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ABSTRACT 

The ADaM Basic Data Structure (BDS) has become one of the most prominent and widely implemented 
dataset structures in the industry since the CDISC ADaM Implementation Guide V1.0 was published in 
2009. The strictly vertical data design of the BDS brings two common challenges to statistical 
programming: 

(1) BDS datasets often quickly grow very large, especially in larger clinical trials.  

(2) Metadata for BDS datasets become more difficult to develop and understand due to the use of value-
level metadata (VLM) for describing variables by PARAM/CD and the use of multiple BASETYPEs and 
other derived data records within the same dataset.  

This paper will describe the programming challenges specific to BDS and illustrate with examples how to 
achieve better programming efficiency and quality. The approaches include: 1) designing streamlined 
programming steps to maximize data processing efficiency; 2) reading metadata (e.g., VLM and 
Controlled Terminology) directly into dataset creation to ensure consistency and avoid error-prone 
hardcoding; and 3) using modular macros to standardize common data computations and imputations. 

1. INTRODUCTION  

In 2009, the CDISC ADaM team published ADaM Implementation Guide V1.0, which defines the Basic 
Data Structure (BDS) as one of the standardized ADaM dataset structures. Since then, BDS has been 
widely implemented in the industry - typically for by-visit finding data and other special cases, such as 
time-to-event analysis and over-time summaries. 

The ADaM BDS, especially for the by-visit finding data, has a strict vertical design. It requires that 
analysis parameters (PARAMCD), analysis visits (AVISIT) including assessment time points and 
summary time periods, imputations of missing assessments or average of multiple assessments 
(DTYPE), and baseline types (BASETYPE), when applicable, are all built into a vertical structure.  

This BDS vertical structure has two inherent issues. First, the BDS datasets often quickly grow very large, 
especially in larger clinical trials. In addition to the sheer number of measurements collected over time, 
many analyses require additional derived / repeat data records to be added in the BDS for imputations, 
averages, different baseline types, etc.  

In addition to the size, BDS datasets often are also quite complex. The addition of derived data records 
means that the data derivation is in two dimensions, variables and records. To further complicate matters, 
the current variable-based ADaM metadata are difficult to understand for complex BDS datasets because 
they are not effective for describing the relationship between variables and records, especially when 
datasets are involved with multiple BASETYPEs, summary time points (AVISIT), derived parameters 
(PARAMCD), and / or other various record derivations (DTYPE). 

These two issues inherent to vertical structure, size and complexity, may create several issues in 
programming related to BDS, such as: 

 Excessive program runtime on large datasets due to inefficient programming code 

 Increased program development time and frequent programming errors due to the hard-to-
understand specifications 

 Inconsistent results across studies and low reusability of programs due to the inconsistent 
understanding of the specifications by different programmers 
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Facing these challenges in programming for BDS datasets, we identified several programming techniques 
to create programs with greater efficiency, maintainability, reusability, and understandability. In this paper, 
we discuss three specific techniques: 

1) Designing streamlined program steps (discussed in Section 3) 

2) Reading metadata directly into programming (discussed in Section 4) 

3) Using modular macros to standardize common data computations and imputations (discussed in 
Section 5)  

Section 2 provides a data example to facilitate the following discussion on these three techniques. Finally, 
Section 6 puts together all the pieces to illustrate how a real BDS dataset program can become easily 
maintainable, reusable, and understandable by applying these techniques. 

2. A DATA EXAMPLE 

Throughout this paper, we will use bone mineral density (BMD) data measured by dual-energy X-ray 
absorptiometry (DXA) to illustrate the data structures and the discussion of programming for by-visit BDS 
datasets. However, the methodologies summarized using this data example can be generalized to other 
similar by-visit data and analyses, such as laboratory tests, vital signs, quality of life (QOL), etc. 

A hypothetical clinical study measures bone area (BAREA), bone mineral content (BMC), and BMD by 
DXA scan at a few planned time points - screening, month 3, 6, 12, 15, 18, 24, 30 and 36. Double 
measurements are required at screening and month 12. The study analyzes percent change in BMD at 
each visit relative to the study baseline and to month 12, respectively. It uses the average of the double 
scans at screening and month 12. When BMD is missing at any post baseline visit, the Last Observation 
Carried Forward (LOCF) method is used to impute the missing data. 

Table 1 displays a portion of the collected data in tabulation format for one subject. Note that the month 
18 measurement is not done for this subject. This data has a structure of one or two records per subject 
per test (BMTESTCD) per bone location (BMLOC) per visit (BMDTC or VISIT) according to the protocol-
specified data collection. 

Table 1. DXA BMD Tabulation Data (SDTM BM Domain): 

Row # BMTEST BMTESTCD BMLOC BMDTC VISIT BMSTRESN BMSTRESU 

T1 Bone Mineral Density BMD LUMBAR SPINE 2010-05-14 SCREEN 0.772 g/cm2 

T2 Bone Mineral Density BMD LUMBAR SPINE 2010-05-14 SCREEN 0.786 g/cm2 

T3 Bone Mineral Density BMD LUMBAR SPINE 2010-09-17 MONTH 3 0.825 g/cm2 
T4 Bone Mineral Density BMD LUMBAR SPINE 2010-12-10 MONTH 6 0.837 g/cm2 

T5 Bone Mineral Density BMD LUMBAR SPINE 2011-06-10 MONTH 12 0.840 g/cm2 

T6 Bone Mineral Density BMD LUMBAR SPINE 2011-06-10 MONTH 12 0.855 g/cm2 

T7 Bone Mineral Density BMD LUMBAR SPINE 2011-09-09 MONTH 15 0.886 g/cm2 

T8 Bone Mineral Density BMD LUMBAR SPINE 2012-06-10 MONTH 24 0.912 g/cm2 

T9 Bone Mineral Density BMD LUMBAR SPINE 2012-12-14 MONTH 30 0.910 g/cm2 

T10 Bone Mineral Density BMD LUMBAR SPINE 2013-06-18 MONTH 36 0.880 g/cm2 

… …       

 

Table 2 illustrates what an ADaM-compliant BDS dataset may look like for the analysis. The BDS analysis 
dataset called ADBMD is created using the BM domain (Table 1) as the source data. Besides deriving the 
analysis variables, such as PARAM/CD, AVAL, ADT, AVISIT, BASE, CHG, PCHG, etc., the new data 
records for (1) the average of double scans, (2) LOCF imputation, and (3) BASETYPE “MONTH 12” must 
also be derived. 

There are three kinds of data records in the ADBMD dataset by ADaM design – source, derived and 
repeated. Rows T1 to T10 are source data records from the SDTM BM domain. Rows D1 to D3 are 
derived records with various DTYPE values. Rows R1 to R8 repeat a subset of rows T1 to T10 and rows 
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D1 to D3 where AVISIT is “MONTH 12” or later, with BASE and PCHG relative to Month 12 instead of the 
study baseline (i.e. BASETYPE=MONTH 12). 

Note that there could be a different implementation of BDS such as creating separate datasets for 
different BASETYPEs instead of including all BASETYPEs in one dataset. This paper focuses on the one-
dataset approach so that the discussion is more complete for typical scenarios. 

Table 2. DXA BMD Analysis Data (ADBMD Dataset): 

Row 
# PARAMCD BASETYPE ADT AVISIT ABLFL ANL01FL DTYPE AVAL BASE PCHG 

T1 DBMDLSPA BASELINE 14May2010 BASELINE       0.772 0.779   

T2 DBMDLSPA BASELINE 14May2010 BASELINE       0.786 0.779   

D1 DBMDLSPA BASELINE 14May2010 BASELINE Y Y AVERAGE 0.779 0.779 0.00 

T3 DBMDLSPA BASELINE 17Sep2010 MONTH 3   Y   0.825 0.779 5.91 

T4 DBMDLSPA BASELINE 10Dec2010 MONTH 6   Y   0.837 0.779 7.45 

T5 DBMDLSPA BASELINE 10Jun2011 MONTH 12       0.840 0.779 7.83 

T6 DBMDLSPA BASELINE 10Jun2011 MONTH 12       0.855 0.779 9.76 

D2 DBMDLSPA BASELINE 10Jun2011 MONTH 12   Y AVERAGE 0.848 0.779 8.79 

T7 DBMDLSPA BASELINE 09Sep2011 MONTH 15   Y   0.886 0.779 13.74 

D3 DBMDLSPA BASELINE 09Sep2011 MONTH 18   Y LOCF 0.886 0.779 13.74 

T8 DBMDLSPA BASELINE 10Jun2012 MONTH 24   Y   0.912 0.779 17.07 
T9 DBMDLSPA BASELINE 14Dec2012 MONTH 30   Y   0.910 0.779 16.82 

T10 DBMDLSPA BASELINE 18Jun2013 MONTH 36   Y   0.880 0.779 12.97 

R1 DBMDLSPA MONTH 12 10Jun2011 MONTH 12       0.840 0.848   

R2 DBMDLSPA MONTH 12 10Jun2011 MONTH 12       0.855 0.848   

R3 DBMDLSPA MONTH 12 10Jun2011 MONTH 12 Y Y AVERAGE 0.848 0.848 0.00 

R4 DBMDLSPA MONTH 12 09Sep2011 MONTH 15   Y   0.886 0.848 4.54 

R5 DBMDLSPA MONTH 12 09Sep2011 MONTH 18   Y LOCF 0.886 0.848 4.54 

R6 DBMDLSPA MONTH 12 10Jun2012 MONTH 24   Y   0.912 0.848 7.61 

R7 DBMDLSPA MONTH 12 14Dec2012 MONTH 30   Y   0.910 0.848 7.31 

R8 DBMDLSPA MONTH 12 18Jun2013 MONTH 36   Y   0.880 0.848 3.77 

… …          

3. CAREFULLY DESIGN THE PROGRAMMING FLOW 

An efficient programming flow not only minimizes data processing time, but also helps simplify code and 
ensures a consistent approach for all the programmers on the team, all of which shortens program 
development time and improves program maintainability and reusability.  

Designing an efficient programming flow for BDS can be complex and challenging. A BDS usually 
contains multiple types of data records. As shown in Table 2, not all BDS records are directly from the 
source data. Some are newly derived records for various DTYPEs, and some are repeat records for a 
baseline type other than the study baseline. Creating a BDS dataset usually means two-dimensional data 
derivation, both adding new data records and deriving new variables. While the usual variable-based 
programming flow design works well for horizontal data structures, for the vertical data structure of BDS, 
both dimensions need to be considered. 

Considering both dimensions can be done by first identifying the types of data records. BDS records can 
generally be split into three groups based on the dependency and the different data sources / derivations 
used – 1) source records, 2) derived records, and 3) repeat records. Source records come directly from 
the original data sources and generally need to have only variable-based programming design. Derived 
records are new records created following the derivation instructions as required for the analyses. Repeat 
records are copies of existing records (either source or derived) with a change in the derivation of one or 
more variables on the records. Each group of records is created in a separate programming step. These 
programming steps are ordered based on dependency to maximize data processing efficiency and code 
simplicity. In the ADBMD example as illustrated in Table 2, rows T1-T10 are source data records and 
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therefore created in the first step. Row D1-D3 are derived records and depend on the source records. 
Thus, the D1-D3 are created after T1-T10 are ready. Records R1-R8 for BASETYPE “MONTH 12” 
depend on both T-T10 and D1-D3 and are therefore created in a third step. Record creation steps are 
numbered using odd numbers, 1, 3, 5, etc. because variables are derived between the steps or after the 
last record step.  

Once the record derivation order has been determined, the timing to derive each analysis variable can be 
planned. The variable programming steps are numbered in even numbers, 2, 4, 6, etc. A variable is 
created before the next record step when (1) the creation of records in the next step depends on the 
variable or (2) the variable has different definitions between the two record groups and cannot be derived 
in a same sequence of data manipulations (e.g., in a same data step) after new records are added.  

Table 3 summarizes the step-by-step programming flow for ADBMD. Corresponding to the three types of 
data records, three separate programming steps are identified for the record creation. Step 1 gets source 
data records. Step 3 derives data records for DTYPE. Step 5 repeats data records for BASETYPE 
“MONTH 12”. Then based on the variable definitions and data dependency, the variables are grouped 
into steps 2, 4, or 6.  

This approach to the design of the programming flow may be used generally in all BDS datasets. In some 
complex data and analysis scenarios, there might be more than one step required for one or more of the 
three types of data records. However, the same criteria can be used to group record types and determine 
the timing of deriving new variables. 

Table 3. Programming Flow for ADBMD, Variables vs. Records: 

Step Description Detail 

1 Read in source data 
records from SDTM BM 
domain. 
 
(Creates source records) 

This step obtains the data records needed from the source data. 

Merge SDTM BM and SUPPQUAL domain to get source data records with 
a data structure shown in Table 1. Subset data if necessary (e.g., subset 
data where BMMETHOD=”DXA SCAN” for DXA BMD). 

Records are described by only SDTM variables at this step.  

2 Derive parameter, result,  
and timing variables 
 
(Add variables to source 
records) 

The new data records in the next step depend on parameter, result, and 
timing variables, so they need to be derived at this step (PARAM/CD, 
AVAL, ADT, ADY, & AVISIT/N). 

When this step is completed, rows T1-T10 in Table 2 will have been 

created with the new analysis variables listed above.  

3 Add data records for 
DTYPE “AVERAGE” and 
“LOCF” 
 
(Create derived records) 

This step adds new records for DTYPE “LOCF” and “AVERAGE”. This step 
also populates all existing variables (PARAM/CD, AVAL, ADT, ADY, & 
AVISIT/N) for the new records (since they were derived in the previous 
step) 

When this step is completed, rows D1-D3 in Table 2 will be present in 
addition to rows T1-T10. 

4 Derive the record-level 
analysis flag 
 
(Add variables to source 
and derived records) 

This step derives the record-level analysis flag, ANL01FL, because the 
records for other BASETYPEs (step 5) use the values directly from this 
step. 

When this step is completed, rows T1-T10 and D1-D3 in Table 2 are 

present – same as in the step above. 

5 Add data records for 
BASETYPE 
 
(Create repeat records) 

This step adds new records for BASETYPE “MONTH 12”. It also populates 
all existing variables (PARAM/CD, AVAL, ADT, ADY, & AVISIT/N, DTYPE, 
and ANL01FL) for the new records since they were derived in previous 
steps. 

When this step is completed, all rows T1-T10, D1-D3, and R1-R8 in Table 
2 will be present. 
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Step Description Detail 

6 Derive change and percent 
change by BASETYPE 
 
(Add variables to source, 
derived, and repeat 
records) 

This last step of data derivation adds variables ABLFL, BASE, CHG, & 
PCHG. In this example, ABLFL is defined differently for each BASETYPE 
but it can be handled in one data step here (see program code in Section 
6). BASE, CHG, and PCHG have the same algorithms regardless of 
BASETYPE. 

When this step is completed, all variables and records needed for the 
analysis are created. 

4. INCORPORATE METADATA INTO THE PROGRAMMING 

ADaM metadata are specifications for ADaM datasets and are available before the start of programming. 
Some metadata are well structured, such as a list of possible codes and decodes in a paired CT set or a 
list of PARAMCD values in the VLM for the variable AVAL. Such well-structured metadata are ideal for 
reading into programming. Using metadata directly eliminates manual coding errors, ensures consistency 
between ADaM datasets and the metadata, helps with consistency within and between studies, and 
encourages a consistent programming approach from different programmers - all of which improves 
program maintainability and reusability.  

Within ADaM, the use of VLM is specific to BDS datasets. Consistently using VLM to describe AVAL / 
AVALC in BDS gives better specifications. In addition, when VLM is available, it may become useful as a 
programming technique. This is especially true for those PARAMCDs that are a 1-1 map to a set of 
variables from the source data. In the ADBMD example, each PARAMCD corresponds to a combination 
of source data variables BMTESTCD and BMLOC so that PARAMCD can uniquely describe AVAL. In 
Table 4, the first three columns, A, B, and C, are from the existing VLM for variable AVAL by PARAMCD. 
By expanding the VLM table to add columns D and E, a lookup table is created for mapping PARAMCD 
from BMTESTCD and BMLOC (using columns A, D, and E). Further expanding the table to add column F 
and G establishes a lookup table to map PARAM and PARCAT1 as well. In the end, we are using the 
VLM directly to define PARAMCD, PARAM, and PARCAT1 for all records from the source data (the T1-
T10 rows in Table 2). 

Table 4. Expanding VLM for ADBMD to A Lookup Table: 

Existing VLM Added to Facilitate Programming 

A: 
PARAMCD 

B: 
Variable 

C: 
Derivation 

D: 
BMTESTCD 

E: 
BMLOC 

F: 
PARAM 

G: 
PARCAT1 

DBMDLSPA AVAL BM.BMSTRESN when 
BMTESTCD="BMD" and 
BMLOC="LUMBAR 
SPINE" 

BMD LUMBAR 
SPINE 

DXA BMD 
Lumbar 
Spine 
(g/cm2) 

BONE 
MINERAL 
DENSITY 

DARELSPA AVAL BM.BMSTRESN when 
BMTESTCD="BAREA" 
and BMLOC="LUMBAR 
SPINE" 

BAREA LUMBAR 
SPINE 

DXA AREA 
Lumbar 
Spine (cm2) 

BONE AREA 

DBMCLSPA AVAL BM.BMSTRESN when 
BMTESTCD="BMC" and 
BMLOC="LUMBAR 
SPINE" 

BMC LUMBAR 
SPINE 

DXA BMC 
Lumbar 
Spine (g) 

BONE 
MINERAL 
CONTENTS 

DBMDTHIP AVAL BM.BMSTRESN when  
BMTESTCD="BMD" and 
BMLOC="TOTAL HIP" 

BMD TOTAL 
HIP 

DXA BMD 
Total Hip 
(g/cm2) 

BONE 
MINERAL 
DENSITY 

DARETHIP AVAL BM.BMSTRESN when 
BMTESTCD="BAREA" 
and BMLOC="TOTAL 
HIP" 

BAREA TOTAL 
HIP 

DXA AREA 
Total Hip 
(cm2) 

BONE AREA 

DBMCTHIP AVAL BM.BMSTRESN when 
BMTESTCD="BMC" and 
BMLOC="TOTAL HIP" 

BMC TOTAL 
HIP 

DXA BMC 
Total Hip (g) 

BONE 
MINERAL 
CONTENTS 
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Existing VLM Added to Facilitate Programming 

A: 
PARAMCD 

B: 
Variable 

C: 
Derivation 

D: 
BMTESTCD 

E: 
BMLOC 

F: 
PARAM 

G: 
PARCAT1 

… …      

 

The following code illustrates two potential programming approaches to add PARAMCD, PARAM, and 
PARCAT1, after reading in source data (i.e., step 2 in Table 3). The first example uses the VLM lookup 
table as discussed here. The second one uses the more traditional if-then statements with manual 
coding. Obviously, the first approach is more efficient, requires less code maintenance, introduces much 
less chance of typographical or copy-paste errors resulting in incorrect or missing derived values, and has 
a significantly lower QC burden: 

/* Approach #1: merge BM domain with the VLM lookup table to get parameter variables;  
work.bm is the BMD data after merging the SDTM BM domain and suppqual domain, see Table 1 for 
the data structure; 
vlm.adbmd is the VLM lookup table dataset for ADBMD, see Table 4 for the data structure */ 

proc Sql; 
       create table work.bm2 as  
       select     a.*, 

       b.PARAMCD,  
       b.PARAM,  
       b.PARCAT1 

       from work.bm a left join vlm.adbmd b 
       on a.BMTESTCD=b.BMTESTCD and a.BMLOC=b.BMLOC; 
quit; 

/* Approach #2: use a data step and if-then statements to create parameter variables */ 
data work.bm2; 
       set work.bm; 
       if BMTESTCD=”BMD” then do; 
               PARCAT1=”BONE MINERAL DENSITY”; 
               if BMLOC=”LUMBAR SPINE” then do; 
                     PARAMCD=”DBMDLSPA”; 
                     PARAM=”DXA BMD Lumbar Spine (g/cm2)”; 
               end; 
               <repeat for other bone locations, e.g., BMLOC=”TOTAL HIP”> 
       end; 
       <repeat for BMTESTCD=”BMC”, “BAREA”, etc.> 
run; 
 

Similarly, the existing metadata in the CT can be used to eliminate if/then loops and manual coding.  A 
paired CT can be used as a lookup table or converted into a SAS® format / informat, with either form used 
directly in the programming. Table 5 lists an example paired CT for AVISITN and AVISIT. One side of the 
paired CT must be derived based on algorithms specified in the Statistical Analysis Plan (SAP; in this 
example AVISIT is derived as BASELINE, MONTH 3, etc.). Then the other side of the paired CT (in this 
example AVISITN) can have values assigned using a SAS format / informat created directly from the 
existing metadata. A data step for assigning AVISITN using the CT looks like the following: 

                data bmd_tmp2; 

                      set bmd_tmp1; 

                      <code to derive AVISIT based on SAP algorithms>; 

                      AVISITN=input(AVISIT, avisit.); /*avisit is an informat created from the paired CT */ 
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                run; 

Note that a key element of this programming technique is assessing which one of the paired variables 
should be programmed and which should be assigned directly from CT. Consideration should be given in 
particular to code maintainability and reusability. In this example, AVISITN is assigned from the CT, i.e., 
deriving AVISIT first and then getting AVISITN from the SAS informat, rather than the other way around, 
for two reasons. First, code values alone without decodes are meaningless; e.g., a statement “if 
<conditions> then AVISITN=3003;” is hard to interpret and validate because ‘3003’ could mean DAY 3, 
WEEK 3, MONTH 3, YEAR 3, etc. Using the AVISIT text values makes the program code easier to follow 
for both future programmers and potential regulatory reviewers. Second, in this particular case, the code 
values are the ones likely to be updated (e.g., changes to use a 2000-series set of codes instead of the 
current 3000 series for visits in the monthly unit) during the development of programs. When re-coding 
occurs, it only requires a simple rerun of the programs to update the data; the program code remains 
unchanged because it is not manually coded or derived based on any assumptions. 

Table 5. A Paired CT for AVISITN and AVISIT: 

AVISITN AVISIT 

1000 BASELINE 

3003 MONTH 3 

3006 MONTH 6 

3012 MONTH 12 

3015 MONTH 15 

3018 MONTH 18 

3024 MONTH 24 

3030 MONTH 30 

3036 MONTH 36 

 

The above programming technique of using metadata directly, such as VLM and paired CT, improves 
programming efficiency by eliminating the need to write ‘if-then’ statements to manually code data values 
or maintain the programming code individually. In addition, data consistency is ensured across studies, 
and the quality risks due to typos or copy-paste accidents are greatly reduced. Certainly more 
opportunities of using metadata in programming exist besides the two examples discussed here. 

5. USE MODULAR MACROS 

Modular programming is a technique that identifies and creates clearly separated modules of code that 
can be easily maintained and re-used across different projects. Use of macros is one way of doing this. 
Modular macros are widely used in the statistical programming of clinical trial study data. Macros help 
standardize program code, ensure consistency across datasets and studies, achieve maximum efficiency 
and quality, and reduce development time because the same steps do not have to be developed and re-
developed by different programmers. Macros may be created and maintained at a study level, a product 
level, or a department level, depending on the similarity or standardization of the programming 
algorithms.  

BDS are a class of ADaM datasets that provide many opportunities for using modular macros. Several 
criteria are helpful for determining when a modular approach is a good idea, such as: 

1) Derivations that are identical or similar across multiple domains or studies (baseline flag, change, 
percent change, etc.) 

2) Derivations that are complex (imputations, derivation of summary scores, etc.) 

Below, we list some examples where modular macros may be used for BDS: 
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 Macro for the study baseline 

Many data share a similar definition for the study baseline (e.g., last observation prior to the first 
dose) which makes it an ideal candidate for modular programming.   

 Macro for analysis visit  

Analysis visits are generally derived in multiple datasets within a study and across studies. The 
definitions are usually structured similarly (e.g., using analysis visit windows defined in SAP along 
with consistent rules around handling multiple data points within the same window) and can be 
standardized in a modular program. 

 Macro for the record-level analysis flags 

When the use of flag variables, ANLzzFL, is standardized, a macro for one, or a set, of flags is 
possible. 

 Macro for change and percent change from baseline 

Calculating change and percent change from baseline is common with identical algorithms in many 
BDS datasets, which makes the derivation ideal for modular programming. 

 Macro for identifying missing visits 

The process to identify the missing visits is generally the same regardless of the imputation method 
that will follow, thus making it a good candidate for modular programming as an input into subsequent 
imputation algorithms. 

 Macro for each type of derived records (e.g. LOCF, AVERAGE, etc.) 

Data derivation for a given method (DTYPE) is usually identical across endpoints and studies. Since 
each DTYPE is defined and derived differently, it is most practical to have a separate macro for each 
of them. 

6. WHAT DOES THE FINAL ADBMD PROGRAM LOOK LIKE? 

Combining all programming techniques discussed in the previous sections, the program below illustrates 
the creation of the BDS dataset ADBMD. Steps 1-6 in the program follow the programming flow 
discussed in Section 3 and correspond to the structure detailed in Table 4. 

/**************************** 

Step 1: Get source data records from SDTM; 

A product-level macro to initialize the program; 

A department-level modular macro is used to merge SUPPQUAL domain into the standard domain BM 

*****************************/ 

%include “init.sas”; 

%m_sdtm_merge (indsn_=sdtm.bm, outdsn_=dxabmd1, subset_=%str(bmmethod=”DXA SCAN” and 
bmstresn^=.)); 

/**************************** 

Step 2: Create analysis variables for the source records, PARAM/CD, PARCAT1, AVAL, ADT, ADY, & 
AVISIT/N. 

Use VLM as a lookup table to get PARAM/CD and PARCAT1, which is done by a department-level 
modular macro %m_get_param.  

Use a paired CT as a lookup table to define AVISITN, which is done by a product-level modular macro 
%m_avisit. 

A department-level modular macro %m_isodate is used to convert the ISO dates to numeric dates. 
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*****************************/ 

%m_get_param (indsn_=dxabmd1, outdsn_=temp21, vlm_=vlm.adbmd, incol_=%str(BMTESTCD / BMLOC),    

                             outcol_=%str(PARAMCD / PARAM / PARCAT1)); 

data temp22; 

      set temp21; 

      %m_isodate(indate_=bmdtc, outdate_=adt); 

      ady=bmdy; 

      aval=bmstresn; 

run; 

%m_avisit (indsn_=temp22, outdsn_=dxabmd2, lut_=lookup.avisit, endp_=BMD); /* assuming lookup.avisit 
is a lookup table for analysis windows */ 

/**************************** 

Step 3: Create derived records for LOCF and AVERAGE; add variable DTYPE.  

Product-level modular macros are used for these two derivations separately.  

Note AVERAGE records derived before LOCF records due to the dependency. 

*****************************/ 

%m_records_average (indsn_=dxabmd2, outdsn_=temp31, avisit_=%(BASELINE / MONTH 12)); 

%m_records_locf (indsn_=temp31, outdsn_= dxabmd3, lut_=lookup.avisit,  

                                sort_=%str(usubjid paramcd avisitn adt dtype));  

/**************************** 

Step 4: Define variable ANL01FL using a product-level modular macro  

*****************************/ 

%m_anl01fl (indsn_= dxabmd3, outdsn_=dxabmd4, average_=yes, locf_=yes); 

/**************************** 

Step 5: Create repeat records for BASETYPE=MONTH 12; add variable BASETYPE 

*****************************/ 

data dxabmd5; 

     set dxabmd4; 

     length basetype $20; 

     basetype=”BASELINE”;  

     output; 

     if avisitn >= input (“MONTH 12”, avisit.) then do; 

          basetype=”MONTH 12”;  

          output; 

     end; 

run; 
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/**************************** 

Step 6: Derive variables, ABLFL, BASE, CHG, and PCHG  

ABLFL is defined differently for two BASETYPEs, but can be done in one data step, so created together 
here (a key to data processing efficiency); use a product-level macro to derive BASE, CHG, and PCHG 

*****************************/ 

data temp61; 

      set dxabmd5; 

      if anl01fl=”Y” and ((basetype=”BASELINE” and avisit=”BASELINE”) or  

                                        (basetype=”MONTH 12” and avisit=”MONTH 12”)) then ablfl=”Y”; 

run; 

%m_chg (indsn_=temp61, outdsn_= dxabmd6, sort_=%str(usubjid paramcd basetype avisitn adt ablfl)); 

/**************************** 

Final step: save output dataset to a permanent one; 

Use a department-level macro that contains a few common processes for all ADaM datasets: 

get core variables; assign variable attributes; run data quality checks, etc. 

*****************************/ 

%m_adam_outputer (indsn_= dxabmd6, outdsn_=adam.adbmd, metadata_=mddt.adbmd, 
study_=study0001); 

7. CONCLUSION 

ADaM BDS datasets can grow large and complex due to the vertical designs. Although there are some 
programming challenges associated with BDS, BDS datasets can still be programmed with high efficiency 
and quality through forward thinking and planning of programming ahead of time. Several useful 
techniques can help achieve these goals and save programming cost. Careful design of program flow, 
maximizing the use of metadata, and using modular macros are important programming techniques for 
BDS. 
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