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ABSTRACT  

Multiple Imputation (MI) is an effective and increasingly popular solution in the handling of missing 
covariate data as well as missing continuous and categorical outcomes in clinical studies. However, in 
many therapeutic areas, interest has also risen in multiple imputation of censored time-to-event data, 
because in many cases the Censored at Random (CAR) assumption is not clinically plausible for all 
subjects and MI allows for Censored Not at Random (CNAR) assumptions. In SAS®, MI is possible 
through the MI procedure, procedures implementing Bayesian analysis (e.g., MCMC, PHREG) or user-
implemented approximate Bayesian bootstrap. In MI, the missing values are filled in and several imputed 
datasets are created with differing values swapped for the missing ones. Each of those imputed datasets 
are analyzed separately using the methods that compute the statistics of interest (Kaplan-Meier survival 
estimates, hazard ratios, etc.). Once these estimates are calculated for each imputed dataset, they are 
combined, or pooled, using Rubin’s rules. These rules assume the estimates to be combined are 
asymptotically normally distributed. In many cases, such as with survival probabilities, this assumption 
does not hold and normalizing transformations must be applied beforehand. In this paper, we cover these 
normalizing methods and present SAS code that implements the necessary data transformations and 
manipulations for combining various survival analysis estimates such as Kaplan-Meier survival curves 
(including percentiles), log-rank, Wilcoxon, and other tests for equality of survival curves, and Cox 
regression estimates of the hazard ratios after multiple imputation of censored time-to-event data. 
Demonstration is provided using an example imputed data set. Code will be submitted to be made 
available at http://www.missingdata.org.uk.  

INTRODUCTION  

Multiple Imputation (MI) (Rubin, 1987) is an effective and increasingly popular solution in handling 
missing covariate data as well as missing continuous and categorical outcomes in clinical studies. 
However, interest has also risen in multiple imputation of censored time-to-event data, because in many 
cases the Censored at Random (CAR) assumption (Heitjan et al., 1991) employed by standard survival 
analysis methods is not clinically plausible for all censored trial subjects, and MI allows for Censored Not 
at Random (CNAR) assumptions. Data are considered to be censored at random if the censoring time 
distribution is independent of the event process, conditional on the observed covariates. Regulatory 
agencies have noted the need to explore sensitivity to the CAR assumption in the analyses of time-to-
event endpoints, as discussed in the Food and Drug Administration (FDA)-commissioned report “The 
Prevention and Treatment of Missing Data in Clinical Trials” by the National Research Council panel 
(National Research Council, 2010), and the European Medicines Agency Guideline on Missing Data in 
Confirmatory Trials (European Medicines Agency, 2010). Analogous to the continuous and categorical 
outcomes, Lipkovich et al. (2016) proposed multiple imputation-based methods that stress-test the 
robustness of primary analysis conclusions of time-to-event studies performed under the CAR assumption 
where subjects withdraw from treatment and follow-up prior to experiencing an event of interest. Multiple 
imputation provides a flexible tool for such sensitivity analyses, as the imputation model, used to generate 
imputed values, can be different from the analysis model applied to completed data. This allows the 
analyst to vary assumptions about missing values (censored subjects) by employing various imputation 
models and explore the robustness of results under a range of clinically plausible assumptions that could 
include CNAR assumptions. 

Similar to multiple imputation of other types of outcomes, as a result of MI of time-to-event data, multiple 
datasets are created that share observed values (observed event times), but have different imputed event 
times for censored subjects. These datasets must be analyzed individually and separately using the time-

http://www.missingdata.org.uk/
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to-event analysis methods originally intended. The results from each of these individual analyses are then 
combined, or pooled, producing an overall result. The MIANALYZE procedure performs this last 
combining step using Rubin’s rules (Rubin, 1987). The workflow for MI and result combination is 
illustrated in Figure 1.  

 

 

Figure 1. Workflow for MI and result combination 

An example of an estimate from survival analysis that can be obtained from the individual imputed 
datasets and subsequently combined is the estimate of a hazard ratio for the event of interest for the 
experimental treatment group versus the control. The PHREG procedure, implementing the Cox 
regression, can be used to produce hazard ratio estimates for each imputed dataset, which would then 
need to be combined to obtain an overall hazard ratio, as well as its standard error, confidence interval, 
and an overall test for no treatment effect.  

Rubin’s rules for combining results from multiple imputed datasets require that the estimated statistics be 
asymptotically normally distributed. In the case of many typical estimates, such as odds ratios, hazard 
ratios, relative risks, or survival probabilities, normality does not hold. Therefore, a normalizing 
transformation is needed before the results can be combined. Van Buuren (2012) suggested 
transformations for several types of estimated statistics (see Table 1) in order to normalize them. 

This paper does not address the question of how to impute event times for censored subjects. For more 
details on this topic, see, e.g., (Lipkovich et al., 2016; Taylor et al., 2002; Van Buuren, S., 2012; Zhao et 
al., 2014) and references therein. Rather, this text focuses on solutions for combining estimates that 
could be routinely produced in time-to-event data analysis reports after multiple imputation, such as 
Kaplan Meier estimates of the survival curve and survival percentiles, comparison tests of survival 
distributions (e.g., log-rank, Wilcoxon, and Tarone-Ware test statistics), and Cox regression hazard ratio 
estimates. The analysis and combination of results are invariant with respect to the assumptions about 
censored subjects under which multiple imputation was carried out and do not depend on the multiple 
imputation model used to fill in missing values. So, for any MI model of your choice, the combining 
process would be the same. 

This paper covers the most common survival analysis statistics and includes fragments of SAS code 
illustrating the key steps. These code fragments belong to a larger set of macros that is planned to be 
made available at http://www.missingdata.org.uk that can be consulted for a better understanding of the 
overall process. In the code fragments included in this paper, we preserved the same names of datasets, 
and (macro) variables as in the full code to facilitate the review of both sources for the readers. 

Combined Results (PROC MIANALYZE)

Combine via Rubin's rules and back-transformation

Analysis & Transformation

Analysis Results #1 Analysis Results #2 ... Analysis Results #m

Multiple Imputation (PROC MI, MCMC, PHREG, etc.)

Imputed Data Set #1 Imputed Data Set #2 ... Imputed Data Set #m

Original Data Set

http://www.missingdata.org.uk/
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Table 1. Suggested normalizing transformations for select types of statistics. (Excerpts from (Van 
Buuren, 2012), Table 6.1, p. 156.) 

Statistic Transformation 

Odds ratio Logarithm 

Relative risk Logarithm 

Hazard ratio Logarithm 

Survival probabilities Complementary log-log 

 

The MIANALYZE procedure, implementing Rubin’s combination rules, expects as input a dataset where 
each record contains the results from one imputed dataset. This dataset must contain a variable (column) 
that represents a point estimate of the analysis statistic and another variable that represents the standard 
error of the point estimate. The former variable name is specified in the MODELEFFECTS statement and 
the latter in the STDERR statement. These two quantities are required for Rubin’s rules to produce a 
combined point estimate, standard error, confidence limits, and a hypothesis test for the combined 
estimate. Therefore, in this paper, when presenting the necessary steps to prepare non-normally 
distributed statistics for combining, we describe the calculations needed to obtain the normalized point 
estimates as well as standard errors for the normalized values.  

This paper first introduces the example dataset, and then covers the combining of results of Kaplan-Meier 
survival curves, survival percentiles, some chi-square-distributed statistics for tests of survival curves 
equality, and Cox regression. 

EXAMPLE DATASET 

The example dataset used in this paper is from the randomized, double-blind ‘Trial Comparing 
Nucleoside Monotherapy with Combination Therapy in HIV-Infected Adults with CD4 Cell Counts from 
200 to 500 per Cubic Millimeter (Hammer et al., 1996), otherwise known as the ACTG 175 study1. For our 
purposes, we analyze the secondary endpoint of the study (time to acquired immunodeficiency syndrome 
(AIDS) or death) and compare two treatment arms (zidovudine monotherapy and zidovudine plus 
didanosine combination therapy). Table 2 describes the frequency of censoring overall and, in particular, 
the frequency of subjects lost to follow-up before the planned evaluation period of two years. In this 
analysis, we consider subjects who had an event or were censored after the planned two-year follow-up 
period as study completers. We do not impute these. We count these as administratively censored and 
impute only those subjects who did not experience the AIDS event and were lost to follow-up less than 
two years after randomization.  

As previously mentioned, MI of time-to-event data is most useful for investigation of departures from the 
CAR assumption, because the standard methods, such as Kaplan-Meier and Cox regression, readily 
perform survival analyses under the CAR assumption without the need for any imputation of censored 
data. In this paper, however, we present the results from analyses where multiple imputation of this 
example dataset was carried out under the CAR assumption. As the focus of this paper is on the 
implementation procedures, it is helpful to examine the results from the CAR-based multiple imputation 
and to ensure that they are similar to the results from standard CAR-based analyses not involving 
imputations, as a high degree of similarity would be expected for approaches that are computationally 
different but rely on the same assumptions.   

                                                           

1 With gracious permission from publication author Michael Hughes. 
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Table 2. Censoring frequencies for ACTG 175 study dataset 

 MONOTHERAPY COMBINATION 

# RANDOMIZED SUBJECTS 619 613 

# CENSORED SUBJECTS (% 
OF RANDOMIZED) 

523 (84.5%) 548 (89.4%) 

# LOST TO FOLLOW-UP 
BEFORE 2 YEARS (% OF 
RANDOMIZED) 

104 (16.8%) 95 (15.5%) 

 

COMBINING KAPLAN-MEIER SURVIVAL CURVES AFTER MULTIPLE IMPUTATION 

A typical analysis of time-to-event data often includes estimation of survival curves using the Kaplan-
Meier method. In other words, we are interested in computing survival probabilities at specific times 
across the follow-up period for these data. Kaplan-Meier estimates of the survival probability function are 
not normally distributed and thus would require a normalizing transformation before they can be 
combined with the Rubin’s rules. As in reference (Morisot et al., 2015), a complementary log-log 
normalizing transformation is recommended in order to satisfy the assumption of Rubin’s rules. 

For each of 𝑚 imputed datasets that have been created and for a set of time points 𝑡𝑗, 𝑗 = 1,… , 𝐽, we can 

compute survival estimates 𝑆̂𝑖(𝑡𝑗), 𝑖 = 1,… ,𝑚,  and their variances 𝑉𝑎𝑟 (𝑆̂𝑖(𝑡𝑗)) , 𝑖 = 1,… ,𝑚 using the 

LIFETEST procedure. Let 

K̂i(tj) = log⁡[− log(𝑆̂𝑖(𝑡𝑗))] 

describe the normalizing complementary log-log transformation for the survival estimates.  

Along with the transformed point estimates K̂i(tj), PROC MIANALYZE requires specification of the 

corresponding survival estimate standard errors on the transformed scale. To compute them, let 

Ui(tj) = 𝑉𝑎𝑟(K̂i(tj)) 

We use the delta method (Oehlert, 1992) with 𝑔 (𝑆̂𝑖(𝑡𝑗)) = log⁡[− log(𝑆̂𝑖(𝑡𝑗))] to obtain 

Ui(tj) = 𝑉𝑎𝑟 (K̂i(tj)) ≈ (
−1

log(𝑆̂𝑖(𝑡𝑗))∗⁡𝑆̂𝑖(𝑡𝑗)
)

2

∗ 𝑉𝑎𝑟 (𝑆̂𝑖(𝑡𝑗)) =
𝑉𝑎𝑟(𝑆̂𝑖(𝑡𝑗))

[log(𝑆̂𝑖(𝑡𝑗))∗⁡𝑆̂𝑖(𝑡𝑗)]
2                   (1) 

Since the numerator, 𝑉𝑎𝑟(𝑆𝑖̂(𝑡𝑗)), is a known quantity computed by PROC LIFETEST using 

Greenwood’s formula, this equation is a tractable expression for the variance of the transformed 
estimates. The square root of this estimate gives the standard errors that can be passed to PROC 
MIANALYZE along with the transformed point estimates, in order to combine the results: 

𝑆. 𝐸. (K̂i(tj)) = √Ui(tj) 

In summary, to combine survival probabilities at pre-specified time points, we obtain these survival 
estimates and their variances for each imputed dataset using PROC LIFETEST, transform them using the 
equations above, and combine them using PROC MIANALYZE which implements the Rubin’s rules. The 

combined transformed estimates, 𝐾̅(𝑡𝑗) and 𝑆𝐸[𝐾̅(𝑡𝑗)], can then be back-transformed to the original 

scale using the following expressions for survival probabilities and standard errors: 

𝑆̅(𝑡𝑗) = exp⁡[− exp[𝐾̅(𝑡𝑗)]] 

𝑆𝐸[𝑆̅(𝑡𝑗)] = 𝑆𝐸[𝐾̅(𝑡𝑗)] ∗ 𝑆̅(𝑡𝑗) ∗ log⁡[𝑆̅(𝑡𝑗)] 
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SAS Code Fragment 1 demonstrates this process by first performing the normalizing complementary log-
log transformation on the survival probabilities contained in the dataset _spc_pl, and obtaining the 
associated standard errors as described in Equation 1, excluding cases where the survival probabilities 
are 0 or 1. The transformed results are passed along for combining to PROC MIANALYZE: name of the 
variable containing the transformed point estimates is specified in the MODELEFFECTS statement and 
the name of the variable containing the transformed standard errors is specified in the STDERR 
statement. The combined results are thereafter back-transformed in the last DATA step. 

/* Complementary log-log transformation of survival probabilities and 

standard errors*/ 

/*_spc_pl contains Survival and StdErr, which are the original estimates 

obtained from PROC LIFETEST that will be transformed*/ 

DATA _spc_pl1 _spc_pl2; set _spc_pl; 

   if 0 < Survival < 1 then do;    

      Survival_cll = log(-log(Survival)); 

      /*S.E. transformation*/  

      Survival_stderr_cll =                            

      sqrt((1/(log(Survival))**2)*((StdErr**2)/(Survival**2))); 

   output _spc_pl1; 

   end; 

   else output _spc_pl2; /*for Survival=0 or Survival=1 estimates*/ 

run; 

proc sort data=_spc_pl1; by &by &strata &trtvar &timelistvar _Imputation_; 

run; 

 

/*Step to remove instances of a timepoint only appearing in one dataset, 

since if only one estimate exists there is nothing to combine*/ 

DATA _spc_pl1; set _spc_pl1; 

 by &by &strata &trtvar &timelistvar _Imputation_; 

 if first.&timelistvar and last.&timelistvar then delete; 

run; 

 

/*Combine transformed estimates*/ 

proc mianalyze data=_spc_pl1; 

 by &by &strata &trtvar &timelistvar;  

 modeleffects Survival_cll; 

 stderr Survival_stderr_cll; 

 ods output parameterestimates=_tmc_survprob_comb; 

run; 

 

   /*Back-transform combined survival probability estimates and compute CI*/ 

DATA _tmc_survprob_comb1; set _tmc_survprob_comb; 

 Survival_comb = exp(-exp(Estimate)); 

 Survival_StdErr_comb = abs(Survival_comb * StdErr * 

log(Survival_comb)); 

 

 zRight = quantile("Normal", 1-&alpha / 2); 

    Survival_LCL_comb = Survival_comb**(exp(zRight*StdErr)); 

    if Survival_LCL_comb<0 then Survival_LCL_comb=0; 

    Survival_UCL_comb = Survival_comb**(exp(-zRight*StdErr)); 

run; 

SAS Code Fragment 1. Complementary log-log transform of survival probability estimates after 
multiple imputation 

The discussion above assumed a set of time points {𝑡𝑗}𝑗=1
𝐽

for which survival probability estimates are 

obtained from the Kaplan-Meier analysis of each of the 𝑚 imputed datasets. We are often interested in 
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obtaining combined estimates of the entire Kaplan-Meier survival curve which is a step function with 
constant step boundaries located at the observed event times. Across multiple imputed datasets, the 
originally observed event times are the same, but the imputed event times can, of course, be different. 
Therefore, by default, PROC LIFETEST produces survival estimates at different time points for each 
imputed dataset. Because of this, to obtain an overall combined survival curve, we need to choose a 
common set of time points and estimate survival probabilities for this common set from Kaplan-Meier 
analysis of each imputed dataset. For this purpose, the TIMELIST option of the PROC LIFETEST 
statement can be used to request survival estimates at specific time points, which may be different from 
originally observed event times.  

More specifically, to obtain a combined estimate of the Kaplan-Meier survival curve, we use a set of time 

points  {𝑡𝑗}𝑗=1
𝐽

 which is the union of the originally observed event times (not imputed) with supplementary 

time points chosen to span the time period between the minimum and maximum imputed event times 
across all imputations. Note that we are not adding any additional imputed events, but simply obtaining 
survival estimates at additional time points across the follow-up period. These extra time points are added 
to better represent the time periods containing imputed event times across multiple imputed datasets. 
There may be different ways in which these supplementary time points can be selected. Here, we choose 
as many of these time points as the number of unique imputed event times across all imputations and 

spread them uniformly. In other words, if across all imputations there are r unique imputed event times, 

the smallest being 𝑠1 and the largest being 𝑠𝑟, then survival probabilities are here estimated for the 
following set of time points in addition to the set of observed event times: 

{𝑠1, 𝑠1 +
𝑠𝑟 − 𝑠1

𝑟
⁡ , 𝑠1 + 2 [

𝑠𝑟 − 𝑠1
𝑟

] , …⁡, 𝑠𝑟}⁡ 

Creation of the list of supplementary time points is illustrated in SAS Code Fragment 2.  

/*create a list of equally spaced supplementary time points between the 

smallest imputed event time to the largest based on all unique imputed 

event times provided in the dataset &ietdata */ 

   proc sql noprint; 

      select min(&timevar) into :_scc_mintime from &ietdata; 

      select max(&timevar) into :_scc_maxtime from &ietdata; 

      select count(unique(&timevar)) into :_scc_nimptime from &ietdata; 

      select (max(&timevar) - min(&timevar))/count(unique(&timevar)) into    

:_scc_bytime from &ietdata; 

   quit; 

 

   %let &etlist=%str(&_scc_mintime to &_scc_maxtime by &_scc_bytime); 

SAS Code Fragment 2. Generating a list of supplementary time points for survival probability 
estimation when combining estimates of the Kaplan-Meier survival curves 

Using the resulting combined survival probability estimates across the observed event times and 
supplementary time points, we can produce a combined survival curve. Figure 2 presents the survival 
curves, by treatment group, for the original (not imputed) data and the combined survival curves for the 
multiply imputed data. Because imputations were done with a multiple imputation model assuming CAR, 
which is the same as assumptions behind the Kaplan-Meier analysis of original data, the survival curves 
obtained with and without imputation are very similar, as expected. 
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Figure 2. Survival curves based on original data (left) and combined results after MI (right) 

OBTAINING SURVIVAL PERCENTILES FROM THE COMBINED PROBABILITIES 

Survival percentiles can be computed from the combined survival probabilities 𝑆̅(𝑡𝑗)⁡and their standard 

errors using standard methods. Alternative approximations exist (Marshall et al., 2009; Collett, 2003) but 

are not the focus of this paper. The general expression to estimate the 100𝑝 survival percentile is (SAS 
Institute Inc., 2008): 

𝑞𝑝 = min⁡{𝑡𝑗|𝑆(𝑡𝑗) < 1 − 𝑝} 

The standard error of the percentile qp⁡can be approximated by the Taylor series approximation to the 

variance of a function of a random variable: 

𝑆𝐸[qp] =
𝑑𝑆̅(𝑞𝑝)

𝑑𝑞𝑝

−1

𝑆𝐸[𝑆̅(qp)] 

The derivative 
𝑑𝑆̅(𝑞𝑝)

𝑑𝑞𝑝
, which is actually an estimate of the survival p.d.f. (probability density function) at 

the time 𝑞𝑝, can be estimated by  

𝑆̅(t+) − 𝑆̅(t−)

t+ −⁡t−
 

where  

t+ = 𝑚𝑖𝑛{tj:⁡𝑆̅(tj) ≤ (1 − 𝑝) − 𝜀} 

t− = 𝑚𝑎𝑥{tj:⁡𝑆̅(tj) ≥ (1 − 𝑝) + 𝜀} 

and 𝜀 is a small number such as 𝜀 = 0.05. In some cases, such as when 𝑡+ and 𝑡− end up being equal, 

a larger 𝜀 may be necessary. Then, the 95% confidence limits around 𝑞𝑝  can be computed using the 

normal approximation:  

qp ⁡± ⁡1.96⁡ × 𝑆𝐸[qp] 

The SAS Code Fragment 3 demonstrates the standard error computation. The identification of the terms 

t+ and t− and their corresponding survival estimates for the derivative equation is lengthier and can be 

found in the full code, but the general idea is to look for records satisfying the conditions defining t+ and 

t− in a dataset containing time points {𝑡𝑗}𝑗=1
𝐽

 and their combined survival estimates as described in the 

previous section. 
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For example, Figure 3 illustrates records found in the temporary dataset _q2 created in order to locate 

𝑞𝑝, 𝑡−⁡and⁡𝑡+ for the 10th percentile using the surv_quar_comb macro. In this case, the yellow region 

contains time points 680, 684 and 692: the records that satisfy the associated conditions from above. 
These, and related values, are used in SAS Code Fragment 3 to compute the standard errors. Variable 
t_minus contains a lagged value of time point (timelist variable) and the indicator variable done1=1 marks 

the record on which the condition for 𝑞𝑝 is first met (and from which we use 𝑞𝑝=timelist and 𝑡−=t_minus). 

The next record satisfies the condition for 𝑡+ as marked by done2=1. After a pass through the dataset to 
verify these conditions, the required records and values can be extracted based on variables done1 and 
done2 – using the records where they turn from 0 to 1. 

 

Figure 3. Computing the 10th percentile using the surv_quar_comb macro 

   /* Compute standard error of percentile (ster_t_p) and confidence 

interval (t_p_LCL, t_p_UCL) */ 

   ster_t_p = (-(t_plus - t_minus)/(s_t_plus - s_t_minus))*ster_s_t_p; 

   zRight = quantile("Normal", 1-&alpha / 2); 

   t_p_LCL = t_p - zRight*ster_t_p; 

   t_p_UCL = t_p + zRight*ster_t_p;    

SAS Code Fragment 3. Calculating combined survival percentiles from combined survival 
probabilities and standard errors 

COMBINING CHI-SQUARE–DISTRIBUTED STATISTICS AFTER MULTIPLE 
IMPUTATION 

After multiple imputation, it is possible to combine the test results from all available tests in PROC 
LIFETEST: log-rank, Modified Peto-Peto, Peto-Peto, Wilcoxon, and Tarone-Ware (SAS Institute Inc., 
2008). Each of these tests is based on a chi-square distributed statistic that can be normalized using a 

Wilson-Hilferty transformation (Wilson et al., 1931). If 𝑋2 is chi-square distributed with 𝑑 degrees of 

freedom, then 

𝑊 = √𝑋2/𝑑
𝟑

⁡≈ 𝑁(1 −
2

9𝑑
,
2

9𝑑
)⁡, or 

√𝑋2/𝑑
𝟑

− (1 −
2
9𝑑

)

√ 2
9𝑑

≈ 𝑁(0,1) 

Test statistics and their corresponding degrees of freedom can be found in the ODS output dataset 
HomTests produced by PROC LIFETEST when using the STRATA statement with TEST option. These 
test statistics obtained from each imputed dataset can be normalized using the above formula and the 
normalized values can let be input for PROC MIANALYZE in order to obtain combined results for these 
chi-square based tests, as in SAS Code Fragment 4. 
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DATA _tmc_tests1; set _tmc_tests; 

*** ChiSq is a chi-square distributed statistic (e.g., logrank) and DF is 

its corresponding degrees of freedom as produced by PROC LIFETEST ***; 

    ChiSq_wh=((ChiSq/DF)**(1/3) - (1-2/(9*DF)))/SQRT(2/(9*DF)); 

    ChiSq_stderr_wh = 1.0; 

run; 

proc sort data=_tmc_tests1; BY &by test _Imputation_; run; 

proc mianalyze data=_tmc_tests1; 

   by &by test; 

   modeleffects ChiSq_wh; 

   stderr ChiSq_stderr_wh; 

   ods output parameterestimates=&resprefix._tests; 

run; 

SAS Code Fragment 4. Combining of chi-square-distributed statistics after multiple imputation 
using the Wilson-Hilferty transformation 

Table 3 presents the p-values associated with several test results, both in the combined case after 
multiple imputation and the original observed data set. The MI results are slightly more conservative, but 
substantially similar in this example, as would be expected given the CAR-based multiple imputation 
model. 

Table 3. P-values for treatment effect based on the original observed data and combined results 
after MI 

 P-Value 

 Log-Rank ModPeto Peto Tarone Wilcoxon 

Multiple Imputation 0.0077 0.0066 0.0066 0.0060 0.0055 

Observed Cases 0.0050 0.0042 0.0043 0.0033 0.0025 

COMBINING RESULTS OF COX REGRESSION  

Cox regression, implemented in PROC PHREG, is often used to estimate hazard ratios, e.g., to compare 
event hazards between treatment groups. Cox regression model parameter estimates from PROC 
PHREG represent log hazard ratios. They are normally distributed and do not need any further 
transformation to be combined with Rubin’s rules using PROC MIANALYZE. However, the end results 
need to be exponentiated to obtain the numerical values of the hazard ratios and associated confidence 
intervals. SAS Code Fragment 5 illustrates Cox regression analysis of multiply imputed data using PROC 
PHREG, combining of results, and exponentiation of the combined log-hazard ratios in the last DATA 
step. 

proc phreg data=_tmc_1; 

by &by _Imputation_; 

class &trtvar &classvars; 

%if %length(&strata) >0 %then strata &strata ;  

model &timevar * &censvar(&censval) = &trtvar &covars / risklimits 

ties=efron rl; 

ods output ParameterEstimates=_es; 

run; 

 

/* Combine model coefficients. */ 

proc sort data=_es; by &by Parameter CLassVal0 _Imputation_; run; 

proc mianalyze data=_es; 

by &by Parameter ClassVal0;  

modeleffects Estimate; 
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stderr stderr;  

ods output ParameterEstimates = _es_mianal;  

run; 

 

/*Exponentiate in order to obtain hazard ratio estimates and confidence 

intervals */ 

data &resprefix._hr;   

set _es_mianal; 

Log_HR_comb=Estimate; 

HR_comb=exp(Estimate); 

HR_LCL_comb=exp(LCLMean); 

HR_UCL_comb=exp(UCLMean); 

 

keep &by Parameter ClassVal0 Log_HR_comb HR_comb HR_LCL_comb HR_UCL_comb 

Probt; 

rename Probt=HR_pval_comb; 

run; 

SAS Code Fragment 5. Combining Cox regression results after multiple imputation 

Table 4 contains Cox regression hazard ratio estimates and associated confidence intervals obtained 
from the observed and multiply imputed data. As expected with the CAR-based multiple imputation model 
used in this example, the hazard ratios and confidence interval widths are very similar. 

Table 4. Cox regression estimates from the original observed data and combined results after MI 

 Estimate  
(Combination vs. 

Monotherapy) 

95% Confidence Interval 

Multiple Imputation 0.618 0.450, 0.849 

Observed Data 0.624 0.455, 0.855 

CONCLUSION 

This paper describes the methods for combining results of survival analysis when multiple imputation is 
used to impute event times for censored subjects. In order to apply Rubin’s rules to combine the results 
from multiple imputed datasets into an overall result, many statistics estimated in the course of survival 
analysis need to be transformed to satisfy asymptotic normality assumptions required by the Rubin’s 
rules. This paper describes the necessary transformation steps and thus expands a toolbox of methods 
that facilitate the use of multiple imputation not only with continuous and categorical data (Ratitch et al., 
2013), but also with censored time-to-event data. The focus of this text is on combining common survival 
statistics, such as survival probabilities, survival percentiles, Cox regression hazard ratios, and the chi-
square distributed statistics available in PROC LIFETEST for tests of equality of survival distributions (log-
rank, modified Peto-Peto, Peto-Peto, Wilcoxon, and Tarone-Ware). Methods to carry out multiple 
imputation of event times for censored subjects are discussed elsewhere, e.g., (Lipkovich et al. 2016; 
Taylor et al., 2002; Van Buuren, 2012; Zhao et al., 2014). Although multiple imputation can be performed 
using various imputation models and under a variety of assumptions, the combination methods presented 
here are the same regardless of the particular MI method applied beforehand. The motivation for this 
work is to empower statisticians to evaluate the robustness of clinical trial survival analysis results to the 
CAR assumption underlying the standard Kaplan-Meier and Cox regression methods, as multiple 
imputation provides a powerful and flexible tool to perform analyses under a range of deviations from the 
CAR assumption.  
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