

Clinical Data Interchange Standards Consortium (CDISC) is a data standards group that governs clinical research
around the world. This data consists of many date, time, datetime, duration, and interval values that must be
expressed in a consistent manner across many organizations. The International Organization for Standardization
(ISO) approved the ISO 8601 standard for representing dates and times, and this standard is compliant with CDISC.

This paper addresses how to create and manage I1ISO 8601 compliant date, time, and datetime values in a CDISC
environment. The paper also discusses the computation of durations and intervals. Examples that use the SAS call
routine CALL 1S8601_CONVERT and other programming logic are also provided, along with helpful tips and
suggestions. In addition, the paper presents solutions to some common date and time problems, such as handling
missing date components.

INTRODUCTION

ISO 8601 is an international standard for representing dates and time, including many variations for representing
dates, times, and intervals. These representations allow values in a basic format, meaning no delimiters between
components, or in an extended format, which includes delimiters between components. SAS introduced the 1SO 8601
family of informats and formats beginning in SAS® 8.2 and first documented them in the SAS 9.1 XML LIBNAME
Engine: User's Guide. The original names for the delimited informats and formats contained the prefix 1IS8601 while
those without delimiters contained the prefix ND8601. Beginning in SAS 9.2, the names changed so that informats
and formats having a prefix of ND8601 became B8601 (B for basic) while those with the prefix IS8601 changed to
E8601 (E for extended).

During clinical trials, these informats and formats are helpful when you are reading and writing data into and out of
SAS and calculating durations and intervals relating to events that are recorded in the study.

ISO 8601 REPRESENTATION

The two main representations of date, time, and datetime values within the ISO 8601 standards are the basic and
extended notations. A value is considered extended when delimiters separate the various components within the
value, whereas a basic value omits the delimiters. The extended format requires hyphen delimiters for date
components and colon delimiters for time components. Spaces are not allowed in any IS0 8601 representation. The
structures for each data type require that you fill each placeholder with a value, including adding a zero to single-digit
months, days, hours, and minutes. When you specify a datetime value, an uppercase T is the required delimiter
between the date and time. When SAS reads an ISO 8601 value that specifies a time-zone offset (+|-hh:m or +|-
hhmm), the time or datetime value is adjusted to account for the offset. The computed SAS value is the time or
datetime for the zero meridian, which is in Greenwich, England. Therefore, the zero meridian is called Greenwich
Mean Time (GMT).

In the context of the ISO 8601 representations, the following topics are discussed:
e the structure of dates, times, and datetimes

e examples that show how to use informats and formats to read and write date, time, and datetime values to
SAS date, time, and datetime variables

e durations

e intervals

e partial and missing components

e the $N8601B and $N8601E informats and formats
e the CALL IS8601_CONVERT routine

STRUCTURE FOR DATES, TIMES, AND DATETIMES
Extended informats and formats are prefixed with E8601, and they take these forms:
date: yyyy-mm-dd
time: hh:mm:ss<_ffffff>
datetime: yyyy-mm-ddThh:mm:ss<.ffffff>
With the time-zone specification added, the formats and informats take these forms:
time: hh:mm:ss.<ffffff>+|-hh:mm
datetime: yyyy-mm-ddThh:mm:ss<. ffffff>+!-hh:mm
Basic informats and formats are prefixed with B8601, and they take these forms:
date: yyyymmdd
time: hhmmss<ffffff>
datetime: yyyymmddThhmmss<ffffff> (the T delimiter remains, but other delimiters are omitted)

When a time-zone specification is included, as shown below, the time-zone difference sign remains even though the
delimiters are omitted:

time: hhmmss<ffffff>+|-hhmm
datetime: yyyymmddThhmmss<ffffff>+|-hhmm

Note: Any values that are accepted by the E8601 family of informats are also accepted by the B8601 family of
informats. Delimiters are not rejected by the basic informats.

The following tables list the ISO 8601 informats and formats, respectively.

Informat Style of Value Description

EHEUIC cyymmddhhmmss<fff> Reads IBM date and time.
B8601DA/ES601DA [RAAALLLTL Reads date values.

B8601DJ yyyymmddhhmmss<fffff> Reads Java date and time.

Reads date values and returns datetime

B8G01DN/ESG0IDN IARRILIES value (with a time value of 000000).

il Nnap=SOkibE yyyymmdd Thhmmss<fffff> Reads datetime values.

EEl(0RpyAl =S EDYAN yyyymmddThhmmss+|-hhmm Reads UTC datetime values.

B8601TM/E8601TM MalalnlytEESiiiipe Reads time values.
R pASCARPAN hhmmss<fffff>+|-hhmm Reads UTC time values.

E8601LZ Hh:mm:ss+|-hh:mm.<fffff> Reads UTC time and converts to local time.

Table 1. Basic and Extended Family of Informats

Format Style of Value Description

B8601DA/E8601DACI

yyyymmdd Writes date values.
B8601DN/ES601DN BWARulnelsl Writes date values from datetime values.
SRy =i yyyymmdd Thhmmss<fffff> Writes datetime values.
Sy =t CokibyAl yyyymmdd Thhmmss+|-hhmm Writes UTC datetime values.
SNV hhmmss+|-hhmm Writes time values as local time with

offset.

EECON YISO hhmmss<fffff> Writes time values.
Pl =S hhmmss<fffff>+|-hhmm Writes time values with +0000 offset.

Table 2. Basic and Extended Family of Formats

EXAMPLES: USING INFORMATS AND FORMATS TO READ AND WRITE DATE, TIME, AND
DATETIME VALUES

The examples that follow in this section demonstrate how to use various informats to read date, time, and datetime
values into SAS date, time, and datetime variables. The examples also illustrate how to use formats to write these
values in a way that is meaningful to users.

Example 1: Reading Date Values

Suppose you have a clinical trial where an event begins on April 2, 2012 and ends on April 8, 2012. The dates are
recorded without time values, as follows: 20120402 and 2012-04-08. You can read these values into SAS with
the B8601DAw. and EB601DAw. informats. SAS also has equivalent (like-named) formats. These formats output the
newly created SAS dates in an easy-to-read layout rather than the numeric value of days since 1/1/1960.
data a;
input varl b8601da8. +1 var2 e8601dall. ;
put varl=b860l1da. var2=e8601da.;
datalines;
20120402 2012-04-08

run;
In This Example

e Because a SAS datetime value is stored as the number of seconds since January 1, 1960, the date and time
portions are incorporated. Most events that are recorded during a clinical trial aim to be as complete as
possible. Therefore, it is a good practice to read these values with an informat such as B8601DTw.d or
E8601DTw.d so that a SAS datetime value is stored.

e The B8601DNw. informat reads date values and returns SAS datetime values where the time portion is
000000.

Output
The resulting values for VAR1 and VAR?2 are as follows:

e VARIL: 20120402
e VAR2:2012-04-02

Example 2: Reading Date and Datetime Values

In the following DATA step, date, and datetime values are read into SAS with the basic and extended versions of two
informats. The basic and extended versions of the formats also create SAS datetime values, which are stored as the
number of seconds since January 1, 1960.

data a;

input dtl :b8601dn8. dt2 :E8601dnl0. dt3 :b8601dtl5. dt4 :e8601dtl19.;
put dtl=b8601dt. dt2=e8601dt. dt3=b8601dt. dt4=e8601dt. dt4=e8601dn.;
datalines;

20120402 2012-04-02 20120402T124022 2012-04-02T12:30:22

run;

In This Example

e The variables (DT1 — DT4) are written to the SAS log using the B8601DTw.d and E8601DTw.d.formats so
that all components of the date and time are shown.

e Then the variable DT4 is rewritten using the format E8601DNw. to show how you can output only the date
portion from a value that is stored as a datetime value.
Output
The resulting values for DT1 —DT4 are as follows:
e DT1:20120402T000000
e D2:2012-04-02T00:00:00
e DT3:20120402T7124022
e DT4:2012-04-02T12:30:22

e DT4 (after rewriting the value with EB601DNw.): 2012-04-02

Example 3: Reading Java Styled Datetime Values
The following example reads datetime values that are output by Java:
data a;
input dtl b8601dj.;
put dtl1=b8601dt.;

datalines;
20120402123245

run;

In This Example

e The informat B8601DJw. reads datetime values without the T separator between the date and time portions.
(This functionality became available in SAS 9.3.) There is no extended version of this informat because
delimiters are omitted from the input values.

e The value is written to the SAS log using the B8601DTw. format because a B8601DJw. format does not
exist.

Output.
The resulting value for DT1 is 20120402T123245.

Example 4: Reading UTC Datetime Values

Consider the following example where the offset is four hours earlier than GMT:
data _null_;
Xx=input(~2011-08-01T12:34:56-04:00",e8601dz25.);
put x=e8601dz25.;
run;

In This Example

e The B8601DZw.d and E8601DZw.d informats read Coordinated Universal Time (UTC) datetime values that
contain the datetime components along with a time-zone offset specification. The provided offset creates a
SAS datetime value that is adjusted by the proper number of hours from GMT. The E8601DZw.d informat
converts the datetime value to GMT so that it becomes 16:34:56.

e When the E8601DZw. format displays the value, it shows the time with a +00: 00 offset.

Pointer

Remember that whenever the B8601DZw. and E8601DZw. formats are specified to output a datetime value, the
value is assumed to be a GMT datetime value. This means the time-zone offset is always +00:00 in the output.
Output

The resulting value for X is 2011-08-01T16:34:56+00:00.

Example 5: Reading Time Values That Contain Time-Zone Offsets
The next example demonstrates how to read time values with time-zone offsets in order to create GMT time values.

data null_;
x=input(~12:34:56-04:00",e8601tz14.);
put x=e8601tz14._;
put x=b8601tz. ;

run;

In This Example

e The B8601TZw.d and E8601TZw.d informats read time values along with time-zone offsets in order to
create GMT time values.

e The E8601TZw. format writes the SAS time value with the time-zone offset as +00:00.
e The B8601TZw. format writes the SAS time value with the time-zone offset as +0000.

Note: When SAS reads a UTC time by using the B8601TZw.d informat and the adjusted time is greater than 24
hours or less than 00 hours, SAS adjusts the value so that the time is between 0 and 23:59:59 (one second before
midnight).

Output

The resulting values for X are as follows:

e 16:34:56+00:00
e 163456+0000

Example 6: Writing Local Times That Include Time-Zone Offsets

data _null_;
x=time();
put x=e86011z.;
run;

In This Example

e Because time values are scalar, SAS does not normally compute time values based on the time zone of the
programmer’s location. One exception to this rule is when a SAS time (not a datetime) is computed and then
formatted with either the B8601LZw. format or the E8601LZw. format, as shown in the example above.

e These two formats query the SAS host code to determine the offset. Then the current local time and the
offset (based on your time zone) display accordingly.

Note: If either B8601LZw. or E8601LZw. attempts to format a time outside of the time range 0 and 23:59:59, the time
is formatted with asterisks to indicate that the value is out of range.

Output

The resulting value for X is 11:41:54-04:00. Note: Your output value will be based on your time zone and the
time at which you run your DATA step.

Example 7: Reading and Writing Time Values

You can read time values that do not have time-zone offset values into SAS time values using the B8601TMw.d and
E8601TMw.d informats, as shown in this example:

data null_;
x=input(*12:34:56",e8601tm8.);
put x=b8601tm8. x=e8601tml0. ;
run;

In This Example
e The B8601TMw.d and E8601TMw.d informats read the time values into SAS time values.

e The equivalent (like-named) formats write the time values to the SAS log for the variable X.

Output

The resulting values for X are as follows:
e 123456
e 12:34:56

DURATIONS

A duration is the period of time that is the difference between two time points. Durations can assume the same forms
as the date, time, and datetime structures that are discussed previously.

In basic and extended notation, an uppercase P at the beginning signals that a duration follows.
Basic notation PyyyymmddThhmmss (can be positive or negative)
Extended notation Pyyyy-mm-ddThh:mm:ss (can be positive or negative)

A date value in yyyy-mm-dd form indicates a specific date in history. However, a duration value, similar to the
following example, expresses a period of time.

PO000-00-04 (indicates the span of zero years plus zero months plus four days)
Notice that all of the placeholders have a value, even if the value is zero.
The following example is the most common way to represent a basic and extended duration:
PnYnMnDTnHNMnS

In this syntax, n is either 0 or a positive number, specifying the number of years (Y), months (M), days (D), hours (H),
minutes (M), and seconds (S).

In addition, PnW represents duration as the number of weeks (W).

Pointers

e The W (weeks) in a duration can appear only when it is the sole component. For example, P1W2D is not
permitted.

e Any of the n components can be omitted. For example, suppose you have the value POYOM3DT2H. You can
omit the components that have a O value, as shown here:

P3DT2H (indicates a duration of 3 days and 2 hours)

e If the time is unknown, it is permissible to omit it. In that case, the T must also be omitted, as shown in this
example:

P3D (indicates a span of 3 days)

(list continued)

e The T time delimiter is required if a time is specified because M refers to months in the date portion and it
refers to minutes in the time portion.

e The lowest-order components (n) can be represented as fractions. For example, P6 . 5W specifies 6 %2
weeks.

INTERVALS

An interval comprises two values that represent the beginning and ending of an event, and it is a duration that is
anchored to a specific point in time. Intervals are represented in the following forms:

e datetime/datetime
e datetime/duration
e duration/datetime

For example, an interval that is defined as “starting at 9:30am on April 2, 2012 for a duration of one hour” can be
shown in either of the following ways:

e 2012-04-02T09:30:00/2012-04-02T10:30:00
e 2012-04-02T09:30:00/PT1H
e PT1H/2012-04-020T10:30:00

PARTIAL AND MISSING COMPONENTS

Clinical-trial data seeks to be as complete as possible, realizing that the precision of the data is based on the
presence or absence of components in the date and time values. The year must always be four digits in length and a
T precedes any time components. Complete values show all components with applicable values while hyphens
delimit the date components and colons delimit time components. Here are some examples:

e 2012-03-25T22:14:16 (March 25,2012 10:14:16 p.m.)
e 2012-03-25T22:15:16+03:00 (March 25, 2012 10:15:16 p.m. in the time zone GMT + 3 hours)
e P2Y3MADT7H8MOS (A span of 2 years, 3 months, 4 days, 7 hours, 8 minutes, 9 seconds)

When any component of the date or time is not provided, it is called a partial value, and the components are
considered missing. A missing component within the value should be represented with a hyphen (=) or an X so that it
is easily readable and understood. A single hyphen represents the entire value for a given component. For example,
one single hyphen can replace a four-digit year. If the time portion is omitted when a date value is specified, the T
must also be omitted.

Durations can be expressed either as a span of time (as shown in the examples above) or in the long form as a
datetime, but a mixture of the two forms within the same value is not allowed. Missing components should not be
confused with zero values. The durations P3D and POO00-00-03 are not the same because a component value of
0 is not the same as a missing component value. Change instances of O to X (Pxxxx-xx-03), and now this value is
considered the equivalent of P3D.

Valid Value

P2YADT7HOS (other valid options for this value: PO002-xx-04TO07 :xx:09 or PO002---04T07:-:09)
Invalid Value

P2Y---04T7H:-:9S

SAS can read truncated duration, datetime, and interval values, where one or more lower-order components are
truncated because the value is O or the value is not significant. When you read in values that contain a time-zone
offset, omitted components are not allowed. Therefore, you should use 00 in place of omitted components.

Examples of truncated values:

e 2012---18 (The 18" day of an unknown month in the year 2012. The time value is truncated.)

e XXXX-XX-01T10 or ----01T10 (10:00 a.m. on the first day of each month. Minutes and seconds are
truncated.)

e 2012-03 (The month of March 2012. The day and all time components are truncated.)

(list continued)

o —-02--T-:23 (The 23rd minute of unknown hour of unknown day of the second month of unknown year.
Seconds are truncated.)

e 2012-05-15T15:00:00+05:00 (Because an offset is specified, hours and minutes cannot be omitted.)

THE $N8601B AND $N8601E INFORMATS AND FORMATS

Up to this point, this paper has discussed various SAS informats that are used to read values into SAS date, time,
and datetime variables. The discussion also included the SAS formats that are used to write these values to a
readable form. In addition to storing date and time values as numeric variables, SAS provides functionality for storing
ISO 8601 durations, intervals, and datetime values as text strings to guarantee that all of the components are
preserved, even when some are missing. The SAS informats $N8601Bw.d and $N8601Ew.d convert a duration, an
interval, or a datetime value to what is referred to as an entity. The result is a binary value that is stored as a
hexadecimal value that is not visually recognizable.

The $N8601B informat reads values in basic and extended notations, whereas the $N8601E informat reads values in
the extended format only. Unlike the $N8601B informat, $N8601B reads single-digit components that do not supply
leading zeros.

The following table illustrates notations and examples for various types of values that are read with $N8601Bw.d and
$NB8601Ew.d informats:

Value
Type ISO 8601 Notation Example

Duration

(CESES pyyYYYMMDDThhmmss P20120513T123456
Notation)

Duration

(GIEUEEEN pyyYY-MM-DDThh:mm:ss P2012-05-13T12:34:56
Notation)

PnYnMnDTnHNMnS P3y6m4dT12h34m56s

Interval YYYYMMDDThhmmss/YYYYMMDDThhmmss 20120513T123456/20120613T112345
(Basic PnYnMnDTnHNMnS/YYYYMMDDThhmmss P3y6m4dT12h34m56s/20120513T113423
N\Glell)BN YYYYMMDDThhmmss/PnYnMnDTnHnMnS 20120513T123456/P3y6m4dT11h23m45s

Interval YYYY-MM-DDThh:mm:ss/YYYY-MM-DDThh:m:ss 2012-05-13T12:34:56/2012-05-16T14:32:23
SUELELES PnYNMnDTnHNMNS/YYYY-MM-DDThh:mm:ss P3y6m4dT11h23m45s/2012-08-11T14:22:00
NOEUHES YYYY-MM-DDThh:mm:ss/PnYnMnDTnHNMnS 2012-07-04T12:33:22/P2y1m3dT6h2mls

Datetime

(Basic YYYYMMDDThhmmss.fff+|-hhmm 20120513T123456
Notation)

Datetime
(Extended
Notation)

YYYY-MM-DDThh:mm:ss.fff+|_hhmm 2012-05-13T12:34:56

Table 3. Value Types That Can Be Read with the $N8601Bw.d and $N8601Ew.d Informats
After the $N8601Bw.and $N8601Ew. informats read the values into SAS, the equivalent (like-named) formats
translate these entities into a meaningful display as datetime, duration, or interval values.
Informats That Read 1SO 8601 Duration, Datetime, and Interval Values
e $N8601Bw.d reads values in basic or extended format.

e $N8601Ew.d reads values in extended format.

Formats That Write ISO 8601 Duration, Datetime, and Interval Forms

e $N8601Bw.d writes the basic notations PnYnMnDTnHNMnS and yyyymmddThhmmss.
e $N8601Ew.d writes the extended notations PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss.
Other Valid Formats

e $N8601BAw.d writes PyyyymmddThhmmss and yyyymmddThhmmss.

e $N8601EAw.d writes Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss.

e 3$NB8601EHw.d writes same as $N8601EAw.d except uses a hyphen (-) for omitted components.

e 3$NB8601EXw.d writes same as $N8601EAw.d except uses an x for each digit of an omitted component.

e $N8601Hw.d writes same as $N8601Ew.d, dropping omitted components in duration values and uses a
hyphen (-) for omitted components in datetime values.

e 3$N8601Xw.d writes same as $N8601Ew.d, dropping omitted components in duration value and using an x
for each digit of an omitted component in datetime values.

The following table compares some original values that are read into SAS with the $N8601Bw.d informat and how the
values are displayed with various formats.

Format
That Is
Applied to Formatted Value (for
Original the Original Value Formatted Value (for Formatted Value (for the
Values 2009-03-25) the Original Value P1D) Original Value POOO0O-00-01)

$N8601B 20090325 P1D POYOM1D
$N8601E 2009-03-25 P1D POYOM1D
CNELR0K NN 20090325 P----01 P0O000001
SNEGO =AW 2009-03-25 P----01 PO000-00-01
$N8601EH 2009-03-25T-:-:- P----01T-:-:- PO0O00-00-01T-:-:-
$N8601EX 2009-03-25TXX:XX:XX PXXXX-XX-01TXxX:xXx:XX P0000-00-01TXX XX XX
$N8601H 2009-03-25T-:-:- P1D POYOM1D

$N8601X 2009-03-25Txx:xx:xx P1D POYOM1D

Table 4. Output of Datetime and Duration Values with $N8601- Formats

THE CALL IS8601_CONVERT ROUTINE

After your values are stored as SAS variables, you can calculate intervals, durations, and datetimes with the CALL
1S8601_CONVERT routine. The basic syntax for this routine is as follows:

CALL I1S8601_CONVERT(convert-from, convert-to, <from-variables> , <to-variables>, <date-time-replacements>)

The arguments for this syntax are as follows:

Required Arguments®
convert-from accepts the following values:
‘intvl’ specifies the source value for the conversion is an interval value.
‘dt/du’ specifies the source value for the conversion is a datetime/duration value.

(list continued)

! sAs Institute Inc. SAS® 9.3 Functions and CALL Routines: Reference. (Cary, NC: SAS Institute Inc., 2011), Adapted from pages
164-165.

9

‘du/dt’ specifies the source value for the conversion is a duration/datetime value.
‘dt/dt’ specifies the source value for the conversion is a datetime/datetime value.
‘du’ specifies the source value for the conversion is a duration value.
convert-to accepts the following values:
‘intvl’ specifies to create an interval value.
‘dt/du’ specifies to create a datetime/duration interval.
‘du/dt’ specifies to create a duration/datetime interval.
‘dt/dt’ specifies to create a datetime/datetime interval.
‘du’ specifies to create a duration.
‘start’ specifies to create a value that is the beginning datetime or duration of an interval value.
‘end’ specifies to create a value that is the ending datetime or duration of an interval value.
Optional Arguments
from-variable specifies one or two variables that contain the source value.
to-variable specifies one or two variables that contain the converted values.

date-time-replacements specifies date or time components to use when a month, day, or time component is
omitted from an interval, datetime, or duration value. The values are specified as a series of numbers,
separated by a comma, in this order: year, month, day, hour, minute, or second.

The first argument to the CALL routine can be one or two values, and that number of values is based on how many
variables you provide to the routine for an expected result. For example, datetime and duration values can be
specified with an expected output of an interval. In this example, the supplied first argument would be "dt/du”. If
two datetime values are supplied with an expected duration as output, the first argument would be "dt/dt".

The second argument to the CALL routine can also be one or two values, depending on what type of result you
expect SAS to compute using the input you supply in the first argument.

Although the routine is robust and converts intervals, durations, and datetime values, it is also a handy tool for
performing calculations with dates and times. The following sections provide examples of calculations using the CALL
1S8601_CONVERT routine.

Note: When you create durations, the minimum length is 16 whereas the minimum length for intervals is 32.

Example 1: Converting a Duration to a SAS Time

Suppose you supply the duration value P8W, which specifies eight weeks. Such a value is often coupled with a
datetime value to produce a duration, but it can be used alone and converted to a SAS time. There is no SAS
informat to convert this P8W value to a SAS time, but you can use the CALL 1S8601_CONVERT routine instead.

Consider the following DATA step:
data a;
X="P8w" ;
call is8601_convert("du”,"du”,x,mynew);
put mynew=time8.;
run;
In This Example

e The X variable is a duration. Therefore, "du” is the first argument.

e Atime value is expected as output, but there is no 'convert-to' value for time. As a result, the value du is
used for duration. Notice that both arguments require single quotation marks.

e Xis the variable name that is supplied, and MYNEW is the variable being created.

e Because the result is a SAS time value, you can use a SAS time format (TIMES.).

10

Output

The resu

Iting value for MYNEW is 1344 : 00, which indicates 1344 hours.

Example 2: Converting a Duration and a Datetime to an Interval

This example takes the previous example one step further, using the same duration value with a datetime value to
output an interval. The following DATA step is based on an event that lasts for eight weeks, ending on February 11,
2012 at 12:22 pm.

data a;
length mynew $32;
X="P8w" ;
y="11Ffeb2012:12:22"dt;
call is8601_convert("du/dt®, "intvl~,x,y,mynew);
put mynew=$n8601e. ;

run;

In This Example

Output

The resu

The first argument ("du/dt") to the CALL 1S8601_CONVERT routine indicates the types of variables that
are being passed in for conversion. The value "du/dt" specifies that two variables are being passed: one
is a duration (X) value and the other is a datetime (Y) value. Because the duration value comes before the
datetime value, the datetime value is assumed to be the end of the interval.

The result that you want from this DATA step is an interval. Therefore, the second argument is " intvl*®.

The remaining arguments name the incoming variables (X and Y) and the new variable (MYNEW) that is
being created. The order of these variables must match the types of variables that are specified in the first
argument. For example, if X and Y are reversed, the following note will appear in the log:

NOTE: Invalid argument to function 1S8601_CONVERT at line 1661 column 6.

mynew= x=P8w y=1676204520 ERROR =1 _N_=1]

Iting value for MYNEW is P8W/2012-02-11T12:22:00.000.

Example 3: Computing the Start Datetime of an Interval When You Have a Duration and a Datetime

Example

2 above computes an interval when datetime and duration values are supplied. The next example computes

the starting datetime for an interval when a duration and datetime are supplied.

data a;
length mynew $16;
X="P8w" ;
y="11Ffeb2012:12:22"dt;
call is8601_convert("du/dt”, "start”,x,y,mynew);

/* 1T the LENGTH statement above is commented out, replace the PUT */
/* statement below with put mynew datetime22.; */

put mynew=$n8601le. ;

run;

In This Example

The CALL IS8601_CONVERT routine uses the keyword start as the second argument in order to
compute the starting datetime value for the interval.

Because the SAS datetime value is computed, you can remove the LENGTH statement so that MYNEW is
created as a numeric variable. If you remove that statement, you need to add a PUT statement that specifies
the DATETIMEZ22. format. Itis also valid to leave the LENGTH statement and output the variable using the
$N8601Ew. format, as shown in the second PUT statement.

11

Output
The resulting value for MYNEW is 2011-12-17T00:00:00.000.

Example 4: Converting a Duration of One Type to a Duration of a Different Type

If you receive data that is represented in hours, you can perform a conversion similar to the previous example to
obtain output as a duration.

data null_;
X="1271:59:00";
time=input(x,timell.);
length dur $16;
call is8601_convert("du”,"du”,time,dur);
put dur=$n8601e.;
run;

In This Example

e The TIMEw.d informat reads the time value into SAS.

e Then the CALL IS8601_CONVERT routine converts the time value to a duration value.

Output
The resulting duration value is POY1M22DT23H59MO0 . OS.

Example 5: Converting Two Datetime Values to a Duration
This next example determines the amount of time between two datetime values, and it outputs a duration.

data a;
length dur $16;
start="02apr2012:12:30:22"dt;
end="08apr2012:14:32:22"dt;
call is8601_convert("dt/dt","du”,start,end,dur);
put dur=$n8601le.;

run;

In This Example
e The CALL 1S8601_CONVERT routine uses the following arguments:
o "dt/dt" indicates that two datetime values are being passed into the function.
o "du” indicates that a duration value is the expected output.
o "start” isthe name of the first datetime variable.
0 "end” is the name of the second datetime variable.
o "dur” is the name of the desired output variable.

e A LENGTH statement is required in order to specify that DUR is a character variable and that the length
should be 16. If you create an interval, a length of 32 is required.

e The routine creates an undecipherable hexadecimal value. Therefore, it is necessary to format the value
with one of the $N8601 formats; in this case $N8601Ew.d.

Output
The resulting value is P6DT2H2M.

12

Example 6: Converting an Interval to a Datetime and a Duration

You can specify an interval value as two datetime values separated by a forward slash (/), which separates the
beginning and ending values for an event, as shown in this example:
data null_;

length final2 $16;
int=input("2012-03-15T14:32:00/2012-03-29T09:45:00" ,$n8601e40.);
call is8601_convert("intvl®, "dt/du”,int,finall,final2);
put finall= final2=$n8601e. ;

run;

In This Example
e The datetime values are specified inside single quotation marks so that the INPUT function and the
$N8601Ew. informat can convert the values into an interval value in the variable INT.
e CALL 1S8601_CONVERT converts that interval value into two variables: FINAL1 is a datetime variable and
FINAL2 is a duration variable.

e Because a SAS datetime variable (FINAL1) is a numeric variable that can be stored in 8 bytes, a length
value is not required for this variable in the LENGTH statement. However, a duration requires a length of 16;
therefore, a length is specified for FINAL2 in the LENGTH statement.

e Because FINAL2 is a duration, the $N8601Ew. format is used to write its value to the log so that the output
is understandable.

Output

The resulting values for FINALL and FINAL2 are as follows:
e FINAL1: 16474411204
e FINAL2:#P13DT19H13M#

Pointer

If the first datetime value in the example had been missing the month value (2012---15T14:32:00), you could
supply that value by specifying it in the last parameters of the CALL routine, as shown here:

call is8601_convert("intvl®, "dt/du”,int,finall,final2,,2);

Notice that the month is specified here as 2, and the two consecutive commas preceding that value indicate that a
year value was not supplied. Therefore, a datetime and a duration will be computed based on the date 2012-02-
15T14:32:00 and the other date specified in the code. In this case, the output from the PUT statement for each
variable is as follows:

e FINAL1: 16449355204

e FINAL2:#P1IM13DT19H13M

Example 7: Handling Missing Components

It is not uncommon for one or more date or time components to have missing values. Yet you still need to compute
the output. The following example illustrates how to handle such a situation:

options missing="-";

data temp;
input y mo d h min s;
length text $19;
text=cats(y,"-",mo,"-",d,"T",h,":",min,":",s);
entity=input(text,$n8601b19.);
put entity=$n8601e.;
datalines;

2011 6 . 10 15 20

2011 . 5 10 15 20

2011 6 30 10 15 20

run;
13

In This Example

e Because missing components should be indicated with a hyphen (=) or the letter X, the OPTIONS statement
specifies the MISSING= system option so that all missing numeric values are output as a hyphen. This
works equally if the option is set to X.

e The CATS function concatenates all of the components, adding the hyphen and colon delimiters between
the date and time values to form the value for the TEXT variable.

e The TEXT value is read by the $N8601Bw. informat to create the ENTITY variable.
e Because this created ENTITY value is a hexadecimal string, it is formatted with the $N8601Ew. format to
produce readable values that show a hyphen where missing values exist.
Output
The resulting values for ENTITY are as follows:
e 2011-06--T10:15:20
e 2011---05T10:15:20
e 2011-06-30T10:15:20

Pointer

In this example if ENTITY had been created with the $N8601E19. informat, the log would show notes indicating that
there are invalid arguments in the INPUT function as a result of single-digit month and day values. To eliminate this
problem, you can use the $N8601Bw. informat to read the single-digit values correctly.

Changes are being considered for a later SAS release to enable the CALL IS8601_CONVERT routine to handle
missing components so that a workaround such as the one described above is not required.

CONCLUSION

The ISO 8601 standards are visible throughout all clinical trials when you are representing dates, times, durations,
and intervals. The SAS suite of informats and formats, along with the CALL I1S8601_CONVERT routine, enable you to
reference and use these entities in a variety of ways. These features allow various forms of values to be read and
stored as SAS variables, to be manipulated in SAS, and then to be output in a variety of ways. The functionality
gained from the multifaceted CALL routine means direct creation of various types of values that otherwise take
multiple lines of code to accomplish.

ACKNOWLEDGMENTS

I would like to thank Frank Roediger, Gene Lightfoot, and Russ Lavery for sharing their wealth of knowledge about
clinical trials. Rick Langston, the SAS developer, has been a tremendous resource since this functionality became
available.

REFERENCE

SAS Institute Inc. SAS® 9.3 Functions and CALL Routines: Reference. (Cary, NC: SAS Institute Inc., 2011), 164-165.
Available at
support.sas.com/documentation/cdl/en/lefunctionsref/63354/PDF/default/lefunctionsr
ef._pdf.

RECOMMENDED READING

SAS Institute Inc. 2011. SAS® 9.3 Formats and Informats: Reference. Available at
support.sas.com/documentation/cdl/en/leforinforref/63324/HTML/default/viewer . htm#t

itlepage.htm. Accessed on March 27, 2012.

SAS Institute Inc. 2011. SAS® 9.3 Functions and CALL Routines: Reference. (Cary, NC: SAS Institute Inc., 2011).
Available at
support.sas.com/documentation/cdl/en/lefunctionsref/63354/PDF/default/lefunctionsr
ef.pdf

14

http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/PDF/default/lefunctionsref.pdf
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/PDF/default/lefunctionsref.pdf
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/PDF/default/lefunctionsref.pdf
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/PDF/default/lefunctionsref.pdf
http://support.sas.com/documentation/cdl/en/leforinforref/63324/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/leforinforref/63324/HTML/default/viewer.htm#titlepage.htm

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Kim Wilson

SAS Institute Inc.

SAS Campus Drive

Cary, NC 27513

E-mail: support@sas.com
Web: support.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

15

mailto: support@sas.com
http://support.sas.com

