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ABSTRACT  

Multiplicity controlled analyses are very important for the clinical trials with more than one objectives. 
Graphical approach proposed recently is becoming popular because of many advantages. Related tools 
implemented in R programming language have been developed to apply this approach to clinical trials. 
Even though the code developed in SAS/IML® is available to apply this approach in some straightforward 
cases, there is still lack of a comprehensive tool to fully apply this approach into multiplicity controlled 
analyses in clinical trials. In this paper, the program implemented in SAS/IML is presented because of the 
popularity of SAS. This program can not only be applied in the case when the p-value of each endpoint is 
available, it can also estimate the endpoint p-values and predict the success rate (power) of each 
endpoint through simulation to help the early decision-making. Furthermore, the implementation of family-
wise gatekeeping approach in SAS/IML is also integrated into the program for the purpose of comparison 
of different approaches in multiplicity controlled analyses. This paper first introduces the graphical 
approach briefly. Then the implementation of graphical approach in SAS/IML is introduced for the case 
when the p-value of each endpoint is available. In addition, the approach to estimate the p-value and 
predict the success rate of each endpoint is proposed. Finally, this paper presents the implementation of 
family-wise gatekeeping approach in SAS/IML. 

 

INTRODUCTION  

If a clinical trial has other objectives in addition to the primary objective, a strategy should be decided 
beforehand in order to meet the requirements of regulatory agencies on the strong control of family-wise 
error rate (FWER) at a pre-specified significance level  . The purpose of the strategy is to reduce the 

probability of erroneously rejecting the true null hypothesis while still providing great flexibility in 
addressing clinical trial objectives (Alosh 2014). In the last decade, many approaches have been 
introduced in the literature to handle the multiplicity controlled analyses in clinical trials. Bretz (2009) and 
Burman (2009) proposed graphical approach around 2009. This approach is becoming more and more 
popular because the complex multiplicity controlled analyses can be constructed in a visualized 
approach. In addition, this approach can iteratively recycle unspent significant levels (Alosh 2014). Over 
the years, some tools have been created using R graph-based Multiple Comparison Procedures [gMCP] 
package and R Shiny in order to apply graphical approach into the multiplicity controlled analyses in 
clinical trials. Even though the code developed in SAS/IML is available to apply this approach in certain 
cases, there is still a need to develop a comprehensive tool in order to fully apply this approach to the 
multiplicity controlled analyses in clinical trials. The program presented in this paper is implemented in 
SAS/IML because of the popularity of SAS in different application areas. This paper will first introduce the 
graphical approach briefly. Then the implementation of graphical approach in SAS/IML will be introduced. 
The program can identify the significance of each endpoint based on the provided endpoint p-values. This 
information is critical to decide the successfulness of the clinical trials. However, these p-values will 
usually become available only at the very end stage of clinical trials. In order to help the early decision-
making, the paper also presents the way to estimate the endpoint p-values based on the information from 
other clinical trials or literature. Based on these estimated p-values, the success rate (power) of each 
endpoint can then be calculated through simulation. This information will be helpful when deciding 
whether to continue or stop the clinical trials. Even though the graphical approach has many advantages, 
other methods also have their own advantages and are useful in certain multiplicity controlled analyses. 
This paper also presents the implementation of family-wise gatekeeping approaches in SAS/IML in order 
to compare the analysis results using different approaches in multiplicity controlled analysis. The 
programs provided in this paper are very useful for the multiplicity controlled analyses and will provide 
valuable information to help the decision-making. 
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GRAPHICAL APPROACH  

In graphical approach, a set of vertices with associated local significance level i  are used to represent 

the endpoint null hypotheses. In addition, the weight of the directed edge between any two vertices i and 

j is indicated by 0ijg (Bretz 2009). Basically, the p-value of each endpoint will be compared with the 

significance level  assigned to this endpoint. If there is no endpoint hypothesis to reject or there is only 

one endpoint left in the graph, then stop; otherwise, one of the rejected endpoint hypothesis will be 
removed from the graph. The  values of the endpoints which are still in the graph will be re-calculated. 

Similarly, the weight ijg between any two vertices i  and j still in the graph will be re-assigned 

accordingly. These steps continue until there is no endpoint hypothesis to reject, or there is only one 
endpoint in the graph.  The algorithm that ensures a sequentially rejective Bonferroni-based multiple 

testing procedure can be expressed as follows, where kI ,...,1 , ),...,1( kiHi   is the null hypothesis, 

and || A  denotes the cardinality of a set A (Bretz 2009): 

(1) Select an i  such that iip  . If no such i  exists, stop; otherwise, reject iH . If 1|| I , stop. 

(2) Update the graph: 
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(3) If 1|| I , go to step 1; otherwise, stop. 

We will now use a clinical trial example to illustrate the algorithm above. Figure 1 is the initial graph:  

 

 

Figure 1. Graphical Approach Example: Initial Graph 
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Assume the null hypothesis of Endpoint 1 is rejected after comparing the p-value of Endpoint 1 with the 

local significance level 05.0 , the graph will be updated based on the algorithm mentioned above. 

Endpoint 2 will have 035.07.005.00  , Endpoint 3 will have 005.01.005.00  , while 

Endpoint 4 will have 01.02.005.00  . In addition, the weights 12g , 13g , and 14g will become 0, 

while other weights have no change based on this algorithm. The updated graph is shown in Figure 2. 

 

 

Figure 2. Graphical Approach Example: Updated Graph 

 

The step above will continue until there is no null hypothesis to reject, or there is only one endpoint left in 
the graph. The graphical algorithm described above can be implemented using SAS/IML as follows (Bretz 

2009): 

start graphapp(a, w, p); 

      n = ncol(a); 

      rslt=j(1, n, 0); 

      cond = 0; 

      do until(cond = 1); 

         hyporej = (p < a); 

         if (any(hyporej)) then do; 

            rejidx = min(loc(hyporej#(1:n))); 

            rslt[rejidx] = 1; 

            w1 = j(n, n, 0); 

            do i = 1 to n; 

               a[i] = a[i] + a[rejidx]*w[rejidx,i]; 

               if (w[i,rejidx]*w[rejidx,i]<1) then do j = 1 to n; 

                 w1[i,j] = (w[i,j] + w[i,rejidx]*w[rejidx,j])/ 

                           (1 - w[i,rejidx]*w[rejidx,i]); 

               end; 

               w1[i,i] = 0; 

            end; 

            w = w1; w[rejidx,] = 0; w[,rejidx] = 0; 

            a[rejidx] = 0; 

                

         end; 

         else cond = 1; 
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      end; 

      return(rslt); 

         

finish graphapp; 

In the code above, the parameter a  is a vector to hold the local significance  values, w  is a matrix to 

hold the values of weight ijg , and p  is a vector to hold the p-values of endpoints. The return variable 

rslt  is a vector to hold the rejection status of each null hypothesis. The value of 1 indicates that the null 

hypothesis of related endpoint is rejected. 

 

ESTIMATION OF P-VALUES AND PREDICTION OF SUCCESS RATE 

The graphical approach mentioned above requires the availability of the p-value of each endpoint. 
Usually, these exact p-values can be calculated using SAS procedures, such as PROC MIXED, at the 
very end stage of clinical trials. In order to provide useful information to help early decision-making, this 
paper also presents a way to estimate the p-values of endpoints based on the information from other 
clinical trials or literature. Therefore, the success rate of each endpoint can then be predicted using 
simulation at the early stage of clinical trials. This will provide supportive information to decide whether to 
continue or stop the clinical trials. 

In clinical trials, the effect size values or ranges can usually be estimated from the information of other 
clinical trials or literature. For example, for some clinical trials, the effect size of continuous endpoints can 

be given by 



 21   where 1 and 2 are the true mean responses of the treatment groups and   

is the pooled standard deviation, while the effect size of binary endpoints can be given by 

)1(

21

pp

pp




 , where 1p and 2p are the true response rates of the treatment groups and p is the 

average response rate: 2/)( 21 ppp  . 

The following code in SAS/IML is used to illustrate how to generate the p-value of each endpoint for a 
clinical trial, assuming the clinical trial has 8 endpoints, and the estimated effect sizes of endpoints are 

stored in vector theta .  

* Number of tests; 

  ntests=&ntests; 

 

* Effect sizes for Endpoints 1 through ntests; 

  theta=j(ntests,1,1); 

  theta={&theta1, &theta2, &theta3, &theta4, &theta5, &theta6, &theta7, 

&theta8}; 

 

* Correlation matrix; 

  rho=j(ntests,ntests,1); 

 

  rho={ 1   &r12  &r13  &r14  &r15  &r16  &r17  &r18, 

      &r12   1    &r23  &r24  &r25  &r26  &r27  &r28, 

      &r13  &r23   1    &r34  &r35  &r36  &r37  &r38, 

      &r14  &r24  &r34   1    &r45  &r46  &r47  &r48, 

      &r15  &r25  &r35  &r45   1    &r56  &r57  &r58, 

      &r16  &r26  &r36  &r46  &r56   1    &r67  &r68, 

      &r17  &r27  &r37  &r47  &r57  &r67   1    &r78, 

      &r18  &r28  &r38  &r48  &r58  &r68   &r78   1};  

* Sample size per treatment arm of each endpoint; 
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  nnm={&n1,&n2,&n3,&n4,&n5,&n6,&n7, &n8}; 

  mu=j(ntests,1,1);   

 

  mu=theta/sqrt(2/nnm); 

 

  alpha=&alpha; 

 

* Generate p-values; 

  yval=j(&nsims, ntests,0); 

  sigma=j(ntests,1,1); 

  d=diag(sigma); 

  drd=d*rho*d`; 

  t=half(drd);   

  do i=1 to &nsims;     

    z=rannor(j(ntests,1,1234*i)); 

    y=mu+t`*z;         

    yval[i,]=y`; 

    p0=(1-probnorm(yval));   

 end; 

The estimated endpoint p-values are stored in matrix p0. In addition, this matrix totally holds nsims
groups of endpoint p-values, where nsims is the number of simulation loops.  

After the estimated p-values are generated, the following code can be used to predict the success rate 
(power) of each point: 

   

  testrslt=j(&nsims,ntests,0); 

 

  do j=1 to &nsims; 

     a0={&a1 &a2 &a3 &a4 &a5 &a6 &a7 &a8}; 

     a=a0/(1/(&alpha/2)); 

     w={&w11 &w12 &w13 &w14 &w15 &w16 &w17 &w18, 

        &w21 &w22 &w23 &w24 &w25 &w26 &w27 &w28, 

        &w31 &w32 &w33 &w34 &w35 &w36 &w37 &w38, 

        &w41 &w42 &w43 &w44 &w45 &w46 &w47 &w48, 

        &w51 &w52 &w53 &w54 &w55 &w56 &w57 &w58, 

        &w61 &w62 &w63 &w64 &w65 &w66 &w67 &w68, 

        &w71 &w72 &w73 &w74 &w75 &w76 &w77 &w78, 

        &w81 &w82 &w83 &w84 &w85 &w86 &w87 &w88}; 

     p=p0[j,1:ntests]; 

     testrslt [j,1:ntests]=graphapp(a,w,p); 

  end; 

 

  * power; 

    power= testrslt [:,]; 

    power=t(power); 

 

The rejection status of each null hypothesis is stored in the matrix testrslt . The success rate (power) of 

each endpoint is stored in the vector power . 
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FAMILY-WISE GATEKEEPING APPROACH 

In addition to graphical approach, other approaches to perform multiplicity controlled analyses have also 
been proposed over the last decade. Different approaches have their own advantages and have found 
applications in different kinds of clinical trials. The family-wise gatekeeping approach implemented in 
SAS/IML is also included here for the purpose of comparing the analysis results using different 
approaches. 

The following family-wise gatekeeping procedure is based on the methodology developed in Dmitrienko, 
Tamhane and Wiens (2008) and Dmitrienko and Tamhane (2011). It has been used to control the overall 
Type I error rate in the clinical trial designed to test high dose and low dose versus placebo. In this 
procedure, the endpoints are grouped into families. For example, we can put the primary endpoint in 
Family 1, put key secondary endpoints in Family 2, and put other secondary endpoints in Family 3.  

In Family 1, the tests can be conducted using single-step Dunnett procedure (Dunnett 1955) at a two-
sided  . The following is the code to test high dose and low dose versus placebo (Dmitrienko 2009): 

data family1; 

   n=&n1; 

   m=&numtrt; 

   alpha=&alpha1;  

   crit=probmc("DUNNETT1", ., 1-alpha, (m+1)*(n-1), m);  

   siglev=2*(1-probt(crit, 2*(n-1))); ***two-sided significance level; 

run; 

 

The tests in Family 1 will then be performed at the calculated significance level siglev .  

 

The Family 2 tests are based on truncated Hommel procedure (Brechenmacher 2011) at a significance 
level   which is determined by the significance of the tests in Family 1. The algorithm of truncated 

Hommel procedure can be implemented using the following SAS/IML code (Dmitrienko 2009): 

* Compute Simes p-value for a given intersection hypothesis (HINTS); 

  start simesp(p,hints,gamma); *p is p-value vector; 

        p1=t(p[loc(hints)]); 

        m=ncol(hints); 

        k=sum(hints); 

        p2=p1;    

        r=rank(p1); *sort the p-value; 

        p1[r]=p2; 

        num=p1;   *numerator; 

        index=(1:k); 

        denom=index*gamma/k+(1-gamma)/m; *denominator; 

        simesp=min(num/denom); *Simes p-value; 

        return(simesp);  

  finish simesp;   

 

* truncated Hommel test for the given p-values, significance level and gamma; 

  start hommel(p,siglev,gamma);                    

        nhyps=ncol(p); *number of hypotheses; 

        if nhyps=1 then adjp=p; 

        if nhyps>1 then do; 

           nints=2**nhyps-1; *number of intersection hypotheses; 

           hints=j(nints,nhyps,0); *intersection hypotheses; 

           * Assign intersection hypotheses; 

           do i=1 to nhyps; 

              do j=0 to nints-1; 

                 k=floor(j/2**(nhyps-i)); 
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                 if k/2=floor(k/2) then hints[j+1,i]=1; 

              end; 

           end; 

           p1=j(nints,nhyps,0);  

           do i=1 to nints; 

              p1[i,]=hints[i,]*simesp(p,hints[i,],gamma); *Simes p-values; 

           end; 

           adjp=j(1,nhyps,0);  

           do i=1 to nhyps;  

              adjp[i]=max(p1[,i]); *adjusted p-values; 

           end;         

        end; 

        rslt=(adjp<=siglev); *hypothesis tests based on adjusted p-values; 

        return(rslt); 

  finish hommel; 

In the code above, parameter p  is the vector of endpoint p-values in Family 2, siglev  is the 2 value of 

Family 2 tests, and gamma  is a value between 0 and 1. The test results are stored in the return matrix 

named rslt . 

The tests in Family 3 will be carried out using Hommel procedure (Hommel 1988) at significance level 3  

which will be determined by the significance of the tests in Family 2. The Hommel procedure is a special 

case of the truncated Hommel procedure with 1 , and the tests in Family 3 can be done by calling:  

         Hommel ( p , 3alpha , 1); where p  is the vector of the p-value of each tests in Family 3, and 

3alpha  is the 3  value used for the Family 3 tests.  

Similarly, for family-wise gatekeeping approach, the endpoint p-values can be estimated using the same 
approach mentioned above. Also, the success rate of each endpoint can be predicted to help the early 
decision-making. 

The results can be further processed for different kinds of applications. For example, the predicted 
success rate of each endpoint using different approaches can be displayed in bar charts (Figure 3). 

 

 

Figure 3. Comparison of Different Approaches 
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CONCLUSION 

The programs presented in this paper are very useful to perform multiplicity controlled analyses. They can 
not only be used to identify the successfulness of the clinical trials with multiple objectives, in addition, the 
simulation functions can also be used to predict the success rate of each endpoint in the clinical trials at 
the early stage of clinical trials. Furthermore, the ability to compare different approaches in multiplicity 
controlled analyses makes it possible to provide additional information to help the decision-making. 
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