PharmaSUG 2017 — Paper ADO1

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary
Tables Without Any Table Programming (No Kidding!)

Joseph Hinson, inVentiv Health, Princeton, NJ, USA

ABSTRACT

The creation of a clinical summary table typically involves two main phases: the statistical analyses of data, and the
presentation of the analyses results onto a layout predefined by a mock table. The first phase can be pretty
straightforward, simply involving the calling of SAS statistical procedures plus a few DATA steps. The second phase,
a relatively time-consuming part, would constitute taking those procedure outputs and programming their placements
in specified positions to become the summary table. It turns out that this second phase might not even be necessary.
The mock table can be made to populate itself with analyses results! Such a “smart” mock table can be made by
embedding macro calls directly in the RTF mock document. These macros would contain SAS procedures or DATA
step codes wrapped inside a DOSUBL function and called by a %SYSFUNC to generate single macro variables.
Finally, the entire smart RTF mock table, can be placed on the SAS Input Stack as a %INCLUDE for macro
processing using the new SAS 9.4 STREAM Procedure. Such an approach could potentially allow programmers to
focus entirely on data analyses, significantly shortening turnaround times for deliverables. Table cosmetic changes
could be done at the mock table level with no need for reprogramming. Data point repositioning could also be
implemented directly on the mock table by simply relocating the macro calls. The technique in fact is applicable to
any WORD document, including the CONSORT Flow Diagram (see author’s other paper).

INTRODUCTION

We live in interesting times: smart light bulbs, smart baby diapers, smart garbage cans, and even smart coffee-
stirrers. So it should come as no surprise that we should now have smart mock tables -- not with sensors and WiFi-
chips, but loaded with macro variables and even macro calls. It turns out that when such a macro-embedded mock
table is processed by Proc STREAM, the table magically comes to life, displaying real analysis results at the desired
positions, with not a single line of table programming code ever written. Move over, Proc REPORT!

The life of a clinical programmer is easily dominated by two phases of activities: writing code for data
analyses, and figuring out programmatically how to place the results of those analyses onto a table, exactly as
specified by a mock table. What if one could simply let the mock table process itself, populating the data placeholders
(“xx.x") with real numbers from the analyses results?

Three SAS tools actually make possible such self-processing by a mock table:

(a) The DOSUBL function,
(b) The %SYSFUNC macro keyword, and
(c) The STREAM procedure.

The idea is to let a macro generate each data point so that the mock table would be populated with macro calls rather
than “xx.x” placeholders, then place the macro-embedded mock table onto the SAS Input Stack for macro processing
using a %INCLUDE.

However, under normal circumstances, placing an RTF document onto the SAS Input Stack (via %include) would
generate plenty of syntax errors (see further down). The RTF codes would not be recognized as valid SAS syntax.

THE STREAM PROCEDURE

The general idea of adding macro elements to documents for macro resolution would be fairly easy if one could
engage only the macro processor. As the document is tokenized, macro elements are diverted to the macro
processor. The resolved values are returned and the documents are streamed back in original form except with
resolved macro values. The SAS 9.4 Proc STREAM was developed for exactly that purpose. With that new

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

procedure, almost anything can be put on the Input Stack (with the exception of binary formats like PDF, JPEG,

DOCX). Proc STREAM disables the SAS Compiler thereby permitting the processing of the macro elements in a RTF

documents in the presence of the SAS syntax-violating RTF codes. After macro resolutions, the RTF document is

streamed to an external file location with the original structure and non-macro contents intact. Without Proc STREAM,

the log would display syntax errors from the RTF codes, as shown below for a simple RTF table:

(a) RTF Table (document.rtf):

ACTIVE PLACEBO
X.XX X.XX
XX.X XX.X

(b) Underlying RTF Code:

{\rtf1\ansi\ansicpg1252\deffO\deflang1033{\fonttbI{\fO\froman\fprg2\fcharset0 Times New Roman; {\f1\fswiss\fprq2\fcharset0
Calibri; {\f2\fnil\fcharset0 Calibri;}}

{*\generator Msftedit 5.41.21.2510;\viewkind4\uc1\trowd\trgaph108\trleft-108\trrh326\trbrdrl\brdrs\brdrw10 \trbrdrt\brdrs\brdrw10
\trbrdrr\brdrs\brdrw10 \trbrdrb\brdrs\brdrw10 \trpadd|108\trpaddr108\trpaddfl3\trpaddfr3

\clbrdri\brdrw10\brdrs\clbrdrt\brdrw10\brdrs\clbrdrr\brdrw10\brdrs\clbrdrb\brdrw10\brdrs
\cellx1503\clbrdr\brdrw10\brdrs\clbrdrt\brdrw10\brdrs\clbrdrr\brdrw10\brdrs\clbrdrb\brdrwl0\brdrs \cellx3114\pard\intb\f1\fs22
ACTIVE\cell PLACEBO\cell\row\trowd\trgaph108\trleft-108\trrh326\trbrdr\brdrs\brdrw10 \trbrdrt\brdrs\brdrw10 \trbrdrr\brdrs\brdrw10
\trbrdrb\brdrs\brdrw10 \trpadd|108\trpaddr108\trpaddfi3\trpaddfr3

\clbrdri\brdrw10\brdrs\clbrdrt\brdrw10\brdrs\clbrdrr\brdrw10\brdrs\clbrdrb\brdrw10\brdrs
\cellx1503\clbrdr\brdrw10\brdrs\clbrdrt\brdrw10\brdrs\clbrdrr\brdrw10\brdrs\clbrdrb\brdrwl0\brdrs \cellx3114\pard\intbl x.xx\cell
x.xx\cell\row\trowd\trgaph108\trleft-108\trrh326\trbrdri\brdrs\brdrw10 \trbrdrt\brdrs\brdrw10 \trbrdrr\brdrs\brdrw10
\trbrdrb\brdrs\brdrw10 \trpadd|108\trpaddr108\trpaddfi3\trpaddfr3

\clbrdri\brdrw10\brdrs\clbrdrt\brdrw10\brdrs\clbrdrr\brdrw10\brdrs\clbrdrb\brdrw10\brdrs
\cellx1503\clbrdr\brdrw10\brdrs\clbrdrt\brdrw10\brdrs\clbrdrr\brdrw10\brdrs\clbrdrb\brdrw10\brdrs \cellx3114\pard\intbl xx.x\cell
xx.x\cell\row\pard\sa200\sI276\sImult1\lang9\f2\par

}

(a) SAS Code and Log:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

Leg - (Untitled)

97554 data _null_;

97555

97556 Xlet path = Enrstr(C:‘Users‘\admin'Desktop'StreamIN); /* update with your own */
a75567

97558 filename shell “&path.‘document.rtf” lrecl = 32755;

97559

97560 Zinclude shell;
97561 +{‘rtflliansitansicpg1252\deff0'deflang1033{" fonttb1{"f0" froman'fprq?'fcharset?® Times New

180
180
180
180
97561 !+ Roman; H'.f1'fswiss' fprq2\.fcharset0d Calibri; H.f2.fnil'fcharset0 Calibri;1}}
97562 +{‘*‘generator Msftedit 5.41.21.2510;
97562 !+}wiewkind4'ucl' trowd" trgaphl108.trleft=-108.trrh326\trbrdr1'brdrs'\brdrulo

180
97562 !+ trbrdrtibrdr='brdrul0 ‘trbrdrribrdrs'\brdruld " trbrdrbbrdrs'brdrult
97562 !+ trpaddl108% trpaddr 108" trpaddf 13" trpaddfr3
ERROR 180-322: Statement iz not valid or it is used out of proper order.

97568
97569 run;

4 ;

[# Editor - Untitled8 * DATA STEP running =[5 | ES]

-ldata _null ;
%¥let path = *nrstr(C:\Users\admin‘\Desktop\StreamIN); /* update with your own */
filename =shell "ipath.‘document.rtf" lrecl = 32755;
%include shell:

Tun; -

The RTF codes trigger errors and the DATA step get stuck in an endless loop (“DATA STEP
running”)

(b) The Proc STREAM Solution:

When the same RTF file is run with Proc STREAM, the log becomes error-free:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

Log - (Untitled)

97582 -
97583

97584 Xlet path = ZEnrstr(C:'Users‘admin‘Desktop’StreamIN); /* update with your own */
97585

97586 filename =hell “&path.‘document _rtf"” lrecl = 32755;

97587

97588 filename out 'C:‘Users‘admin‘Desktop'S5treamOUT StreamDocument .rtf"” lrecl = 32755;
97589

97590

97591 proc stream outfile = out guoting = single resetdelim="goto’;

97592 BEGIN goto; Zinclude shell;

NOTE: PROCEDURE STREAM used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds
97600 -
4 F
[# StreamTest E=B el =<7

$let path = %nrstcr(C:\Users\admin'Desktop\StreamIN); /* update with your own */

filename shell "ipath.‘\document.rtf" lrecl = 32755;

filename out "C:\Userz‘\admin‘\Desktop'\StreamOUT\StreamDocument.rtf" lrecl = 32755;
Slproc stream ocutfile = out gquoting = single resetdelim="goto":

BEGIN goto; %include shell:

THE PROC STREAM SYNTAX
The Proc STREAM statement specifies an external file with the “OUTFILE=" keyword, as well as options.
The arbitrary text is wrapped inside a “BEGIN” and a four semi-colon ending “;;;;".

There is no “RUN” or “QUIT".

PROC STREAM OUTFILE=fileref <options>;
BEGIN

(some text which may contain macro triggers)

Two Useful Proc STREAM statement Options:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

a. RESETDELIM="label”

The SAS® Word Scanner expects macro statements like “%LET” and “%INCLUDE” to begin on a statement
boundary -- which means, the statements must be preceded by a semicolon and must end with a semicolon.
Therefore to use %LET and %INCLUDE in a Proc STREAM input text, one must place a special marker token before
the statements and end the statement with a semicolon. This special marker token is defined with the option
RESETDELIM=label, where label can be any arbitrary SAS® name:

PROC STREAM OUTFILE= myfile RESETDELIM="goto";

BEGIN

goto; %INCLUDE myotherfile;

1119

The marker token specified by RESETDELIM is also required when a carriage return is required in

PROC STREAM OUTFILE= myfile RESETDELIM="goto";
BEGIN

Dear Sir, goto NEWLINE;
The profile below is for patient 12345.

1119

the input text. The keyword “NEWLINE” is used with the marker token:

b. QUOTING=SINGLE (or DOUBLE or BOTH)

This option specifies that the single quotation mark (‘) should be treated like any other character, as expected for: the
patient’s blood pressure.

QUOTING=DOUBLE would be required in cases where the text involves, for instance, XML elements in Define-XML
documents:

<ItemRef "ADSL . ABM" "a" "Ho" f>

So with Proc STREAM, a macro-embedded RTF document can be placed on the SAS Input Stack without any
triggering of errors.

THE PROBLEM WITH MACRO CALLS

Thus, Proc STREAM can allow a macro-embedded RTF document to be processed by the Macro Processor. But
there is yet another problem. Processing documents with macro variables is very straight forward and not that
different from the everyday text substitution with macro variables done in SAS programming. Putting MACRO CALLS
in documents presents another challenge, especially if those macros contain DATA steps and/or procedures. Such
macros would be resolved by the Macro Processor into the actual constituent DATA step or procedure codes, and
placed back on the Input Stack for streaming out. An example of such macros is shown below:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

| B3 Editor - Untitledo * = o =

: -l #macro counx(name, item, treat): -
| Tglobal w;

data cflags:

set dmdata;

countFL=((&name. eq "zitem.") and (indexw("&treat.",crt) gt 0))
run;

proc =gl noprint;
select sum(countFL) into :w TRIMMED from cflags;
guit;
&V .
Fmend counx;

We desire the analysis macro to generate a single value.

However when %counx() is called, the macro processor would return the generated code instead of the computed
value.

THE NEED FOR DOSUBL() AND %SYSFUNC

The DOSUBL function enables the immediate execution of SAS code after a text string is passed. If the text is a
DATA step or a PROC program, DOSUBL would allow them to execute and wait for them to complete. Also any
macro variables that are created or updated during the execution of the submitted code are exported back to the
calling environment. DOSUBL does not return until the execution of the SAS code is fully completed.

If DOSUBLY() is called by a macro via %SYSFUNC, then the macro is forced to execute the DATA step and Proc SQL
codes and any macro variable created inside the DOSUBL becomes available, instead of the macro execution
returning the raw lines of DATA step or Proc codes to the input stack. %SYSFUNC forces execution of functions it
carries as arguments. Also for proper timing of resolution for macro variables enclosed in quotes, the outermost
guotes inside the DOSUBL function should be single (this is important!). Below is an example with a macro that
calculates the Body Mass Index of a subject:

(a) Without DOSUBL:

@ StreamMacroTest ™ EI@

| g#macre GetBMI (weight=, height=);
3iglobal bmi;
data null ;
bindex=gweight./ (&height.**2);
call symputx("bmi", bindex):
run;
fmend GetBMI;

$let path = %Inrstr(C:\Users‘\admin\Desktop\StreamIN): /* update with your own */
filename out "C:\Users‘admin‘\Desktop'StreamOUT\WithoutDOSUBL.rtf"™ lrecl = 32755;

-lproc stream outfile = out;
BEGIN
The subject was 1.83 meters in height and 150 kilograms in weight.
Therefore the subject has Body Mass Index as 3GetBMI (weight=150, height=1.83).

rrer

-

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

The streamed output shows the DATA step code instead of the calculated BMI value:

The subject was 1.83 meters in height and 150 kilograms in
weight,Therefore the subject has Body Mass Tndex as dava null
bindex=150/{1.83**2); call symputx("bmi", bindex): run;.

(b) With DOSUBL:

@ StreamMacroTest2 * EI@

- #macro GetBMI (weight=,height=):
$global bmi;
$LET BC=%S5YSFUNC (DCSUEBL ('
data null :
bindex=gweight./ (height.**2);
call symputx("bmi", bindex):
rumn;
"1
&bmi .
#mend GetBMI:

%let path = %nrstr(C:\Users\admin\Desktop\StreamIN); /% update with yvour own */
filename out "C:\Users\admin\Desktop\StreamOUT\WithDOSUBL.rtf" lrecl = 32755;

—Iproc stream outfile = out;
BEGIN
The =subject was 1.83 meters in height and 150 kilograms in weight.
Therefore the subject has Body Mass Index as 3GetBMI (weight=150, height=1.83).

rrer

4 1

1

Now, the DATA step code is fully resolved into a value:

The subject was 1.83 meters in height and 1350 kilograms in
weight.Therefore the =zubject has Body Mass Index as 44.790826839.

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

OVERALL STRATEGY

1. Create analysis macros according to the original mock specifications, wrapping any DATA step
or procedure inside a DOSUBL and invoking with a %SYSFUNC. Make sure each analysis macro
generates a macro variable (“macro call variable”).

2. Create Regular Mock Table:

(a) Open WORD (eg. Office 2010 or 2013).

(b) Invoke FILE - NEW.

(c) Do INSERT TABLE (4 by 20 rows, for example).

(d) Change layout to LANDSCAPE (for example).

(e) Enter column headers, row labels, and data placeholders (xx.xx, etc) and save as RTF
for step 3.

(f) Or, you may download a free WORD table template, change title, headers and
labels, remove unwanted rows and columns, enter xx.xx’s, and save as RTF for step
3

(g) Or, if there is already an original mock table as a WORD document, save as RTF for
step 3.

3. Reopen the RTF mock from step 2 with WORD. (This step is essential!)

4. Type macro calls in the expected locations for analysis results (replace the “xxx.xx” on original
mock), thereby converting the RTF mock table to a smart document.

5. Save the smart RTF mock (SmartMock.rtf).

Write Proc STREAM code with %include SmartMock.rtf and output file as Deliverable.rtf

7. Run main program to define analysis macros and to execute Proc STREAM.

AN EXAMPLE WITH THE DEMOGRAPHICS SUMMARY TABLE (SIMPLE LAYOUT)
1. CREATE ANALYSIS MACROS ACCORDING TO THE ORIGINAL MOCK SPECIFICATIONS:

(a) Read Input Dataset:

data dmdata (drop=code:);

infile datalines;

input SUBJID codeTRT codeGEND codeRACE Age Weight Height codeRELIGION Waist
Iriscan codeBLOOD codeCOUNTRY @@;

BMI=703*(Weight/((Height*12)**2));*<--1Tf WEIGHT in pounds and HEIGHT in feet;
*-——--DECODE VALUES FOR TREATMENT, RACE GENDER, etc. --———-- ;

trt=choosec(((codeTRT)+1), "ACTIVE","PLACEBO™);
Gender=choosec(codeGEND,"Male","Female");

Race=choosec(codeRACE, "White', "Black', "Other');

Blood=choosec(codeBLOOD, ""*A™,""B"",""AB"","'0"") ;

Religion=choosec(codeRELIGION, ""Buddhist™","Catholic","Muslim","Jewish');

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

Country=choosec(codeCOUNTRY,"American","Jamaican", ' Chinese","British™);
datalines;

101 01 337 112 6 234131 21301 011701316334 1314150101233 1116 2 34 131 2
601 011501245134 13132701111601216 13413132 102121651235 3 40 188 4
302 01255143 6 2 34 131 4 350212144 1816 2 34 131 4360202 2 30 152 7 2 33 129 3
702 01128 1334334 1311410311232132643413124303111651227 1 38 200 3
503 11164 1336434131 226031213313362341311170311244 1264 4 43 117 1
104 02 3231225134131 3130401145 1346 3 34 1312250401356 1226 4 37 166 1
604 01 3651254 2 34 1314470402166 1716434131 3310511344 1215 3 31 2122
30511136 11353341311250511273 1436 2 34131 4460512157 122 41 41 154 2
705 112 46 124 5 4 34 131 3 4 106 0 2 1 49 144 6 4 34 131 31 306 0 1 2 46 143 5 3 36 123 1
506 01 146 122 54 34 131 2 3606 01 2 56 133 64 34131 337061 11751435 2 33 158 3
201 113351346334 1314140112144 111 6 2 34 1312350711244 1125 4 38 144 4
607 11167 14352 34 1312370711146 1156 1 34 131 44 2020 2 150 154 6 2 31 155 3
402 0 2 2 77 122 4 1 34 131 4 4 508 0 2 1 53 141 6 2 34 131 2 3 608 0 2 2 46 142 5 4 40 100 2
708 0 2 155131 4234 1311120311249 12264 34131 3240311145 1335 2 33188 3
509 013451325234 131 2260912172116 6 2 34 131 4170902 257 132 6 4 32 163 4
204 0 2 360 113 4 2 34 131 3 340411159 131 6234131145100 136511354 39 1321
610 01129 118 6 4 34 131 447100 1163 1656 4 34 131 3120511339 13251 31 155 2
405 02149 12451 34 131 1151112243 1236434131 2461112 1651256 3 33 121 3
711 11 261 1445 4 34 131 2120612167 111 62 34131 214061 12 33 1425 4 29 153 4
512 11139111 4234131 2161211246 1326234131 2171201149 12152 421931
801 11167 1435434 1312181011146 1156 1 34 131219020 2 150 154 6 4 31 155 3
802 02277 122 4 3 34 131 21811 02153141 6 2 34 131 21903 02 2 46 142 5 4 40 100 2
803 021551314434 1312181211249 1226 434131 2109411145 13351 33188 3
804 013451325434 131 2181312172116 6 2 34 131 2190502 257 132 6 4 32 163 4
80502360113 4234 1312181411159 1316134131210910013651135 339 1321
806 01129 118 6 434 1312181501 1631656234131 21091111339 1325 2 31 155 2
807 0 2149 124 4 4 34 131 2181612 2 43 123 6 3 34 131 2191212165 1256 3 33 121 3
808 1126114452 34 1312181712167 111 62 34131 219131 12331425 1 29 153 4

111391115234 131218181 124613264 3413121917 01 149 1215 2 42 1931

809

run;

(b) Define Macros for Big N's:

%macro bn(gp);

%let t=%sysfunc(dosubl("proc sgl noprint;select count(distinct subjid) into
:bgn TRIMMED from dmdata where indexw(''&gp.",trt) gt O;quit;"));

&bgn.

%mend bn;

(c) Define Macros for Counts:

%macro counx(name, item, treat);
%global w;
%let ul=%sysfunc(dosubl("data cflags;set dmdata;
countFL=((&name. eq "&item.") and (indexw("&treat.",trt) gt 0));run;"));
%let u2=%sysfunc(dosubl("proc sql noprint;select sum(countFL)
into :w TRIMMED from cflags;quit;"));
&Ww .
%mend counx;

NNABRADMBINREPNNARAMDMBEDINEPBRIANNNNONWANERE

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding?)

(d) Define Macros for Descriptive Statistics:

%macro stax (name, test, form, treat);
%global res;
%let stl=%sysfunc(dosubl("proc sql noprint;select &test.(&name.)
format=&form.
into :res TRIMMED from dmdata where indexw("&treat.",trt) gt
O;quit;™));
&res.
%mend stax;

2. CREATE AN ORIGINAL RTF MOCK TABLE BY ONE OF THE FOLLOWING RELIABLE METHODS:
i Save a pre-existing MS WORD mock table as RTF, or
ii. Insert a new table into MS WORD and fill in with the titles, footnotes, headings,
row-labels, and data placeholders (xx.xx), then save as RTF, or
iii. Download a free MS WORD table template, and edit out the row and column
labels and fill in the mock table info, then save as RTF.

Using method iii, a free template called “Contact list for youth sports” (WORD 2013) was downloaded as
shown below:

Your Team’s Sports Gluh

TEAM CONTACT LIST

The above template then had unwanted rows and columns removed and mock table
information typed in as shown below:

10

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

TABLE 1.2.3.4 SUMMARY OF DEMOGRAPHIC CHARACTERISTICS

ACTIVE PLACEBO TOTAL

Number of Subjects XXX XXX XXX
Age (Years)

N XXX XXX XXX

Mean (SD) XX.X (X.XX) XX.X (X.XX) XX.X (X.XX)

Range XX XX XX

Median XX XX XX

Min — Max XX = XX XX - XX XX - XX
Gender

Female XX XX XX

Male XX XX XX
Race

White XX XX XX

Black XX XX XX

Asian XX XX XX

Other XX XX XX

The modified WORD template above was then saved as RTF, reopened with WORD, and converted to a
“SmartMock” by typing in the macro calls, as shown below (SmartMock.rtf):

TABLE 1.2.3.4 SUMMARY OF DEMOGRAPHIC CHARACTERISTICS

Number of Subjects %bn(ACTIVE) %bn(PLACEBO) %bn(ACTIVE PLACEBO)

11

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding?)

Age (Years)

N

Mean (SD)

Range

Median

Min - Max

Gender

Female

Male

Race

White

Black

Asian

Other

%stax(age,N,3.,ACTI
VE)

%stax(age,Mean,5.1,
ACTIVE)
(%ostax(age,STD,5.2,
ACTIVE))

%sysevalf(%stax(ag
e,Max,3.,ACTIVE)-
%stax(age,Min,3.,AC
TIVE))

%stax(age,Median,4.
,ACTIVE)

%stax(age,MIN,3.,AC
TIVE) -
%stax(age,Max,3.,AC
TIVE)

%counx(Gender,Fem
ale, ACTIVE)

%counx(Gender,Male
, ACTIVE)

%counx(Race,White,
ACTIVE)

%counx(Race,Black,
ACTIVE)

%counx(Race,Asian,
ACTIVE)

%counx(Race,Other,
ACTIVE)

%stax(age,N,3.,PLACE
BO)

%stax(age,Mean,5.1,P
LACEBO)
(%stax(age,STD,5.2,P
LACEBO))

%sysevalf(%ostax(age,
Max,3.,PLACEBO)-
%stax(age,Min,3.,PLA
CEBO))

%stax(age,Median,4.,
PLACEBO)

%stax(age,MIN,3.,PLA
CEBO) -
%stax(age,Max,3.,PLA
CEBO)

%counx(Gender,Femal
e, PLACEBO)

%counx(Gender,Male,
PLACEBO)

%counx(Race,White,P
LACEBO)

%counx(Race,Black,PL
ACEBO)

%counx(Race,Asian,PL
ACEBO)

%counx(Race,Other,PL
ACEBO)

%stax(age,N,3.,ACTIVE
PLACEBO)

%stax(age,Mean,5.1,ACTI
VE PLACEBO)
(%ostax(age,STD,5.2,ACTI
VE PLACEBO))

%sysevalf(%ostax(age,Max

,3.,ACTIVE PLACEBO)-
%stax(age,Min,3.,ACTIVE
PLACEBO))

%stax(age,Median,4.,PLAC

EBO)

%stax(age,MIN,3.,ACTIVE

PLACEBO) -

%stax(age,Max,3.,ACTIVE

PLACEBO)

%counx(Gender,Female,
ACTIVE PLACEBO)

%counx(Gender,Male,
ACTIVE PLACEBO)

%counx(Race,White,ACTIV

E PLACEBO)

%counx(Race,Black,ACTIV

E PLACEBO)

%counx(Race,Asian,ACTIV

E PLACEBO)

%counx(Race,Other,ACTIV

E PLACEBO)

3. WRITE PROC STREAM CODE WITH %INCLUDE SMARTMOCK.RTF AND OUTPUT FILE AS
DELIVERABLE.RTF

%let path = %nrstr(C:\Users\admin\Desktop\StreamiIN); /* update with your own

*/

filename shell "&path.\SmartMock.rtf" lrecl = 32755;

12

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

filename out ""C:\Users\admin\Desktop\StreamOUT\Deliverable.rtf" lIrecl =
32755;

proc stream outfile = out quoting = single resetdelim=""goto";
BEGIN goto; %include shell;

4. RUN PROC STREAM
5. OUTPUT (Open Deliverable.rtf with Office):

TABLE 1.2.3.4 SUMMARY OF DEMOGRAPHIC CHARACTERISTICS
Mumber of Subjects 47 45 a7
Age (Years)
M 42 45 87
Mean (5D) 51.2 (12.71) 51.6 (12.89) 51.4 (12.73)
Range o4 43 o4
Median 50 46 46
Min - Max 23 -77 32-75 23 -7F7
Gender
Female 20 13 33
Male 22 32 o4
Race
White 21 26 47
Black 11 15 26
Asian 0 0 0
Other 10 L 14

Output 1. Output from Proc STREAM

A SECOND EXAMPLE USING A MORE ELABORATE TABLE LAYOUT

13

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

This example will show how it matters little if the mock has a complex layout. Needless to say,
clinical reports do not require fancy tables, and the typical bare-bones layout is the norm. The
example below is just to illustrate how versatile the technique is. The template used is more
suited for financial reports, where “looks” might matter. In the fancy template below, the same
macro calls will be utilized and no reprogramming would be needed.

Again, a free OFFICE 2013 WORD template is being used: a commercial invoice table (“Sales
Quote — Sienna Design”), as shown below:

14

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding?)

YOUR LOGO
HERE [Your company alog@an] Q LI Dte

Drate: [Enter & date]
Invoice & [100]
Expiration Date: [Enter a date]

To [Mame]
[Company Mame]

[Sireet Address]

[City, ST ZIP Code]

[Phone]

Customer D [ABC123]

Salecperson Job M Ig Shipping Terme Delivery Date Payment Tamms Due Date
Due on recsipt
ey hern # Dascription Uit Price Discournt Lime Total
Total Discount
Substotsl
Sales Tax
Totsl

Quotstion prepared by

This is @ quotation on the goode named, subject to the conditions noted below: {Descrits any conditions partaining to thees prices and amy
additionsl terms of the agreemant. ¥ou may went to include contingancies that will affect the quotation.)

To @coapt this guotetion, sign hers and returm:

Thank you for your business!

[Wour Company Marme] [Strest Address] [City, 5T ZIP Cods] Phone [000-000-0000] Fax [000H000-D000] [e-rrsil]

Display 2. A Free OFFICE 2013 WORD Template (“ Sales Quote — Sienna design”)

The template is edited to change labels and converted to an RTF document then transformed into a Clinical Smart
Mock Table (SmartMock.rtf) as shown below:

15

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

YOUR LOGC

CLINICAL SUMMARY
HERE TABLE

[Name]

[Company Name]
[Street Address]

[City, ST ZIP Code]
[Phone]

Customer ID [ABC123]

Jane Doe John Doe Tim Brown ‘ Bob Smith ‘ Nancy Taylor ‘ Dr. Pat Gould ‘ Aug 31, 2020
Age N %stax(age,N,3.,A | %stax(age,N,3.,PL | %stax(age,N,3.,A
CTIVE) ACEBO) CTIVE PLACEBO)
%stax(age,mean,5
%stax(age,mean,5 | %stax(age,mean,5. -1,ACTIVE
Mean (SD) .1,ACTIVE) 1,PLACEBO) PLACEBO)
(%stax(age,STD,5 | (%stax(age,STD,5. | (4stax(age,STD,5
-2,ACTIVE)) 2,PLACEBO)) -2,ACTIVE
PLACEBO))
. .
Median %stax(age,median | %stax(age,median, Astaz(agg+T$glan
,4.,ACTIVE) 4. ,PLACEBO) ’PLACEBO)
0 2
%stax(age,min,3. | %stax(age,min,3., mié$f629§LXéEégj
Min-Max ,ACTIVE) - PLACEBO) - ’ _
%stax(age,max,3. | %stax(age,max,3., wstax(age,max, 3
AACTIVE) PLACEBO) ACTIVE PLACEBO)
0 _
Race White %counx(Race,Whit | %counx(Race,White mcoifxgigﬁﬁ&yh't
e, ACTIVE) , PLACEBO) ﬁLACEBO)
0
Black %counx(Race,Blac | %counx(Race,Black ACO%?XSS;ﬁﬁ&?IaC
k, ACTIVE) , PLACEBO) 5LACEBO)
0 _
Asian %counx(Race,Asia | %counx(Race,Asian mc0$?x$§;ﬁﬁ&?3|a
n, ACTIVE) , PLACEBO) ﬁLACEBO)
0
Other %counx(Race,Othe | %counx(Race,Other ACOﬂPXES;ﬁﬁ&?the
r, ACTIVE) , PLACEBO) 5LACEBO)

When processed with Proc Stream using the same code as in Example 1, the output below is obtained:

16

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding?)

A multi-center randomized placebo-controlled double blind study
examining the effect of solar flares on cardiac arrhythmias in
patients who have undergone triple bypass surgery and treated with

Coenzyme Qi0.

[Mame]
[Company Mame]
[Street Address]

[City, ST ZIP Code]

[Fhone]lD [ABC123]
:::;:::'::H ::::i::::r:er Study Lead Statistician :;:j::: Clinician Due Date
Jane Doe John Doe Tim Brown Eob Smith Mancy Tayvlor Dr. Pat Gould Aug 31, 2020
category Statistic ACTIVE PLACEBOD Total
Age M 42 45 87
Mean (5D) 1.2 1.4 1.4
(12.71) (12.89) (12.73)
Median S0 46 45
Min-Max 23 - 17 32 - 75 23 - 17
Race White 21 26 47
Black 11 15 28
Asian 0 0 4]
Other 10 4 14

17

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

CONCLUSION

The use of Proc STREAM can enable the placement of an entire RTF mock table onto the SAS Input Stack. If such a
table contains macro elements, the Macro Facility can resolve them, thereby allowing the table to update itself with
new data. The mock table can even contain macro calls with DATA steps and procedures, so long as those steps are
wrapped inside a DOSUBL and invoked with a %SYSFUNC. The ability to contain macro calls is what would make an
RTF mock table “smart”. A smart mock table for a clinical summary can therefore generate a deliverable, after
handling by Proc STREAM, without any table programming. Such an approach could potentially free the clinical
programmer to focus entirely on statistical analyses of data. This technique is applicable to any RTF document that
needs to contain computed data. The author has provided another example, the Consort Flow Diagram, in a second

paper.
SOME CAVEATS

(1) Macro Calls must be put into the RTF version of the original mock and not on the WORD
(.doc) version.

(2) The mock should not be the annotated version.

(3) Macro Calls MUST be typed, and not copied from an external source, to ensure the macro
syntax is not contaminated with extraneous RTF codes.

(4) It's okay to copy Macro Calls from one part of the RTF mock to another part of the same RTF
document.

(5) The Macro Calls MUST be plain font (no color or bold, or italic), to avoid syntax
contamination with extraneous RTF codes.

(6) The outermost quotes of the DOSUBL argument MUST be single.

(7) The macro variable statement inside the macros should NOT end with a semicolon.

Example: %macro bn(gp);

%let t=Y%sysfunc(dosubl("proc sgl noprint;select
count(distinct subjid) into :bgn TRIMMED from dmdata where
indexw("'&gp."",trt) gt O;quit;"));

&bgn.

%mend bn;

POTENTIAL ADVANTAGES

- Table cosmetic changes can quickly be done on the smart mock without any SAS
reprogramming.

- Rearrangement of data can be achieved by simply relocating the macro calls.

- Similarly, analyses can be updated only at the macro level without touching the table layout.

- It matters not how complex or elaborate the mock table — only the macro calls need to be
inserted in a document. This is of tremendous benefit to financial documents in particular, as
they tend to have complex layouts (for example invoices).

- Outputs styles can quickly be changed since no table programming is involved.

- Titles and footnotes would be as provided by the statistician on the mock, with no programmer
involvement, minimizing display errors and the need to update.

- Any table restructuring would be effected at the mock table level with absolutely no
reprogramming.

- Table validation by double-programming would only occur at the analysis macro level, with only
visual inspection utilized for the smart mocks.

18

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

- By directly using the mock table to create a deliverable, all outputs using the same smart mock
would appear identical, even if analyses done by different programmers with different
algorithms.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Please contact the author at:

Joseph W. Hinson, PhD
inVentiv Health

202 Carnegie Center, Suite 200
Princeton, NJ, 08540
1-609-282-1615
joehinson@outlook.com

- Certified Clinical
Certified Advanced ‘ ;
Trials Programmer
Sas® Programmer for SAS9 N)Sas Using snsg’g

SAS® and all other SAS® Institute Inc. product or service names are registered trademarks or trademarks of SAS®
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

19

mailto:joehinson@outlook.com

	Abstract
	INTRODUCTION
	The STREAM PROCEDURE
	The PROC STREAM SYNTAX
	THE PROBLEM WITH MACRO CALLS
	THE NEED FOR DOSUBL() AND %SYSFUNC
	OVERALL STRATEGY
	AN EXAMPLE WITH THE DEMOGRAPHICS SUMMARY TABLE (SIMPLE LAYOUT)
	CONCLUSION
	SOME CAVEATS
	POTENTIAL ADVANTAGES

