
1

PharmaSUG 2017 - Paper DV14

When one is not enough or multi-celled plots: comparison of different
approaches

Vladlen Ivanushkin, inVentiv Health Clinical, Berlin, Germany

ABSTRACT

Data visualization is a very powerful way to present data and therefore has been used for a long time in
clinical trials. However, sometimes it happens that the number of plots required for a project is huge, or
maybe you just don’t want to scroll pages in a document, or open many files to compare a couple of plots.
In such situations, it’s a common practice to put several plots on one page to spare some space, to have
better comparison possibilities, or just for a better overview.

Some years ago a programmer would need to write tons of code to create some non-standard multi-
celled graphics. However, the progress does not stand still and many tasks, which used to require much
time and effort in the past, can now be replaced with just few lines of code. Having so many opportunities
to create as sophisticated plots as one can only imagine which way should the programmer choose, and
which one is the most efficient?

In this paper I would like to describe different approaches of creating multi-celled plots and specify pros
and cons for each of them.

INTRODUCTION

Before SAS
®
 9.2 the opportunities for building multi-celled plots were quite limited however after the

release of the SG-procedures and Graph Template Language (GTL) things have changed. Nowadays
programmers have a broad variety of approaches at their disposal for building up any kind of plot and
multi-celled plots in particular. In order to help programmers select the best approach for their needs we
look in detail into the most common ways of creating multi-celled plots and compare them to identify their
respective advantages and disadvantages.

SGREPLAY METHOD

Let us start with the old-fashioned GREPLAY procedure. Of course, it is possible to use the G-
procedures, but let’s try to combine GREPLAY with some SG-procedures.

Let’s use the SASHELP.CARS data set and create scatter plots with regression lines for weight against
length using car type as the classification variable and origin as the grouping variable.

This approach requires the following steps:

1. Create required plots.

2. Create a plot with legend, titles, footnotes, etc.

3. If the plots are created with the SG-procedures, then GSEG catalogue entries must be created for
each plot.

4. Create template for replaying and run GREPLAY.

Let’s take a closer look at each step.

The first step can easily be performed with, for example, a simple SGPLOT procedure call. Also, to
display more features, let’s add some inset information. For this type of figure the regression equations
could be handy to show. This means that the regression parameters should be derived first and merged
to the SASHELP.CARS data. These can be shown afterwards using the TEXT statement of the SGPLOT
procedure (note that the TEXT statement for SGPLOT is only available starting from SAS 9.4). The data
set may look like the data shown in the DATA 1 screenshot.

When one is not enough or multi-celled plots: comparison of different approaches, continued

2

DATA 1

proc sgplot data=cars_with_reg_eq noautolegend;

 by type;

 text x=x1text y=y1text text=reg_eq / contributeoffsets=none outline

 position=bottomleft textattrs=(size=5) splitchar='~' splitpolicy=split;

 reg x=weight y=length / group=origin ;

 xaxis min=2000 max=7000 offsetmax=.08;

 yaxis min=140 max=220 offsetmax=.1;

run;

If a common legend is required for all the plots across the page, then the NOAUTOLEGEND option can
be used. As the result we get four separate plots for each value of the car type variable along with the
regression equations as shown in Figure 1 - Figure 4.

Figure 1. SUV

Figure 2. SEDAN

Figure 3. SPORTS

Figure 4. WAGON

3

Now an additional plot that will contain the legend and the title is needed. To create it, again the SGPLOT
procedure can be used. If we specify the axes ranges which the actual data set does not contain, we will
get an empty plot - Figure 5.

title1 "Figure: Scatter plot of

weight versus length of cars with

different origin and type using

GREPLAY";

proc sgplot data=

sashelp.cars(where=(type

^in ('Hybrid' 'Truck')))

noborder;

 series x=weight y=length /

group=origin markers;

xaxis min=-100 max=-10

display=none;

yaxis min=-100 max=-10

display=none;

run;

Using the SERIES statement here gives us a merged legend which represents both scatters and lines.

Before proceeding to the fourth step, it is important to keep in mind that the GREPLAY procedure can
only replay the GSEG catalogue entries, however the SG-procedures do not create such entries. Taking
this into account, the next step should be to create the catalogue entries for already existing PNG files.
This is still possible with the GSLIDE procedure and the IBACK option:

goptions device=png300 nodisplay agestyle=fit iback="<path to .png file>";

proc gslide;

run;

quit;

And now, when everything is ready for the replaying, we can proceed to the final step

filename fig "<desired path where .emf file is to be stored>";

goptions reset=all device=emf gsfname=fig hsize=6in vsize=6in;

proc greplay nofs igout=work.gseg tc=tempcat;

 tdef spec

 1/ llx=0 lly=0

 ulx=0 uly=100

 urx=100 ury=100

 lrx=100 lry=0

 2/ llx= 6.5 lly=48.5

 ulx= 6.5 uly=91.5

 urx=49.5 ury=91.5

 lrx=49.5 lry=48.5

 3/ llx=49.5 lly=48.5

 ulx=49.5 uly=91.5

 urx=92.5 ury=91.5

 lrx=92.5 lry=48.5

 4/ llx= 6.5 lly= 5.5

 ulx= 6.5 uly=48.5

 urx=49.5 ury=48.5

 lrx=49.5 lry= 5.5

 5/ llx=49.5 lly= 5.5

 ulx=49.5 uly=48.5

 urx=92.5 ury=48.5

 lrx=92.5 lry= 5.5;

Figure 5. EMPTY PLOT

When one is not enough or multi-celled plots: comparison of different approaches, continued

4

 template spec;

 treplay 1:gslide4 2:gslide 3:gslide1 4:gslide2 5:gslide3;

run;

quit;

The result is shown on the Figure 6. Thus, it is possible to combine any GSEG catalogue entries using
the GREPLAY procedure.

Note that the first slide used is the one with the title and the legend. It is also worth mentioning that
GREPLAY does not work with ODS GRAPHICS.

Obviously, this approach takes a while to program and many factors must be considered. Also,
GREPLAY is quite an outdated way to create multi-celled plots and it does not have all the possibilities
that the GTL has. Nevertheless, it is a valid method which can be used under certain circumstances.

Figure 6. GREPLAY

SGPANEL METHOD

Another way, the most efficient and quick one, is to use the SGPANEL procedure, the very purpose of
which is to produce multi-celled plots.

Indeed, applying the following very few lines of code we already get what we actually need - Figure 7.

When one is not enough or multi-celled plots: comparison of different approaches, continued

5

title1 "Figure: Scatter plot of weight versus length of cars with different

origin and type using SGPANEL";

proc sgpanel data=cars_reg_for_plot;

 panelby type / novarname ;

 inset reg_eq_asia reg_eq_europe reg_eq_usa /

border position=bottomright textattrs=(size=5);

 reg x=weight y=length / name="plot1" group=origin;

 scatter x=weight y=length / name="plot2" group=origin;

 keylegend "plot1" "plot2" / across=3 down=1;

run;

Figure 7. SGPANEL

Again, as in the previous example the inset information has been added using the INSET statement and
DATA 2 (note that the INSET statement for SGPANEL is only available starting from SAS 9.4).

DATA 2

When one is not enough or multi-celled plots: comparison of different approaches, continued

6

As the REG statement does not draw marker symbols in the legend, the SCATTER statement and the
KEYLEGEND have been used. However as there is no merge option and no MERGEDLEGEND
statement, the marker symbols and lines are presented separately. Using the PANELBY statement, it is
possible to influence the number of cells and their layout. By default, the PANEL layout is used which
supports any number of classification variables. This is the best way to create multi-celled plots if the
procedure’s functionality is enough and only the same type of plot across one page is required.

GTL DATAPANEL LAYOUT

SGPANEL is quite a comprehensive and powerful procedure though it lacks some features. If this is the
case, you can turn to GTL. Similar to the SGPANEL, which uses the PANEL layout, GTL also offers the
DATAPANEL layout. Of course, this approach is more complex as it requires defining your own template
using GTL, however at the same time it gives you more freedom and flexibility.

So let’s try to reproduce the same plot but now using GTL and the DATAPANEL layout.

One of the things a programmer should keep in mind when using the DATAPANEL layout is that to
construct cells within the layout, the nested PROTOTYPE layout should be used, and this has some
restrictions - it supports neither nested layouts nor computed plots. Regression plot is a computed plot,
hence it is not possible to use the REGRESSIONPLOT statement within the PROTOTYPE layout.
Fortunately, it is still possible to draw regression lines having calculated the parameters of regression
beforehand and afterwards applying the LINEPARM plot statement.

So the first step here would be to derive parameters for the regression lines. Also if we want to include
some additional inset information, like the regression equations, we will need to create the corresponding
variables. If we use the match-merge principle to add the information to the data set then the appropriate
DATASCHEME option must be used, i.e. DATASCHEME=MATCHED (the option DATASCHEME is only
available for the DATAPANEL layout starting from SAS 9.4).

DATA 3

Now we can proceed to the template itself.

proc template;

 define statgraph regr_scatter;

 dynamic x y classvar group;

 begingraph;

 entrytitle "Figure: Scatter plot of weight versus length of cars

with different origin and type using GTL DATAPANEL layout";

 layout datapanel classvars=(classvar) /

columns=2 rows=2 headerLabelDisplay=value inset=(inset1 inset2

inset3) insetopts=(datascheme=matched border=true valign=bottom

halign=right textattrs=(size=5));

 layout prototype;

 lineparm x=0 y=intercept slope=slope /

clip=true group=group name="plot1";

 scatterplot x=x y=y /primary=true group=group name="plot2";

 endlayout;

 sidebar / align=bottom;

 mergedlegend "plot1" "plot2";

/*discretelegend "plot1" "plot2" / merge=yes; SAS 9.2 or earlier release*/

 endsidebar;

 endlayout;

When one is not enough or multi-celled plots: comparison of different approaches, continued

7

 endgraph;

 end;

run;

As we need a four-celled layout, we can set the number of rows and columns to two. Also, it is possible to
use the MERGEDLEGEND (starting from SAS 9.3) statement to consolidate the legend entries.

To reproduce the defined template, the SGRENDER procedure is used:

proc sgrender template=regr_scatter data=cars_with_reg_eq;

 dynamic classvar="type" x="weight" y="length" group="origin"

 inset1="reg_eq_asia" inset2="reg_eq_europe" inset3="reg_eq_usa";

run;

Figure 8. DATAPANEL LAYOUT

And we get a similar result in Figure 8 with some modifications though. Compared to the result of the
SGPANEL procedure, here we have the merged legend and, also, the DATAPANEL layout does not
restrict the regression lines by the actual data for each particular group.

GTL LATTICE LAYOUT

In case different types of plots are required, the LATTICE layout may come in handy. However, in this
case each cell must be defined separately as the layout does not support any classification variables.
Let’s reproduce the same plot using the LATTICE layout. Some modifications are required for the input

When one is not enough or multi-celled plots: comparison of different approaches, continued

8

data as we need a separate pair of variables for each cell, i.e. the data should be transformed to a vertical
structure.

DATA 4

And the template itself:

proc template;

 define statgraph regr_scatter;

 mvar reg_eq1_asia reg_eq2_asia reg_eq3_asia reg_eq4_asia

 reg_eq1_europe reg_eq2_europe reg_eq3_europe reg_eq4_europe

 reg_eq1_usa reg_eq2_usa reg_eq3_usa reg_eq4_usa;

 dynamic x1 y1 x2 y2 x3 y3 x4 y4 group;

 begingraph;

 entrytitle "Figure: Scatter plot of weight versus length of cars

with different origin and type using GTL LATTICE layout";

 layout lattice / rows=2 columns=2

 rowdatarange=unionall columndatarange=unionall;

 cell;

 cellheader;

 layout gridded / border=true;

 entry eval(collabel(y1));

 endlayout;

 endcellheader;

 layout overlay;

 regressionplot x=x1 y=y1 / group=group name="plot1";

 scatterplot x=x1 y=y1 / group=group name="plot2";

 layout gridded / autoalign=(bottomright) border=true;

 entry reg_eq1_asia / textattrs=(size=5);

 entry reg_eq1_europe / textattrs=(size=5);

 entry reg_eq1_usa / textattrs=(size=5);

 endlayout;

 endlayout;

 endcell;

/*The same code is repeated three more times to define all the four cells*/

 …

 sidebar / align=left;

 entry "Length (IN)" / rotate=90;

 endsidebar;

 sidebar / align=bottom;

 entry "Weight (LBS)";

 endsidebar;

 sidebar / align=bottom;

 mergedlegend "plot1" "plot2";

 endsidebar;

 rowaxes;

 rowaxis / display=(ticks tickvalues);

 rowaxis / display=(ticks tickvalues);

 endrowaxes;

 columnaxes;

 columnaxis / display=(ticks tickvalues) offsetmin=0.06;

When one is not enough or multi-celled plots: comparison of different approaches, continued

9

 columnaxis / display=(ticks tickvalues) offsetmin=0.06;

 endcolumnaxes;

 endlayout;

 endgraph;

 end;

run;

The template contains four cells. As the cell headers are required, each OVERLAY layout is nested in the
CELL block. To obtain shared axes the UNIONALL value for the ROWDATARANGE and the
COLUMNDATARANGE options in the LATTICE layout is used along with the corresponding ROWAXES
and COLUMNAXES statements. Also, to obtain axis labels the SIDEBAR statements are used within the
LATTICE layout. Another thing to consider is that the macro variables for the inset information based on
the ENTRY statement must be created beforehand. After running the SGRENDER procedure with all the
required DYNAMIC statements we get results that look very similar to the previous ones - Figure 9.

proc sgrender template=regr_scatter data=cars_trans;

 dynamic x1="weight_suv" y1="length_suv"

 x2="weight_sedan" y2="length_sedan"

 x3="weight_sports" y3="length_sports"

 x4="weight_wagon" y4="length_wagon" group="origin";

run;

Figure 9. LATTICE LAYOUT

When one is not enough or multi-celled plots: comparison of different approaches, continued

10

SGSCATTER METHOD

The last but not least way is to use the SGSCATTER procedure. While all the previous approaches work
for almost any type of plot, this one is only applicable for scatter plots. This is not the most flexible and
preferable way though it can be used when a programmer needs to create paneled scatter plots based on
multiple combinations of variables. So the DATA 4 data set can be used for this example. To include the
inset information the DATA 5 annotated data set is used.

DATA 5

proc sgscatter data=car_trans sganno=anno;

 plot length_suv*weight_suv length_sedan*weight_sedan

 length_sports*weight_sports length_wagon*weight_wagon /

 reg group=origin uniscale=all legend=(across=3);

run;

Figure 10. SGSCATTER

When one is not enough or multi-celled plots: comparison of different approaches, continued

11

As we can see from Figure 10 - the PLOT statement doesn’t support shared axes and the legend does
not contain line patterns. Also there are no header labels for the plots, the different axis labels being
displayed instead. Of course, the SGSCATTER has two more statements to draw the plots – i.e. MATRIX
and COMPARE. However in this case they are not suitable. Summing up – the SGSCATTER has quite a
limited flexibility and is only applicable for a narrow scope however it can still be helpful.

CONCLUSION

Obviously, each approach has its own advantages and disadvantages, and which one to use depends on
the situation and the kind of plot. See Table 1. for an overview of the approaches described above. The
SCGSCATTER procedure is not included as it is only applicable for scatter plots.

 GREPLAY SGPANEL GTL
DATAPANEL

GTL LATTICE

Classification
variable

Depends on what
procedure is used to
build single plots

Four ways of using
class variable are
available based on
the PANELBY
statement:

PANEL – any number
of class variables

LATTICE – requires
two variables and
arranges cells in such
a way that the values
of the first variable
are columns and the
values of the second
are rows

COLUMNLATTICE/R
OWLATTICE – allow
one class variable
which is used to
arrange cells either in
columns or in rows

Supports N class
variables; builds
a cell for each
combination of
class variables

Not supported

Different
kinds of plots
across one
page

Not supported as
based on the class
variable

Not supported as
based on the
class variable

Any kinds of plot
can be combined
in different cells
within one page

Computed
plots

All basic computed
plots are supported

Not supported,
however it is
possible to derive
parameters for
some plots and
use the GTL plot
statements for
parametric plots,
i.e.
BARCHARTPAR,
BOXPLOTPARM,
LINEPARM etc.

All GTL plot
statements can
be used

Easy to use Requires many steps
and a lot of effort;

The easiest and the Requires building Requires building
a template and

When one is not enough or multi-celled plots: comparison of different approaches, continued

12

only catalogue
entries can be
replayed and this
involves even more
work if the SG-
procedures are used
for single plots

most efficient way a template defining each cell
separately

Flexibility Quite flexible but
already outdated.
Also may be difficult
to implement some
features which can
be easily
programmed using
GTL and the SG-
procedures (like
common axes)

Not as flexible as
building your own
template using GTL.
Also there are some
restrictions on using
different plots
together, i.e. for
example, BOXPLOT
cannot be combined
with any other plot

Quite flexible,
however has
some restrictions
like, for example,
it is not possible
to create different
plots in different
cells

The most flexible
way as each cell
is being built
separately and
all the GTL
features are
available;
however may not
be the best way
for using with
class variables

ODS
GRAPHICS
is supported

No Yes Yes Yes

Easy to add
inset
information
(“number of
observations”
, “regression
parameters”
etc.)

Depends on what
procedure is used to
build single plots

The SGANNO option
is supported starting
from SAS 9.3

The INSET statement
is supported starting
from SAS 9.4

The INSET
statement is
supported

Starting from
SAS 9.4 the
SGANNO option
is supported in
the SGRENDER
procedure

The INSET and
ENTRY
statements are
supported

Starting from
SAS 9.4 the
SGANNO option
is supported in
the SGRENDER
procedure

Table 1. COMPARISON OF THE APPROACHES

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Vladlen Ivanushkin
inVentiv Health Clinical
vladlen.ivanushkin@inventivhealth.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:vladlen.ivanushkin@inventivhealth.com

