
1

PharmaSUG 2017 – Paper AD01

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary
Tables Without Any Table Programming (No Kidding!)

Joseph Hinson, inVentiv Health, Princeton, NJ, USA

ABSTRACT
The creation of a clinical summary table typically involves two main phases: the statistical analyses of data, and the
presentation of the analyses results onto a layout predefined by a mock table. The first phase can be pretty
straightforward, simply involving the calling of SAS statistical procedures plus a few DATA steps. The second phase,
a relatively time-consuming part, would constitute taking those procedure outputs and programming their placements
in specified positions to become the summary table. It turns out that this second phase might not even be necessary.
The mock table can be made to populate itself with analyses results! Such a “smart” mock table can be made by
embedding macro calls directly in the RTF mock document. These macros would contain SAS procedures or DATA
step codes wrapped inside a DOSUBL function and called by a %SYSFUNC to generate single macro variables.
Finally, the entire smart RTF mock table, can be placed on the SAS Input Stack as a %INCLUDE for macro
processing using the new SAS 9.4 STREAM Procedure. Such an approach could potentially allow programmers to
focus entirely on data analyses, significantly shortening turnaround times for deliverables. Table cosmetic changes
could be done at the mock table level with no need for reprogramming. Data point repositioning could also be
implemented directly on the mock table by simply relocating the macro calls. The technique in fact is applicable to
any WORD document, including the CONSORT Flow Diagram (see author’s other paper).

INTRODUCTION
 We live in interesting times: smart light bulbs, smart baby diapers, smart garbage cans, and even smart coffee-
stirrers. So it should come as no surprise that we should now have smart mock tables -- not with sensors and WiFi-
chips, but loaded with macro variables and even macro calls. It turns out that when such a macro-embedded mock
table is processed by Proc STREAM, the table magically comes to life, displaying real analysis results at the desired
positions, with not a single line of table programming code ever written. Move over, Proc REPORT!

 The life of a clinical programmer is easily dominated by two phases of activities: writing code for data
analyses, and figuring out programmatically how to place the results of those analyses onto a table, exactly as
specified by a mock table. What if one could simply let the mock table process itself, populating the data placeholders
(“xx.x”) with real numbers from the analyses results?

Three SAS tools actually make possible such self-processing by a mock table:

(a) The DOSUBL function,
(b) The %SYSFUNC macro keyword, and
(c) The STREAM procedure.

The idea is to let a macro generate each data point so that the mock table would be populated with macro calls rather
than “xx.x” placeholders, then place the macro-embedded mock table onto the SAS Input Stack for macro processing
using a %INCLUDE.

However, under normal circumstances, placing an RTF document onto the SAS Input Stack (via %include) would
generate plenty of syntax errors (see further down). The RTF codes would not be recognized as valid SAS syntax.

THE STREAM PROCEDURE
The general idea of adding macro elements to documents for macro resolution would be fairly easy if one could
engage only the macro processor. As the document is tokenized, macro elements are diverted to the macro
processor. The resolved values are returned and the documents are streamed back in original form except with
resolved macro values. The SAS 9.4 Proc STREAM was developed for exactly that purpose. With that new

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

2

procedure, almost anything can be put on the Input Stack (with the exception of binary formats like PDF, JPEG,
DOCX). Proc STREAM disables the SAS Compiler thereby permitting the processing of the macro elements in a RTF
documents in the presence of the SAS syntax-violating RTF codes. After macro resolutions, the RTF document is
streamed to an external file location with the original structure and non-macro contents intact. Without Proc STREAM,
the log would display syntax errors from the RTF codes, as shown below for a simple RTF table:

(a) RTF Table (document.rtf):

ACTIVE PLACEBO

x.xx x.xx

xx.x xx.x

(b) Underlying RTF Code:

(a) SAS Code and Log:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

3

The RTF codes trigger errors and the DATA step get stuck in an endless loop (“DATA STEP
running”)

(b) The Proc STREAM Solution:

When the same RTF file is run with Proc STREAM, the log becomes error-free:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

4

THE PROC STREAM SYNTAX
The Proc STREAM statement specifies an external file with the “OUTFILE=” keyword, as well as options.

The arbitrary text is wrapped inside a “BEGIN” and a four semi-colon ending “;;;;”.

There is no “RUN” or “QUIT”.

Two Useful Proc STREAM statement Options:

PROC STREAM OUTFILE=fileref <options>;

BEGIN

(some text which may contain macro triggers)

;;;;

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

5

a. RESETDELIM= ”label”

The SAS® Word Scanner expects macro statements like “%LET” and “%INCLUDE” to begin on a statement
boundary -- which means, the statements must be preceded by a semicolon and must end with a semicolon.
Therefore to use %LET and %INCLUDE in a Proc STREAM input text, one must place a special marker token before
the statements and end the statement with a semicolon. This special marker token is defined with the option
RESETDELIM=label, where label can be any arbitrary SAS® name:

The marker token specified by RESETDELIM is also required when a carriage return is required in

the input text. The keyword “NEWLINE” is used with the marker token:

b. QUOTING=SINGLE (or DOUBLE or BOTH)

This option specifies that the single quotation mark (‘) should be treated like any other character, as expected for: the
patient’s blood pressure.

QUOTING=DOUBLE would be required in cases where the text involves, for instance, XML elements in Define-XML
documents:

So with Proc STREAM, a macro-embedded RTF document can be placed on the SAS Input Stack without any
triggering of errors.

THE PROBLEM WITH MACRO CALLS
Thus, Proc STREAM can allow a macro-embedded RTF document to be processed by the Macro Processor. But
there is yet another problem. Processing documents with macro variables is very straight forward and not that
different from the everyday text substitution with macro variables done in SAS programming. Putting MACRO CALLS
in documents presents another challenge, especially if those macros contain DATA steps and/or procedures. Such
macros would be resolved by the Macro Processor into the actual constituent DATA step or procedure codes, and
placed back on the Input Stack for streaming out. An example of such macros is shown below:

PROC STREAM OUTFILE= myfile RESETDELIM=”goto”;

BEGIN

goto; %INCLUDE myotherfile;

;;;;

PROC STREAM OUTFILE= myfile RESETDELIM=”goto”;

BEGIN

Dear Sir, goto NEWLINE;
The profile below is for patient 12345.

;;;;

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

6

We desire the analysis macro to generate a single value.

However when %counx() is called, the macro processor would return the generated code instead of the computed
value.

THE NEED FOR DOSUBL() AND %SYSFUNC
The DOSUBL function enables the immediate execution of SAS code after a text string is passed. If the text is a
DATA step or a PROC program, DOSUBL would allow them to execute and wait for them to complete. Also any
macro variables that are created or updated during the execution of the submitted code are exported back to the
calling environment. DOSUBL does not return until the execution of the SAS code is fully completed.
If DOSUBL() is called by a macro via %SYSFUNC, then the macro is forced to execute the DATA step and Proc SQL
codes and any macro variable created inside the DOSUBL becomes available, instead of the macro execution
returning the raw lines of DATA step or Proc codes to the input stack. %SYSFUNC forces execution of functions it
carries as arguments. Also for proper timing of resolution for macro variables enclosed in quotes, the outermost
quotes inside the DOSUBL function should be single (this is important!). Below is an example with a macro that
calculates the Body Mass Index of a subject:

(a) Without DOSUBL:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

7

The streamed output shows the DATA step code instead of the calculated BMI value:

(b) With DOSUBL:

Now, the DATA step code is fully resolved into a value:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

8

OVERALL STRATEGY
1. Create analysis macros according to the original mock specifications, wrapping any DATA step

or procedure inside a DOSUBL and invoking with a %SYSFUNC. Make sure each analysis macro
generates a macro variable (“macro call variable”).

2. Create Regular Mock Table:
(a) Open WORD (eg. Office 2010 or 2013).
(b) Invoke FILE  NEW.
(c) Do INSERT TABLE (4 by 20 rows, for example).
(d) Change layout to LANDSCAPE (for example).
(e) Enter column headers, row labels, and data placeholders (xx.xx, etc) and save as RTF

for step 3.
(f) Or, you may download a free WORD table template, change title, headers and

labels, remove unwanted rows and columns, enter xx.xx’s, and save as RTF for step
3.

(g) Or, if there is already an original mock table as a WORD document, save as RTF for
step 3.

3. Reopen the RTF mock from step 2 with WORD. (This step is essential!)
4. Type macro calls in the expected locations for analysis results (replace the “xxx.xx” on original

mock), thereby converting the RTF mock table to a smart document.
5. Save the smart RTF mock (SmartMock.rtf).
6. Write Proc STREAM code with %include SmartMock.rtf and output file as Deliverable.rtf
7. Run main program to define analysis macros and to execute Proc STREAM.

AN EXAMPLE WITH THE DEMOGRAPHICS SUMMARY TABLE (SIMPLE LAYOUT)
1. CREATE ANALYSIS MACROS ACCORDING TO THE ORIGINAL MOCK SPECIFICATIONS:

(a) Read Input Dataset:

data dmdata (drop=code:);
infile datalines;
input SUBJID codeTRT codeGEND codeRACE Age Weight Height codeRELIGION Waist
Iriscan codeBLOOD codeCOUNTRY @@;
BMI=703*(Weight/((Height*12)**2));*<--if WEIGHT in pounds and HEIGHT in feet;
*----DECODE VALUES FOR TREATMENT, RACE, GENDER, etc. -------;
trt=choosec(((codeTRT)+1), "ACTIVE","PLACEBO");
Gender=choosec(codeGEND,"Male","Female");
Race=choosec(codeRACE, "White", "Black", "Other");
Blood=choosec(codeBLOOD,"A","B","AB","O");
Religion=choosec(codeRELIGION,"Buddhist","Catholic","Muslim","Jewish");

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

9

Country=choosec(codeCOUNTRY,"American","Jamaican","Chinese","British");
datalines;
101 0 1 3 37 112 6 2 34 131 2 1 301 0 1 1 70 131 6 3 34 131 4 1 501 0 1 2 33 111 6 2 34 131 2 1
601 0 1 1 50 124 5 1 34 131 3 2 701 1 1 1 60 121 6 1 34 131 3 2 102 1 2 1 65 123 5 3 40 188 4 2
302 0 1 2 55 143 6 2 34 131 4 3 502 1 2 1 44 181 6 2 34 131 4 3 602 0 2 2 30 152 7 2 33 129 3 4
702 0 1 1 28 133 4 3 34 131 1 4 103 1 1 2 32 132 6 4 34 131 2 4 303 1 1 1 65 122 7 1 38 200 3 3
503 1 1 1 64 133 6 4 34 131 2 2 603 1 2 1 33 133 6 2 34 131 1 1 703 1 1 2 44 126 4 4 43 117 1 2
104 0 2 3 23 122 5 1 34 131 3 1 304 0 1 1 45 134 6 3 34 131 2 2 504 0 1 3 56 122 6 4 37 166 1 3
604 0 1 3 65 125 4 2 34 131 4 4 704 0 2 1 66 171 6 4 34 131 3 3 105 1 1 3 44 121 5 3 31 212 2 2
305 1 1 1 36 113 5 3 34 131 1 2 505 1 1 2 73 143 6 2 34 131 4 4 605 1 2 1 57 122 4 1 41 154 2 2
705 1 1 2 46 124 5 4 34 131 3 4 106 0 2 1 49 144 6 4 34 131 3 1 306 0 1 2 46 143 5 3 36 123 1 2
506 0 1 1 46 122 5 4 34 131 2 3 606 0 1 2 56 133 6 4 34 131 3 3 706 1 1 1 75 143 5 2 33 158 3 2
201 1 1 3 35 134 6 3 34 131 4 1 401 1 2 1 44 111 6 2 34 131 2 3 507 1 1 2 44 112 5 4 38 144 4 4
607 1 1 1 67 143 5 2 34 131 2 3 707 1 1 1 46 115 6 1 34 131 4 4 202 0 2 1 50 154 6 2 31 155 3 1
402 0 2 2 77 122 4 1 34 131 4 4 508 0 2 1 53 141 6 2 34 131 2 3 608 0 2 2 46 142 5 4 40 100 2 2
708 0 2 1 55 131 4 2 34 131 1 1 203 1 1 2 49 122 6 4 34 131 3 2 403 1 1 1 45 133 5 2 33 188 3 4
509 0 1 3 45 132 5 2 34 131 2 2 609 1 2 1 72 116 6 2 34 131 4 1 709 0 2 2 57 132 6 4 32 163 4 4
204 0 2 3 60 113 4 2 34 131 3 3 404 1 1 1 59 131 6 2 34 131 1 4 510 0 1 3 65 113 5 4 39 132 1 4
610 0 1 1 29 118 6 4 34 131 4 4 710 0 1 1 63 165 6 4 34 131 3 1 205 1 1 3 39 132 5 1 31 155 2 4
405 0 2 1 49 124 5 1 34 131 1 1 511 1 2 2 43 123 6 4 34 131 2 4 611 1 2 1 65 125 6 3 33 121 3 4
711 1 1 2 61 144 5 4 34 131 2 1 206 1 2 1 67 111 6 2 34 131 2 1 406 1 1 2 33 142 5 4 29 153 4 2
512 1 1 1 39 111 4 2 34 131 2 1 612 1 1 2 46 132 6 2 34 131 2 1 712 0 1 1 49 121 5 2 42 193 1 2
801 1 1 1 67 143 5 4 34 131 2 1 810 1 1 1 46 115 6 1 34 131 2 1 902 0 2 1 50 154 6 4 31 155 3 1
802 0 2 2 77 122 4 3 34 131 2 1 811 0 2 1 53 141 6 2 34 131 2 1 903 0 2 2 46 142 5 4 40 100 2 2
803 0 2 1 55 131 4 4 34 131 2 1 812 1 1 2 49 122 6 4 34 131 2 1 904 1 1 1 45 133 5 1 33 188 3 4
804 0 1 3 45 132 5 4 34 131 2 1 813 1 2 1 72 116 6 2 34 131 2 1 905 0 2 2 57 132 6 4 32 163 4 4
805 0 2 3 60 113 4 2 34 131 2 1 814 1 1 1 59 131 6 1 34 131 2 1 910 0 1 3 65 113 5 3 39 132 1 4
806 0 1 1 29 118 6 4 34 131 2 1 815 0 1 1 63 165 6 2 34 131 2 1 911 1 1 3 39 132 5 2 31 155 2 4
807 0 2 1 49 124 4 4 34 131 2 1 816 1 2 2 43 123 6 3 34 131 2 1 912 1 2 1 65 125 6 3 33 121 3 4
808 1 1 2 61 144 5 2 34 131 2 1 817 1 2 1 67 111 6 2 34 131 2 1 913 1 1 2 33 142 5 1 29 153 4 2
809 1 1 1 39 111 5 2 34 131 2 1 818 1 1 2 46 132 6 4 34 131 2 1 917 0 1 1 49 121 5 2 42 193 1 2
;
run;

(b) Define Macros for Big N’s:

%macro bn(gp);
%let t=%sysfunc(dosubl('proc sql noprint;select count(distinct subjid) into
:bgn TRIMMED from dmdata where indexw("&gp.",trt) gt 0;quit;'));
&bgn.
%mend bn;

(c) Define Macros for Counts:

%macro counx(name, item, treat);
%global w;
%let u1=%sysfunc(dosubl('data cflags;set dmdata;
countFL=((&name. eq "&item.") and (indexw("&treat.",trt) gt 0));run;'));
%let u2=%sysfunc(dosubl('proc sql noprint;select sum(countFL)
 into :w TRIMMED from cflags;quit;'));
&w.
%mend counx;

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

10

(d) Define Macros for Descriptive Statistics:

%macro stax (name, test, form, treat);
%global res;
%let st1=%sysfunc(dosubl('proc sql noprint;select &test.(&name.)
format=&form.
 into :res TRIMMED from dmdata where indexw("&treat.",trt) gt
0;quit;'));
&res.
%mend stax;

2. CREATE AN ORIGINAL RTF MOCK TABLE BY ONE OF THE FOLLOWING RELIABLE METHODS:
i. Save a pre-existing MS WORD mock table as RTF, or
ii. Insert a new table into MS WORD and fill in with the titles, footnotes, headings,

row-labels, and data placeholders (xx.xx), then save as RTF, or
iii. Download a free MS WORD table template, and edit out the row and column

labels and fill in the mock table info, then save as RTF.

 Using method iii, a free template called “Contact list for youth sports” (WORD 2013) was downloaded as
shown below:

The above template then had unwanted rows and columns removed and mock table
information typed in as shown below:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

11

TABLE 1.2.3.4 SUMMARY OF DEMOGRAPHIC CHARACTERISTICS

 ACTIVE PLACEBO TOTAL

Number of Subjects xxx xxx xxx

Age (Years)

 N xxx xxx xxx

 Mean (SD) xx.x (x.xx) xx.x (x.xx) xx.x (x.xx)

 Range xx xx xx

 Median xx xx xx

 Min – Max xx - xx xx - xx xx - xx

Gender

 Female xx xx xx

 Male xx xx xx

Race

 White xx xx xx

 Black xx xx xx

 Asian xx xx xx

 Other xx xx xx

The modified WORD template above was then saved as RTF, reopened with WORD, and converted to a
“SmartMock” by typing in the macro calls, as shown below (SmartMock.rtf):

TABLE 1.2.3.4 SUMMARY OF DEMOGRAPHIC CHARACTERISTICS

 ACTIVE PLACEBO TOTAL

Number of Subjects %bn(ACTIVE) %bn(PLACEBO) %bn(ACTIVE PLACEBO)

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

12

3. WRITE PROC STREAM CODE WITH %INCLUDE SMARTMOCK.RTF AND OUTPUT FILE AS

DELIVERABLE.RTF

%let path = %nrstr(C:\Users\admin\Desktop\StreamIN); /* update with your own
*/

filename shell "&path.\SmartMock.rtf" lrecl = 32755;

Age (Years)

 N %stax(age,N,3.,ACTI
VE)

%stax(age,N,3.,PLACE
BO)

%stax(age,N,3.,ACTIVE
PLACEBO)

 Mean (SD)

%stax(age,Mean,5.1,
ACTIVE)
(%stax(age,STD,5.2,
ACTIVE))

%stax(age,Mean,5.1,P
LACEBO)
(%stax(age,STD,5.2,P
LACEBO))

%stax(age,Mean,5.1,ACTI
VE PLACEBO)
(%stax(age,STD,5.2,ACTI
VE PLACEBO))

 Range

%sysevalf(%stax(ag
e,Max,3.,ACTIVE)-
%stax(age,Min,3.,AC
TIVE))

%sysevalf(%stax(age,
Max,3.,PLACEBO)-
%stax(age,Min,3.,PLA
CEBO))

%sysevalf(%stax(age,Max
,3.,ACTIVE PLACEBO)-
%stax(age,Min,3.,ACTIVE
PLACEBO))

 Median %stax(age,Median,4.
,ACTIVE)

%stax(age,Median,4.,
PLACEBO)

%stax(age,Median,4.,PLAC
EBO)

 Min - Max

%stax(age,MIN,3.,AC
TIVE) -
%stax(age,Max,3.,AC
TIVE)

%stax(age,MIN,3.,PLA
CEBO) -
%stax(age,Max,3.,PLA
CEBO)

%stax(age,MIN,3.,ACTIVE
PLACEBO) -
%stax(age,Max,3.,ACTIVE
PLACEBO)

Gender

 Female %counx(Gender,Fem
ale, ACTIVE)

%counx(Gender,Femal
e, PLACEBO)

%counx(Gender,Female,
ACTIVE PLACEBO)

 Male %counx(Gender,Male
, ACTIVE)

%counx(Gender,Male,
PLACEBO)

%counx(Gender,Male,
ACTIVE PLACEBO)

Race

 White %counx(Race,White,
ACTIVE)

%counx(Race,White,P
LACEBO)

%counx(Race,White,ACTIV
E PLACEBO)

 Black %counx(Race,Black,
ACTIVE)

%counx(Race,Black,PL
ACEBO)

%counx(Race,Black,ACTIV
E PLACEBO)

 Asian %counx(Race,Asian,
ACTIVE)

%counx(Race,Asian,PL
ACEBO)

%counx(Race,Asian,ACTIV
E PLACEBO)

 Other %counx(Race,Other,
ACTIVE)

%counx(Race,Other,PL
ACEBO)

%counx(Race,Other,ACTIV
E PLACEBO)

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

13

filename out "C:\Users\admin\Desktop\StreamOUT\Deliverable.rtf" lrecl =
32755;

proc stream outfile = out quoting = single resetdelim="goto";
BEGIN goto; %include shell;

;;;;
4. RUN PROC STREAM
5. OUTPUT (Open Deliverable.rtf with Office):

Output 1. Output from Proc STREAM

A SECOND EXAMPLE USING A MORE ELABORATE TABLE LAYOUT

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

14

This example will show how it matters little if the mock has a complex layout. Needless to say,
clinical reports do not require fancy tables, and the typical bare-bones layout is the norm. The
example below is just to illustrate how versatile the technique is. The template used is more
suited for financial reports, where “looks” might matter. In the fancy template below, the same
macro calls will be utilized and no reprogramming would be needed.

Again, a free OFFICE 2013 WORD template is being used: a commercial invoice table (“Sales
Quote – Sienna Design”), as shown below:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

15

Display 2. A Free OFFICE 2013 WORD Template (“Sales Quote – Sienna design”)

The template is edited to change labels and converted to an RTF document then transformed into a Clinical Smart
Mock Table (SmartMock.rtf) as shown below:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

16

CLINICAL SUMMARY
TABLE 14.1.2.2 Subject Demographics

A multi-center randomized placebo-controlled double blind study examining
the effect of solar flares on cardiac arrhythmias in patients who have

undergone triple bypass surgery and treated with Coenzyme Q10.

[Name]
[Company Name]

[Street Address]
[City, ST ZIP Code]

[Phone]
Customer ID [ABC123]

Production
Programmer

Validation
Programmer

Study
Lead Statistician Project Leader Clinician Due Date

Jane Doe John Doe Tim Brown Bob Smith Nancy Taylor Dr. Pat Gould Aug 31, 2020

 Category Statistic ACTIVE PLACEBO Total

 Age N %stax(age,N,3.,A
CTIVE)

%stax(age,N,3.,PL
ACEBO)

%stax(age,N,3.,A
CTIVE PLACEBO)

 Mean (SD)

%stax(age,mean,5
.1,ACTIVE)

(%stax(age,STD,5
.2,ACTIVE))

%stax(age,mean,5.
1,PLACEBO)

(%stax(age,STD,5.
2,PLACEBO))

%stax(age,mean,5
.1,ACTIVE
PLACEBO)

(%stax(age,STD,5
.2,ACTIVE
PLACEBO))

 Median %stax(age,median
,4.,ACTIVE)

%stax(age,median,
4.,PLACEBO)

%stax(age,median
,4.,ACTIVE
PLACEBO)

 Min-Max

%stax(age,min,3.
,ACTIVE) -

%stax(age,max,3.
,ACTIVE)

%stax(age,min,3.,
PLACEBO) -

%stax(age,max,3.,
PLACEBO)

%stax(age,min,3.
,ACTIVE PLACEBO)

-
%stax(age,max,3.
,ACTIVE PLACEBO)

 Race White %counx(Race,Whit
e, ACTIVE)

%counx(Race,White
, PLACEBO)

%counx(Race,Whit
e, ACTIVE
PLACEBO)

 Black %counx(Race,Blac
k, ACTIVE)

%counx(Race,Black
, PLACEBO)

%counx(Race,Blac
k, ACTIVE
PLACEBO)

 Asian %counx(Race,Asia
n, ACTIVE)

%counx(Race,Asian
, PLACEBO)

%counx(Race,Asia
n, ACTIVE
PLACEBO)

 Other %counx(Race,Othe
r, ACTIVE)

%counx(Race,Other
, PLACEBO)

%counx(Race,Othe
r, ACTIVE
PLACEBO)

When processed with Proc Stream using the same code as in Example 1, the output below is obtained:

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

17

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

18

CONCLUSION
The use of Proc STREAM can enable the placement of an entire RTF mock table onto the SAS Input Stack. If such a
table contains macro elements, the Macro Facility can resolve them, thereby allowing the table to update itself with
new data. The mock table can even contain macro calls with DATA steps and procedures, so long as those steps are
wrapped inside a DOSUBL and invoked with a %SYSFUNC. The ability to contain macro calls is what would make an
RTF mock table “smart”. A smart mock table for a clinical summary can therefore generate a deliverable, after
handling by Proc STREAM, without any table programming. Such an approach could potentially free the clinical
programmer to focus entirely on statistical analyses of data. This technique is applicable to any RTF document that
needs to contain computed data. The author has provided another example, the Consort Flow Diagram, in a second
paper.

SOME CAVEATS

(1) Macro Calls must be put into the RTF version of the original mock and not on the WORD
(.doc) version.

(2) The mock should not be the annotated version.
(3) Macro Calls MUST be typed, and not copied from an external source, to ensure the macro

syntax is not contaminated with extraneous RTF codes.
(4) It’s okay to copy Macro Calls from one part of the RTF mock to another part of the same RTF

document.
(5) The Macro Calls MUST be plain font (no color or bold, or italic), to avoid syntax

contamination with extraneous RTF codes.
(6) The outermost quotes of the DOSUBL argument MUST be single.
(7) The macro variable statement inside the macros should NOT end with a semicolon.

Example: %macro bn(gp);
%let t=%sysfunc(dosubl('proc sql noprint;select

count(distinct subjid) into :bgn TRIMMED from dmdata where
indexw("&gp.",trt) gt 0;quit;'));

&bgn.
%mend bn;

POTENTIAL ADVANTAGES

- Table cosmetic changes can quickly be done on the smart mock without any SAS
reprogramming.

- Rearrangement of data can be achieved by simply relocating the macro calls.
- Similarly, analyses can be updated only at the macro level without touching the table layout.
- It matters not how complex or elaborate the mock table – only the macro calls need to be

inserted in a document. This is of tremendous benefit to financial documents in particular, as
they tend to have complex layouts (for example invoices).

- Outputs styles can quickly be changed since no table programming is involved.
- Titles and footnotes would be as provided by the statistician on the mock, with no programmer

involvement, minimizing display errors and the need to update.
- Any table restructuring would be effected at the mock table level with absolutely no

reprogramming.
- Table validation by double-programming would only occur at the analysis macro level, with only

visual inspection utilized for the smart mocks.

Here Comes The Smart Mock Table: A Novel Way of Creating Clinical Summary Tables Without Any Table Programming (No Kidding!)

19

- By directly using the mock table to create a deliverable, all outputs using the same smart mock
would appear identical, even if analyses done by different programmers with different
algorithms.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Please contact the author at:

Joseph W. Hinson, PhD
inVentiv Health
202 Carnegie Center, Suite 200
Princeton, NJ, 08540
1-609-282-1615
joehinson@outlook.com

SAS® and all other SAS® Institute Inc. product or service names are registered trademarks or trademarks of SAS®
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:joehinson@outlook.com

	Abstract
	INTRODUCTION
	The STREAM PROCEDURE
	The PROC STREAM SYNTAX
	THE PROBLEM WITH MACRO CALLS
	THE NEED FOR DOSUBL() AND %SYSFUNC
	OVERALL STRATEGY
	AN EXAMPLE WITH THE DEMOGRAPHICS SUMMARY TABLE (SIMPLE LAYOUT)
	CONCLUSION
	SOME CAVEATS
	POTENTIAL ADVANTAGES

