
1

PharmaSUG 2017 - Paper AD23

Supporting the CDISC Validation Life-Cycle with Microsoft Excel VBA

Eric Crockett, Chiltern International

ABSTRACT

Clinical research is increasingly based on standardized Clinical Data Interchange Standards Consortium
(CDISC) data. Evaluating whether the data conforms to the applicable CDISC standards is required and
is often an iterative process done over the course of a study. Documenting the explanations for issues
that cannot be resolved and tracking the trends in conformance findings over the life-cycle of a study can
easily turn into a burdensome manual process repeated with each Pinnacle 21 report. Utilizing Microsoft
Excel Visual Basic for Applications (VBA) macro code that will be provided and discussed, successive
validation reports can be compared and explanatory comments can be migrated. Leveraging this
automated application can dramatically reduce the time spent tracking, evaluating and documenting
conformance findings.

INTRODUCTION

Evaluating whether mapped data conforms to the applicable CDISC (SEND, SDTM or ADaM) standard is
best done multiple times over the course of a study. Early reports confirm that initial mapping is sound
but are often littered with findings triggered by dirty or incomplete data. Runs near the time of database
lock are time-sensitive and any finding that cannot be addressed must be documented and included in
the conformance section of the Study Data Reviewer’s Guide (SDRG).

Efficiently managing the output from iterative Pinnacle 21 validation runs requires planning and can be
effectively supported by an application. Over the course of a study, the general expectation is that issues
based on dirty or incomplete data will resolve and that issues based in collection standards that are
inconsistent with the CDISC requirements will remain. Starting with a general convention that the Issue
Summary table of a Pinnacle 21 output will be used to: flag issues for corrective action, track increases or
decreases in issue numbers over time, and document issues that are not expected to resolve as needed
for inclusion in the SDRG. This paper will discuss a VBA macro that compares the Issue Summary table
information betweem two Pinnacle 21 reports, color codes changes in the number of issues Found and
migrates annotations.

OVERVIEW

A WELL-STRUCTURED TABLE

As noted above, the goal is to compare the Issue Summary tables from two Pinnacle 21 reports, generate
(and color code) changes in number of issues Found and migrate notes and comments. To accomplish
this, a row by row comparison between the reports is required.

Those who work with Microsoft Excel likely use the Control-key functions within Excel to scoot around a
page quickly, select an entire range of cells or select individual cells. Excel VBA macros can be based on
these same principles. The structure of a Pinnacle 21 report is entirely predictable and this makes it
possible to implement a VBA macro that can work with and traverse the scaffolding of the Issue Summary
table.

PROCESS SUMMARY

The macro uses the Date Modified dates to determine which report is the source of the comments (earlier
date) and which is the target report (later date). The next task is to bring both Issue Summary tables into
a new workbook so that nothing is modified directly. The structure of the original summary tables is
updated to contain a dataset reference on each row so that it is possible to associate each issue with a
dataset. Once this is accomplished on both Issue Summary tables, the program moves through each row
on the annotated report table comparing them to each row in the new report and migrating the comments
where exact matches are found for the Source and Message values. The number Found on the original

Supporting the CDISC Validation Life-Cycle with Microsoft Excel VBA, continued

2

annotated report is added to a cell comment and the color of the cell is changed to green (fewer issues)
or red (more issues). No color change indicates the number of issues flagged was identical if the issue
was present on both reports. Once the program finishes the last row from the original report, the original
table is eliminated from the workbook and the final output is available and ready for review. If
satisfactory, the comment columns can be copied and pasted as a group into the latest Pinnacle 21 report
from both workbooks.

PROCESS

NEW WORKBOOK AND RELEVANT TABLES

The first task the VBA macro must do is determine which workbook has the earliest Date Modified date.
The Issue Summary table from this workbook is copied into a new workbook first (see Figure 1). Then
the macro copies in the Issue Summary table from the latest Date Modified report into the new workbook
a number of cells to the right. Outputting to a new workbook allows the user to review and approve the
final output and preserve the original Pinnacle 21 content.

Figure 1. Paste of Table from Original Pinnacle 21 Report

CARRY FORWARD DATASET HEADER INFORMATION

Nothing can proceed without having a simple way to associate each comment with a particular dataset.
Each dataset header is actually a merged cell. Luckily, there is a VBA function that will unmerge all cells
for a table. Doing this eliminates ambiguity in cell selection and navigation around the tables.

Each dataset name is carried forward (directionally downward) from the header with the dataset name
(see the selected cells in Figure 2). The macro travels down column A filling in the dataset names. The
last iteration is planned for the last row of the table. It is important to note here that the macro will not
behave as expected if table filters are applied.

Figure 2. First Rows Depicting “Carry-Forward” Header Information

CYCLE THROUGH EACH PREVIOUS ISSUE & COPY AND PASTE EACH COMMENT

Now that each issue is associated with a dataset it is easy to cycle through each row of the original issues
and comments. The original issues and comments are compared with the corresponding new issues
iteratively row by row based on Source and Message. Then the number of issues is compared and the

Supporting the CDISC Validation Life-Cycle with Microsoft Excel VBA, continued

3

comments migrated. Comments are populated to the right of each issue and the number of issues
previously Found is added as a cell comment of the cell with the annotation comment (see Figure 3).

Figure 3. Migrating a Comment

FINAL OUTPUT

The original Issue Summary table is no longer needed once the last row of original issues is compared to
the new report. The table is removed so that all that is left is the latest set of issues in a new workbook
leaving both of the original documents untouched. It is easy to then accept or reject the output, especially
if the output is not as expected, and copy and paste the comments as a group into the new Pinnacle 21
Report.

CONCLUSION

NUANCES AND CAUTIONS

While VBA macros are incredibly powerful and can be utilized to shed ourselves of some of the more
mundane tasks, it is important to remember that VBA macros are final. You cannot undo the work of a
VBA macro, in fact, you cannot undo anything that was changed prior to running the macro. For this
reason, it is important to remember to save your work before using VBA macros.

There is another issue at hand here—malicious code. VBA is very powerful and can access the file
system of your environment and system information such as your username. For this reason, it is a good
general rule of thumb to never use VBA macros that are not company-approved or sufficiently vetted.

CLOSING

Excel VBA tools are an incredibly effective way to accomplish any iterative tasks that are well-defined. All
that is required is a structured representation of information. VBA can be used to modify text within a cell,
do statistics, or create copy and paste ready tables for a Study Data Reviewer’s Guide. VBA solutions
have proven to be an effective tool in the life-cycle maintenance of clinical data.

Supporting the CDISC Validation Life-Cycle with Microsoft Excel VBA, continued

4

ACKNOWLEDGMENTS

A special thanks to Steven Kirby, who helped make this paper possible through his support of my Excel
VBA endeavors.

RECOMMENDED READING

 WiseOwlTutorials – YouTube.com

APPENDIX

CODE

Sub UpdateNewOpenCDISC()

 Application.ScreenUpdating = False

 Dim FirstWorkBook, MidBook, LastWorkBook, WorkingBook As Workbook

 Dim SingleCell, ListOfCells, CompareCell, ListOfCompareCells As Range

 Dim CompareDataset, CompareCode As String

 Dim CompareCount As Integer

 Dim Ldate As Date

 Dim Fdate As Date

 Dim Mdate As Date

 Dim ActivePath As String

 Dim NumBooks As Integer

 Dim i As Integer

 Dim xComm As Comment

 Set FirstWorkBook = ActiveWorkbook

 Set MidBook = ActiveWorkbook

 Set LastWorkBook = ActiveWorkbook

 ActivePath = ActiveWorkbook.Path

 Fdate = DateValue("Jan 1, 2100 00:00:00 AM")

 Ldate = DateValue("Jan 1, 1950 00:00:00 AM")

 NumBooks = Workbooks.Count

 For i = 1 To NumBooks

 Workbooks(i).Activate

 Set MidBook = Workbooks(i)

 Mdate = FileDateTime(Workbooks(i).FullName)

' Workbooks("Start-Up").Activate

 MidBook.Activate

 If Fdate > Mdate And ActiveWorkbook.Name <> "Start-Up.xlsm" Then

 Fdate = Mdate

 Set FirstWorkBook = MidBook

 End If

 If Ldate < Mdate And ActiveWorkbook.Name <> "Start-Up.xlsm" Then

 Ldate = Mdate

 Set LastWorkBook = MidBook

 End If

 Next i

Supporting the CDISC Validation Life-Cycle with Microsoft Excel VBA, continued

5

 FirstWorkBook.Worksheets("Issue Summary").Activate

 Range("A1").End(xlDown).End(xlDown).End(xlDown).Offset(1, 0).Select

 Selection.CurrentRegion.Select

 Selection.Copy

 Set WorkingBook = Workbooks.Add

 Range("A1").Activate

 ActiveCell.PasteSpecial (xlPasteColumnWidths)

 ActiveCell.PasteSpecial

 Range("A1").CurrentRegion.MergeCells = False

 Set SingleCell = Range("A1").End(xlDown).Offset(1, 0)

 Do

 If SingleCell.Value = "" Then

 SingleCell.Value = SingleCell.Offset(-1, 0).Value

 End If

 Set SingleCell = SingleCell.Offset(1, 0)

 Loop Until SingleCell.Offset(0, 1).Value = "" And SingleCell.Offset(1, 1).Value

= "" And SingleCell.Offset(1, 0).Value = ""

 LastWorkBook.Worksheets("Issue Summary").Activate

 Range("A1").End(xlDown).End(xlDown).End(xlDown).Offset(1, 0).Select

 Selection.CurrentRegion.Select

 Selection.Copy

 WorkingBook.Activate

 Range("U1").Activate

 ActiveCell.PasteSpecial (xlPasteColumnWidths)

 ActiveCell.PasteSpecial

 Range("U1").CurrentRegion.MergeCells = False

 Set SingleCell = Range("U1").End(xlDown).Offset(1, 0)

 Do

 If SingleCell.Value = "" Then

 SingleCell.Value = SingleCell.Offset(-1, 0).Value

 End If

 Set SingleCell = SingleCell.Offset(1, 0)

 Loop Until SingleCell.Offset(0, 1).Value = "" And SingleCell.Offset(1, 1).Value

= "" And SingleCell.Offset(1, 0).Value = ""

 Range("A1").EntireRow.Delete

 Set ListOfCells = Range("A3", Range("A3").End(xlDown))

 For Each SingleCell In ListOfCells

 Set ListOfCompareCells = FindRange(SingleCell.Value)

 For Each CompareCell In ListOfCompareCells

 If SingleCell.Offset(0, 3).Value = CompareCell.Offset(0, 3).Value And

CompareCell.Offset(0, 1) <> "" Then

 CompareCell.Offset(0, 6).Value = SingleCell.Offset(0, 6).Value

 CompareCell.Offset(0, 7).Value = SingleCell.Offset(0, 7).Value

 CompareCell.Offset(0, 8).Value = SingleCell.Offset(0, 8).Value

 CompareCell.Offset(0, 9).Value = SingleCell.Offset(0, 9).Value

 CompareCell.Offset(0, 10).Value = SingleCell.Offset(0, 10).Value

 CompareCell.Offset(0, 11).Value = SingleCell.Offset(0, 11).Value

 CompareCell.Offset(0, 12).Value = SingleCell.Offset(0, 12).Value

 CompareCell.Offset(0, 13).Value = SingleCell.Offset(0, 13).Value

 CompareCell.Offset(0, 14).Value = SingleCell.Offset(0, 14).Value

Supporting the CDISC Validation Life-Cycle with Microsoft Excel VBA, continued

6

 i = WorksheetFunction.Min(Abs(SingleCell.Offset(0, 5).Value -

CompareCell.Offset(0, 5).Value), 255)

 If SingleCell.Offset(0, 5).Value > CompareCell.Offset(0, 5).Value

And (CompareCell.Offset(0, 6) <> "" Or CompareCell.Offset(0, 7) <> "") Then

 CompareCell.Offset(0, 6).Interior.Color = RGB(133, 255, 133)

 CompareCell.ClearComments

 CompareCell.Offset(0, 6).AddComment "Previous OCV Found: " &

SingleCell.Offset(0, 5).Value

 End If

 If SingleCell.Offset(0, 5).Value < CompareCell.Offset(0, 5).Value

And (CompareCell.Offset(0, 6) <> "" Or CompareCell.Offset(0, 7) <> "") Then

 CompareCell.Offset(0, 6).Interior.Color = RGB(255, 133, 133)

 CompareCell.ClearComments

 CompareCell.Offset(0, 6).AddComment "Previous OCV Found: " &

SingleCell.Offset(0, 5).Value

 End If

 End If

 Next CompareCell

 Next SingleCell

 For Each xComm In Application.ActiveSheet.Comments

 xComm.Shape.TextFrame.AutoSize = True

 Next

 Range("A1", "T1").EntireColumn.Delete

 Application.ScreenUpdating = True

End Sub

Function FindRange(Dataset As String) As Range

 Dim SingleCell, ListOfCells, FirstCell, LastCell As Range

 Set ListOfCells = Range("U3", Range("U3").End(xlDown))

 Set FirstCell = Range("T1")

 Set LastCell = Range("T2")

 For Each SingleCell In ListOfCells

 If SingleCell.Value = Dataset And FirstCell.Value = "" Then

 Set FirstCell = SingleCell

 ElseIf SingleCell.Value = Dataset And FirstCell.Value <> "" Then

 Set LastCell = SingleCell

 End If

 Next SingleCell

 Set FindRange = Range(FirstCell, LastCell)

End Function

Supporting the CDISC Validation Life-Cycle with Microsoft Excel VBA, continued

7

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Eric Crockett
Chiltern International
eric.crockett@chiltern.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

