
1

PharmaSUG 2017 – Paper BB02

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc
STREAM: An example with the CONSORT Flow Diagram

Joseph Hinson, inVentiv Health, Princeton, NJ, USA

ABSTRACT
Documents can be considered ‘intelligent’ if they can self-process parts of themselves. One way is to embed them
with macro elements. Such macro-laden documents can then be placed on the SAS® Input Stack for macro
processing. However documents like RTF, XML, and HTML, tend to have extraneous codes that would violate SAS
syntax if placed on the Input Stack as is. Placing non-SAS documents on the Input Stack therefore requires the
STREAM Procedure, which by disabling the SAS Compiler can allow the intact document codes mixed with macro
elements. Once the Macro Facility has resolved all the macro elements, the document is streamed back to a file
location. Having document templates embedded with macro variables is nothing new, but until now, the role had been
limited to just text substitutions. By embedding documents with actual macro calls, self-processing of documents
becomes possible. In such cases, the DATA steps and procedures within the macros need to be wrapped inside a
DOSUBL function and called with a %SYSFUNC, to force computation and prevent SAS code from being streamed
out to the output file. Such an approach is ideal for documents like the Consolidated Standards Of Reporting Trials
(CONSORT) Flow Diagram, which depicts the progress through the phases of a clinical trial (enrollment, intervention
allocation, follow-up, and data analysis) by showing the counts of study participants for each phase. With an
intelligent CONSORT template, the counts are replaced by macro calls such that the flow diagram undergoes self-
processing when passed through Proc STREAM.

INTRODUCTION
Companies have long known that many business documents have common unchanging components. Thus a
regular time-saving feature is creating templates for producing a variety of documents. Such templates typically
have “boiler-plate” sections -- the parts that never change from document to document. The templates also may
have place-holders for the document-specific text (sometimes called “tokens”). Typical tokens include
“::ClientCompanyName::”,”::ClientCompanyAddress::”, “::ClientPrimaryContactFirstName::”, etc. With SAS, such
templates can have macro variables as “tokens”. A number of commercial products (eg PandaDoc, Nitro) have
emerged based on that template principle. But all these template approaches have just the same principle: text-
substitution for what changes. To the best of the author’s knowledge, there is no such thing as a document
template with embedded software elements that can do actual computations.

Macro calls within documents is the feature that can make documents appear smart. Consider for example, a
clinical document template that can be updated with different patients to generate patient-specific reports. If this
template is “smart”, it can figure out the gender of the patient and use the appropriate “he” or “she”, “his” or “her”.
If the patient is a male, or an 80-year old female, or an infant, the smart document wouldn’t bother displaying
“Pregnancy Test Results”, just as “Prostate Specific Antigen Test Results” would be skipped for a female patient.
Similarly, the document can assess the patient’s country and use the appropriate units of measurements, type of
currency, and whether surnames come before given names. An intelligent document can figure out the correct
spelling of “hematology” as opposed to “haematology”, based on the country in question. Macros embedded in
intelligent documents can retrieve information and process such choices programmatically.

With two new SAS tools in SAS 9.4 – DOSUBL function and Proc STREAM-- documents can now do actual
computations and populate themselves with the numerical or textual results. Proc STREAM allows RTF
documents to be placed on the SAS Input Stack for macro processing, without any syntax errors triggered by the
RTF codes. The DOSUBL function forces macros to execute their DATA step and PROC codes before being
streamed back onto the Input Stack. RTF documents therefore can contain macro calls for macros that process
DATA and PROC steps. This is the basis for creating intelligent documents with SAS.

PROC STREAM
The SAS 9.4 Proc STREAM was designed for processing documents containing macro elements and streaming the
result to an external file. But this general idea of adding macro elements to documents for macro resolution would
only be fairly easy if one could engage just the macro processor and not the SAS Compiler. For as such a document
is tokenized, macro elements would be diverted to the macro processor and the resolved values would be returned
and the document streamed back in original form except with resolved macro values. This is accomplished with Proc

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

2

STREAM, with which almost anything can be put on the Input Stack (with the exception of binary formats like PDF,
JPEG, DOCX). Proc STREAM disables the SAS Compiler thereby permitting text containing SAS syntax-violating
RTF codes. After macro resolutions, the RTF document is streamed to an external file location with the original
structure and non-macro contents intact. Without Proc STREAM, the log would display syntax errors from the RTF
codes, as shown below for a simple RTF table:

(a) RTF Table (document.rtf):

ACTIVE PLACEBO

x.xx x.xx

xx.x xx.x

(b) Underlying RTF Code:

(a) SAS Code and Log:

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

3

The RTF codes trigger errors and the DATA step get stuck in an endless loop (“DATA STEP
running”)

(b) The Proc STREAM Solution:

When the same RTF file is run with Proc STREAM, the log becomes error-free:

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

4

THE PROC STREAM SYNTAX
The Proc STREAM statement specifies an external file with the “OUTFILE=” keyword, as well as options.

The arbitrary text is wrapped inside a “BEGIN” and a four semi-colon ending “;;;;”.

There is no “RUN” or “QUIT”.

PROC STREAM OUTFILE=fileref <options>;

BEGIN

(some text which may contain macro triggers)

;;;;

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

5

Two Useful Proc STREAM statement Options:

a. RESETDELIM= ”label”

The SAS Word Scanner expects macro statements like “%LET” and “%INCLUDE” to begin on a statement boundary
-- which means, the statements must be preceded by a semicolon and must end with a semicolon. Therefore to use
%LET and %INCLUDE in a Proc STREAM input text, one must place a special marker token before the statements
and end the statement with a semicolon. This special marker token is defined with the option RESETDELIM=label,
where label can be any arbitrary SAS name:

The marker token specified by RESETDELIM is also required when a carriage return is required in

the input text. The keyword “NEWLINE” is used with the marker token:

b. QUOTING=SINGLE (or DOUBLE or BOTH)

This option specifies that the single quotation mark (‘) should be treated like any other character, as expected for: the
patient’s blood pressure.

QUOTING=DOUBLE would be required in cases where the text involves, for instance, XML elements in Define-XML
documents:

So with Proc STREAM, a macro-embedded RTF document can be placed on the SAS Input Stack without any
triggering of errors.

THE PROBLEM WITH MACRO CALLS
Thus, Proc STREAM can allow a macro-embedded RTF document to be processed by the Macro Processor. But
there is yet another problem. Putting macro calls in documents becomes problematic if those macros contain DATA
steps and/or procedures. Such macros would be resolved by the Macro Processor into the actual constituent DATA
step or procedure codes without any execution, and placed back on the Input Stack for streaming out. An example of
such macros is shown below:

PROC STREAM OUTFILE= myfile RESETDELIM=”goto”;

BEGIN

goto; %INCLUDE myotherfile;

;;;;

PROC STREAM OUTFILE= myfile RESETDELIM=”goto”;

BEGIN

Dear Sir, goto NEWLINE;
The profile below is for patient 12345.

;;;;

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

6

We desire the analysis macro to generate a single value.

However when %counx() is called, the macro processor would return the generated code instead of the computed
value.

THE NEED FOR DOSUBL AND %SYSFUNC
The DOSUBL function enables the immediate execution of SAS code after a text string is passed. If the text is a
DATA step or a PROC program, DOSUBL would allow them to execute and wait for them to complete. Also any
macro variables that are created or updated during the execution of the submitted code are exported back to the
calling environment. DOSUBL does not return until the execution of the SAS code is fully completed.
Thus if DOSUBL is called by a macro via %SYSFUNC, then the macro is forced to execute the DATA step and Proc
SQL codes and any macro variable created inside the DOSUBL becomes available, instead of the macro execution
returning the raw lines of DATA step or Proc codes to the input stack. %SYSFUNC forces execution of functions it
carries as arguments. Also for proper timing of resolution for macro variables enclosed in quotes, the outermost
quotes inside the DOSUBL function should be single. Below is an example with a macro that calculates the Body
Mass Index of a subject, as processed by Proc STREAM:

(a) Without DOSUBL:

The streamed output shows the DATA step code instead of the calculated BMI value:

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

7

(b) With DOSUBL:

Now, the DATA step code is fully resolved into a value:

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

8

APPLICATION TO THE CONSORT FLOW DIAGRAM
The acronym CONSORT stands for “CONsolidated Standards Of Reporting Trials” and includes a flow diagram
which shows the flow of participants through each stage of a clinical trial as shown below:

Specifically, the flow diagram includes the number of participants assessed for potential enrollment into the trial
(if known) and the number excluded at this stage either because they did not meet the inclusion criteria or
declined to participate. The diagram also provides for each intervention group the numbers of participants who
were randomly assigned, received treatment as allocated, completed treatment as allocated, and were included
in the main analysis, with numbers and reasons for exclusions at each step.

Usually, the counts in the diagram are manually typed in. But since 2011, various attempts2-6 have been made to
automate the process. In two methods3,5, SAS was used to read the RTF text strings including codes, and the
appropriate RTF codes replaced with codes containing the count values, using the SAS function TRANSTRN.
With that approach, a macro could compute and insert the counts directly into the RTF codes. In another series
of methods2, a Visual Basic script (VBScript) is used to do a find-and-replace operation, where place-holders in
the document are substituted with SAS-generated counts programmatically. More elaborate approaches have
also been described2, using VB scripting in addition to the Annotate Facility of SAS Graph and the Windows
Scripting Host. However all such techniques as described above can be quite challenging for a programmer not
well-versed in scripting languages.

With the technique proposed in this paper, the entire process of automatically populating a CONSORT flow
diagram is extremely simplified: simple macros are created for producing counts, the macro calls are typed into
the CONSORT template, and the template in RTF format submitted to the SAS Input Stack for macro processing
via Proc STREAM, which then streams back the CONSORT template as-is except now, populated automatically
with counts.

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

9

STRATEGY
1. Create counting macros for the various sections of the flow diagram.
2. Obtain a copy of the CONSORT Flow diagram template in Microsoft WORD format.
3. Create a smart version by typing counting macro calls after the “N=” parts of the text boxes.
4. Convert the smart CONSORT Flow diagram from .DOC to .RTF format (call it “SmartConsort.rtf”).
5. Write Proc STREAM code with %include SmartConsort.rtf and output file as

“FilledConsortFlowDiagram.rtf”
6. Run main program to define analysis macros and to execute Proc STREAM.
7. Open FilledConsortFlowDiagram.rtf with Microsoft WORD.

AN EXAMPLE USING BINARY PROGRAMMING FOR COUNTING

1. CREATE BINARY FLAGS AND COMPUTE THE SUMS WITH PROC SQL:

(a) Read Input Dataset:

---------------------------------EXPLANATION OF FLAGS------------------------

 ENROLLMENT: Screened for Eligibility: SCREENFL=[not missing(ENRFL)]
 Excluded: EXCLUDFL=[ENRLFL=0]
 Not meet inclusion criteria: [EXCRITFL=1]
 Declined to participate: [EXDECLFL=1]
 Other reason: [EXOTHRFL=1]
 Randomized: [RANDFL=1]

 ALLOCATION: Allocated to Experimental Group: [ACTFL=1]
 Received allocated intervention: [RECACTFL=1]
 Did not receive allocated intervention: NORACTFL=[RECACTFL=0]

 Allocated to Control Group: [PBOFL=1]
 Received allocated intervention: [RECPBOFL=1]
 Did not receive allocated intervention: NORPBOFL=[RECPBOFL=0]

 FOLLOW-UP: Lost to follow-up (experimental group): [FUPACTFL=1]
 Discontinued treatment (experimental group): DSCACTFL=1]

 Lost to follow-up (control group): [FUPPBOFL=1]
 Discontinued treatment (control group): [DSCPBOFL=1]

 ANALYSIS: Analyzed (experimental group): [ANLACTFL=1]
 Excluded from analysis (experimental group): NALACTFL=[ANLACTFL=0]

 Analyzed (control group): [ANLPBOFL=1]
 Excluded from analysis (control group): NALPBOFL=[ANLPBOFL=0]

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

10

*==
C R E A T E I N P U T D A T A S E T
==;
data adsl;
infile datalines;
input USUBJID $ ENRLFL EXCRITFL EXDECLFL EXOTHRFL RANDFL ACTFL RECACTFL PBOFL
RECPBOFL FUPACTFL DSCACTFL FUPPBOFL DSCPBOFL ANLACTFL ANLPBOFL;
SCREENFL=not missing(ENRLFL);
EXCLUDFL=(ENRLFL eq 0);
NORACTFL=(ACTFL eq 1) AND (RECACTFL eq 0);
NORPBOFL=(PBOFL eq 1) AND (RECPBOFL eq 0);
NALACTFL=(ACTFL eq 1) AND (ANLACTFL eq 0);
NALPBOFL=(PBOFL eq 1) AND (ANLPBOFL eq 0);

datalines;
ABC1230001 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0
ABC1230002 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0
ABC1230003 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
ABC1230004 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1
ABC1230005 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
ABC1230006 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0
ABC1230007 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1
ABC1230008 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0
ABC1230009 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1
ABC1230010 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0
ABC1230011 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
ABC1230012 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1
ABC1230013 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0
ABC1230014 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
ABC1230015 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1
ABC1230016 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0
ABC1230017 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0
ABC1230018 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0
ABC1230019 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1
ABC1230020 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
ABC1230021 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0
ABC1230022 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0
;
run;

%macro cx(flag);
%global rx;
%let u1=%sysfunc(dosubl('proc sql noprint; select sum(&flag.) into :rx
TRIMMED from adsl;quit;'));
&rx.
%mend cx;

%let path = %nrstr(C:\Users\admin\Desktop\StreamIN); /* update with your own
*/

filename shell "&path.\SmartConsortFlowDiagramRTF.rtf" lrecl = 32755;

filename out "C:\Users\admin\Desktop\StreamOUT\ConsortFlowDiagram.rtf" lrecl
= 32755;

proc stream outfile = out quoting = single resetdelim="goto";
BEGIN goto; %include shell;

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

11

;;;;

2. OBTAIN A CONSORT FLOW DIAGRAM TEMPLATE:

A CONSORT Flow Diagram template in MS WORD format can be downloaded from various websites1, as shown
below:

CONSORT 2010 Flow Diagram

Assessed for eligibility (n=)

Excluded (n=)
♦ Not meeting inclusion criteria (n=)
♦ Declined to participate (n=)
♦ Other reasons (n=)

Analysed (n=)
♦ Excluded from analysis (n=)

Lost to follow-up (n=)

Discontinued intervention (n=)

Allocated to intervention (n=)
♦ Received allocated intervention (n=)
♦ Did not receive allocated intervention (n=)

Lost to follow-up (n=)

Discontinued intervention (n=)

Allocated to intervention (n=)
♦ Received allocated intervention (n=)
♦ Did not receive allocated intervention (n=)

Analysed (n=)
♦ Excluded from analysis (n=)

ALLOCATION

ANALYSIS

FOLLOW-UP

Randomized (n=)

ENROLLMENT

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

12

The above template then gets typed in with counting macro calls at the “n=” locations in the
text boxes to become the “SmartConsortFlowDiagram”.doc, as shown below “Smart:

CONSORT 2010 Flow Diagram

Assessed for eligibility (n=%cx(SCREENFL))

Excluded (n=%cx(ENRLFL))
♦ Not meeting inclusion

criteria
(n=%cx(EXCRITFL))

♦ Declined to participate

Analysed (n=%cx(ANLACTFL))
♦ Excluded from analysis
(n=%cx(NALACTFL))

Lost to follow-up (n=%cx(FUPACTFL))

Discontinued intervention
(n=%cx(DSCACTFL))

Allocated to intervention (n=%cx(ACTFL))
♦ Received allocated intervention

(n=%cx(RECACTFL))
♦ Did not receive allocated intervention

(n=%cx(NORACTFL))

Lost to follow-up (n=%cx(FUPPBOFL))

Discontinued intervention
(n=%cx(DSCPBOFL))

Allocated to intervention (n=%cx(PBOFL))
♦ Received allocated intervention

(n=%cx(RECPBOFL))
♦ Did not receive allocated intervention

(n=%cx(NORPBOFL))

Analysed
(n=%cx(ANLPBOFL))
♦ Excluded from analysis
(n=%cx(NALPBOFL))

ALLOCATION

ANALYSIS

FOLLOW-UP

Randomized (n=%cx(RANDFL))

ENROLLMENT

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

13

And after being processed with Proc STREAM, an output in RTF is streamed out to a designated output folder, and
the file opened with MS WORD, as shown below:

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

14

CAVEATS
(1) Because RTF (or WordPad) can’t display text boxes, for Flow Diagrams Macro Calls must first

be typed on the MS WORD version of the CONSORT template before saving as RTF.
(2) Macro Calls MUST be typed, and not copied from an external source, to ensure the macro

syntax is not contaminated with extraneous RTF codes.
(3) It’s okay to copy Macro Calls from one part of the WORD document to another part of the

same WORD document.
(4) The Macro Calls MUST be plain font (no color or bold, or italic), to avoid syntax

contamination with extraneous RTF codes.
(5) The outermost quotes of the DOSUBL argument MUST be single.
(6) Creating macro variables with Proc SQL requires the TRIMMED keyword to avoid leading

spaces before macro variable values.
(7) The macro variable statement inside the macros should NOT end with a semicolon.

Example: %macro bn(gp);
%let t=%sysfunc(dosubl('proc sql noprint;select

count(distinct subjid) into :bgn TRIMMED from dmdata where
indexw("&gp.",trt) gt 0;quit;'));

&bgn.
%mend bn;

REFERENCES
(1) http://www.consort-statement.org/consort-statement/flow-diagram

(2) Fairfield-Carter, Brian and Suzanne Humphreys, 2011, “Alternative Approaches to Creating

Disposition Flow Diagrams”, Proceedings of the Pharmaceutical SAS Users Group Conference
(PharmaSUG), Paper TS10.
http://www.lexjansen.com/phuse/2011/ts/TS10.pdf

(3) Carpenter, Art and Fisher, Dennis, 2012, “Reading and Writing RTF documents as Data:
Automatic Completion of CONSORT Flow Diagrams.” Proceedings of the Pharmaceutical SAS
Users Group Conference (PharmaSUG), Paper TF16
http://www.pharmasug.org/proceedings/2012/TF/PharmaSUG-2012-TF16.pdf

(4) Abbott, David H., 2013, “Computing Counts for CONSORT Diagrams: Three Alternatives”, The
SouthEast SAS Users Group (SESUG), Paper CC-11-2013
http://analytics.ncsu.edu/sesug/2013/BtB-12.pdf

http://www.consort-statement.org/consort-statement/flow-diagram
http://www.lexjansen.com/phuse/2011/ts/TS10.pdf
http://www.pharmasug.org/proceedings/2012/TF/PharmaSUG-2012-TF16.pdf
http://analytics.ncsu.edu/sesug/2013/BtB-12.pdf

Making Documents ‘Intelligent’ with Embedded Macro Calls, DOSUBL and Proc STREAM: An example with the CONSORT Flow Diagram

15

(5) Mallavarapu, Anusha and Shults, Dean, 2016, “CONSORT Diagram: Doing it with SAS”.
Pharmaceutical Users Software Exchange (PhUSE) Poster PP03
http://www.lexjansen.com/phuse/2016/pp/PP03.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Please contact the author at:

Joseph W. Hinson, PhD
inVentiv Health
202 Carnegie Center, Suite 200
Princeton, NJ, 08540
1-609-282-1615
joehinson@outlook.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www.lexjansen.com/phuse/2016/pp/PP03.pdf
mailto:joehinson@outlook.com

	ABSTRACT
	INTRODUCTION
	PROC STREAM
	THE PROC STREAM SYNTAX
	THE PROBLEM WITH MACRO CALLS
	THE NEED FOR DOSUBL AND %SYSFUNC
	APPLICATION TO THE CONSORT FLOW DIAGRAM
	STRATEGY
	Follow-Up
	Analysis
	Enrollment
	Allocation
	Follow-Up
	Analysis
	Enrollment
	Allocation
	CAVEATS
	REFERENCES
	ConTACT INFORMATION

