
PharmaSUG 2017 - Paper TT03

SAS® Debugging 101
Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

Abstract

SAS® users are almost always surprised to discover their programs contain bugs. In fact, when asked users will emphatically
stand by their programs and logic by saying they are bug free. But, the vast number of experiences along with the realities of
writing code says otherwise. Bugs in software can appear anywhere; whether accidentally built into the software by developers,
or introduced by programmers when writing code. No matter where the origins of bugs occur, the one thing that all SAS users
know is that debugging SAS program errors and warnings can be a daunting, and humbling, task. This presentation explores the
world of SAS bugs, providing essential information about the types of bugs, how bugs are created, the symptoms of bugs, and
how to locate bugs. Attendees learn how to apply effective techniques to better understand, identify, and repair bugs and
enable program code to work as intended.

Introduction

From the very beginning of computing history, program code, or the instructions used to tell a computer how and when to do
something, has been plagued with errors, or bugs. Even if your own program code is determined to be error-free, there is a high
probability that the operating system and/or software being used, such as the SAS software, have embedded program errors in
them. As a result, program code should be written to assume the unexpected and, as much as possible, be able to handle
unforeseen events using acceptable strategies and programming methodologies.

The focus of this paper is to understand the various types of program errors and their causes, in order to achieve greater
success when investigating and identifying program errors before and when they occur. By accomplishing this, users expect to
improve their chances of preventing, fixing and/or removing program errors the best way possible.

The SAS Log – Notes, Warnings and Errors

Users are provided with a broad range of assistance while using the various services offered by the SAS system, including the
display of SAS log messages related to compile-time and execution-time scenarios. The types of SAS log messages include
notes, warnings and errors, where the specific notes, warnings and errors relate to the degree of success (or lack thereof) when
applying the rules of the language, to specific data types, and to the creation and use of macro variables. To help in
understanding the various types of program errors found in the SAS System, a classification system is applied along with a brief
description, as illustrated in Table 1.

The type and severity of error encountered depends on the specific application being worked on. The SAS log displays violations
related to syntax, semantic, execution-time, data and macro-related errors. The assortment of notes, warnings and errors
provide users with helpful information to better understand and, hopefully, debug DATA, PROC and macro step program code.

Type of Error Description

Syntax Error
The rules associated with the use of a programming statement in the SAS language are
violated. Typical examples of a syntax error include misspelling of dataset or variable names,
and forgetting a semicolon.

Semantic Error
An element in a statement is specified incorrectly preventing SAS from knowing how to
interpret your code. Typical examples of semantic errors include misspelling a variable name
and incorrectly specifying an array’s elements.

Execution-time Error
An error that produces a Note or Warning on the SAS Log, but allows the program to continue.
An example includes observations arranged in incorrect BY-group order.

Data Error
An error that is generated when one or more data values do not match an INPUT statement
specification.

Macro-Related Error
An error that occurs during macro compilation or execution. An example includes a local macro
variable that should have been defined as a global macro variable.

Logic Error
An error that does not have a Note, Warning or Error associated with it, but contains erroneous
or unexpected results. Examples include using a “<“ when a “>” comparison operator should
have been specified.

Table 1. Error Classification and Description

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 2

Understanding Where Error Processing Occurs

In the SAS System, error processing occurs during the compilation and execution phases of SAS processing. As illustrated in
Table 2, of the six types of errors, SAS recognizes five of them either at compile or execution time.

Errors During

Compilation Phase

Errors During

Execution Phase

Syntax Error Execution-time Error

Semantic Error Data Error

Macro-Related Error Macro-Related Error

Table 2. Types of Errors and Error Processing Phases

Difficult to Find and Fix Errors

With the aid of the SAS Log, users are better able to determine the cause of many types of errors, but there is one areas where
SAS offers very little help – Logic (or “Usage”) errors. A good strategy to use in the detection and resolution of Usage errors is
to first develop a baseline understanding of what the program code is expected to do and then carefully compare these
expectations to the output that was generated. To detect Usage errors in a DATA step, users can use the DATA Step Debugger
(for more information, see Debugging SAS® Programs, by Michelle Burlew, pps. 110-138).

In the paper, “How to find and fix programming errors”, by Rick Wicklin, Rick suggests the following guidelines to help find and
fix those pesky programming errors.

 Test the program on simple cases;

 Break down the program into a sequence of basic steps;

 Favor clarity and simplicity.

Exploring SAS System Options

SAS System options offer users with a wealth of power to manage input, output, processing, performance, communication, log
and procedure output control, sort, macro and other essential elements related to a SAS session. Users are able to examine
their current SAS System options, along with the current default settings by using one of the following approaches:

1. Viewing an alphabetical list of system options and their default settings using the PROC OPTIONS statement:

PROC OPTIONS;
RUN;

2. Viewing the contents of the system options and their default settings using the OPTIONS Display Manager command.

3. Accessing the contents of the metadata DICTIONARY.OPTIONS table using the SQL procedure:

PROC SQL;
 SELECT * FROM DICTIONARY.OPTIONS;
QUIT;

4. Accessing the contents of the virtual table (view) SASHELP.VOPTION using any procedure and/or DATA step:

PROC PRINT DATA=SASHELP.VOPTION;
RUN;

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 3

DATA and PROC Step Debugging with System Options

SAS System options can be specified singly, or in combination, depending on needs. SAS System options allow users to:

 Process information to be displayed in the SAS Log;

 Run programs with specific observations;

 Stop a program when certain errors are encountered.

A number of SAS System options will now be presented and illustrated to show their debugging capabilities.

Using DSNFERR / NODSNFERR System Option
The DSNFERR system option can be used to tell SAS to stop processing when a reference to a data set does not exist.

 Example:
 options DSNFERR;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using ERRORABEND / NOERRORABEND System Option
The ERRORABEND system option can be used to tell SAS to abnormally terminate for many errors including syntax errors.

 Example:
 options ERRORABEND;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using ERRORS= n System Option (default is 20)
The ERRORS= n system option can be used to tell SAS the maximum number of observations to print complete error messages
for.

 Example:
 options ERROR=100;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using FMTERR / NOFMTERR System Option
The FMTERR system option can be used to tell SAS to produce an error when it cannot find a format.

 Example:
 options FMTERR;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 4

Using MSGLEVEL= N / I System Option
The MSGLEVEL=I system option can be used to tell SAS to print notes, warnings, errors and informational messages for merge,
index and sort usage.

Example:
options MSGLEVEL=I;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using NOTES / NONOTES System Option
The NOTES system option can be specified to tell SAS to print all notes to the SAS Log.

Example:
options NOTES;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using DATASTMTCHK=COREKEYWORDS System Option
The DATASTMTCHK=COREKEYWORDS system option can be used to prevent a data set from being overwritten when there is a
syntax error in a MERGE, SET, UPDATE or MODIFY statement.

Example:
options DATASTMTCHK=COREKEYWORDS;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using REPLACE / NOREPLACE System Option
The NOREPLACE system option can be specified to prevent the replacement of permanent data sets.

Example:
options NOREPLACE;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using SOURCE / NOSOURCE System Option
The SOURCE system option can be used to write all source code to the SAS Log.

Example:
options SOURCE;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 5

Using SOURCE2 / NOSOURCE2 System Option
The SOURCE2 system option can be specified to write all included source code (used with the %include statement) to the SAS
Log.

Example:
options SOURCE2;
 data libref.movies;
 set work.movies;
 %include ‘c:\include-sas-code.sas’;
 < other SAS statements >;
 run;

Using OBS=0 and NOREPLACE System Options
This combination of options tells SAS to execute the step and analyze the syntax of your code without reading any input data.

Example:
options OBS=0 NOREPLACE;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Macro Debugging Strategies and Techniques

A number of macro debugging strategies and techniques exist. But, before assuming an error is macro-generated, a general
litmus test can be applied to determine whether the error is a macro-related or a non-macro problem. Inspect the message
displayed in the SAS log and:

 If the message displays a number, then the error is most likely due to non-macro SAS code;

 Otherwise, the error can be assumed to be a macro-related error.

Although this two-step rule can be a helpful technique much of the time, it is worth noting that it can become less than reliable
when a programmer creates their own error numbering scheme. In these cases, the debugging process may require the use of
other techniques, including isolating macro issues by specifying a %PUT statement.

Isolating Macro Issues
It’s often useful to isolate macro issues by displaying their value after macro resolution to help determine whether problems
exist. One approach used by macro enthusiasts to isolate macro issues is to:

• Specify the %PUT statement to isolate problems;

• Display the contents after macro resolution to the SAS log;

• Inspect and verify:

 a macro variable’s value;

 ampersand resolution;

 a specified condition was met;

 leading or trailing blanks in a value.

Other strategies and techniques exist for isolating macro issues. The following techniques are presented to illustrate the
approaches the author has successfully used to better understand and debug macro code.

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 6

SYMBOLGEN and the Resolution of Macro Variables
The SYMBOLGEN option is an effective debugging tool used to display the resolution of each macro variable. The following
example code illustrates using the SYMBOLGEN option.

SAS Code

OPTIONS SYMBOLGEN;

%MACRO statsproc (PROC, DSN);

 %IF %UPCASE(&proc)=MEANS %THEN %DO;

 PROC MEANS DATA=&dsn;

 RUN;

 %END;

 %ELSE %DO;

 PROC UNIVARIATE DATA=&dsn;

 RUN;

 %END;

%MEND statsproc;

%statsproc (means, SASUSER.movies);

SAS Log Results

108 OPTIONS SYMBOLGEN;

109 %MACRO statsproc (PROC, DSN);

110 %IF %UPCASE(&proc)=MEANS %THEN %DO;

111 PROC MEANS DATA=&dsn;

112 RUN;

113 %END;

114 %ELSE %DO;

115 PROC UNIVARIATE DATA=&dsn;

116 RUN;

117 %END;

118 %MEND statsproc;

119 %statsproc (means, SASUSER.movies);

SYMBOLGEN: Macro variable PROC resolves to means

SYMBOLGEN: Macro variable DSN resolves to SASUSER.movies

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 7

MLOGIC and Flow of Execution
The MLOGIC option is an effective debugging tool used to trace the macro’s execution writing the results of the trace
information to the SAS log. Used most often when dealing with nested macros, it marks the beginning and end of macro
execution, displays the values of macro parameters at invocation, displays the execution of each macro program statement,
displays whether a %IF logic condition resolves to a “TRUE” or “FALSE” value on the SAS Log, and shows the location of an
invoked AUTOCALL macro. The following example code illustrates using the MLOGIC option.

SAS Code

OPTIONS MLOGIC;

%MACRO statsproc (PROC, DSN);

 %IF %UPCASE(&proc)=MEANS %THEN %DO;

 PROC MEANS DATA=&dsn;

 RUN;

 %END;

 %ELSE %DO;

 PROC UNIVARIATE DATA=&dsn;

 RUN;

 %END;

%MEND statsproc;

%statsproc (means, SASUSER.movies);

SAS Log Results

1 OPTIONS MLOGIC;

2 %MACRO statsproc (PROC, DSN);

3 %IF %UPCASE(&proc)=MEANS %THEN %DO;

4 PROC MEANS DATA=&dsn; RUN;

5 %END;

6 %ELSE %DO;

7 PROC UNIVARIATE DATA=&dsn; RUN;

8 %END;

9 %MEND statsproc;

10 %statsproc (means, SASUSER.movies);

MLOGIC(STATSPROC): Beginning execution.

MLOGIC(STATSPROC): Parameter PROC has value means

MLOGIC(STATSPROC): Parameter DSN has value SASUSER.movies

MLOGIC(STATSPROC): %IF condition %UPCASE(&proc)=MEANS is TRUE

NOTE: There were 22 observations read from the data set SASUSER.MOVIES.

NOTE: PROCEDURE MEANS used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

MLOGIC(STATSPROC): Ending execution.

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 8

MPRINT and Generated SAS Code
The MPRINT option is an effective debugging technique to display the SAS statements that have been generated by macro
execution. The results of the MPRINT option are written to the SAS log. The following example code illustrates using the
MPRINT option.

SAS Code

OPTIONS MPRINT;

%MACRO statsproc (PROC, DSN);

 %IF %UPCASE(&proc)=MEANS %THEN %DO;

 PROC MEANS DATA=&dsn;

 RUN;

 %END;

 %ELSE %DO;

 PROC UNIVARIATE DATA=&dsn;

 RUN;

 %END;

%MEND statsproc;

%statsproc (means, SASUSER.movies);

SAS Log Results

1 OPTIONS MPRINT;

2 %MACRO statsproc (PROC, DSN);

3 %IF %UPCASE(&proc)=MEANS %THEN %DO;

4 PROC MEANS DATA=&dsn; RUN;

5 %END;

6 %ELSE %DO;

7 PROC UNIVARIATE DATA=&dsn; RUN;

8 %END;

9 %MEND statsproc;

10 %statsproc (means, SASUSER.movies);

MPRINT(STATSPROC): PROC MEANS DATA=SASUSER.movies;

MPRINT(STATSPROC): RUN;

NOTE: There were 22 observations read from the data set SASUSER.MOVIES.

NOTE: PROCEDURE MEANS used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 seconds.

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 9

MFILE and Finding Macro Errors
The MFILE option is an effective debugging technique that helps to display the exact location of the macro error. The results of
the MFILE option are written to the SAS log. The following example code illustrates using the MFILE option for debugging
purposes.

SAS Code

OPTIONS MFILE;

%MACRO statsproc (PROC, DSN);

 %IF %UPCASE(&proc)=MEANS %THEN %DO;

 PROC MEANS DATA=&dsn;

 RUN;

 %END;

 %ELSE %DO;

 PROC UNIVARIATE DATA=&dsn;

 RUN;

 %END;

%MEND statsproc;

%statsproc (means, SASUSER.movies);

SAS Log Results

24 OPTIONS MFILE;

25 %MACRO statsproc (PROC, DSN);

26 %IF %UPCASE(&proc)=MEANS %THEN %DO;

27 PROC MEANS DATA=&dsn;

28 RUN;

29 %END;

30 %ELSE %DO;

31 PROC UNIVARIATE DATA=&dsn;

32 RUN;

33 %MEND statsproc;

ERROR: There were 1 unclosed %DO statements. The macro STATSPROC will not be

compiled.

ERROR: A dummy macro will be compiled.

34 %statsproc (means, SASUSER.movies);

 -

 180

WARNING: Apparent invocation of macro STATSPROC not resolved.

ERROR 180-322: Statement is not valid or it is used out of proper order.

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 10

MLOGICNEST and the Nesting Sequence of Macros
The MLOGICNEST option is an effective way to display the nesting sequence of macros. Used with the MLOGIC option, the
results of the MLOGICNEST option display the outer-most macro to the inner-most macro to better understand the macro
nesting structured. The macro code and SAS log are illustrated in the example, below.

SAS Code

OPTIONS MLOGIC MLOGICNEST;

%MACRO means;

 PROC MEANS DATA=&dsn;

 RUN;

 %DONE;

%MEND means;

%MACRO univariate;

 PROC UNIVARIATE DATA=&dsn;

 RUN;

 %DONE;

%MEND univariate;

%MACRO done;

 %put PROC is finished.;

%MEND done;

%MACRO statsproc (PROC, DSN);

 %IF %UPCASE(&proc)=MEANS %THEN %DO;

 %MEANS;

 %END;

 %ELSE %DO;

 %UNIVARIATE;

 %END;

%MEND statsproc;

%statsproc (means, SASUSER.movies);

SAS Log Results

71 OPTIONS MLOGIC MLOGICNEST;

72 %MACRO means;

73 PROC MEANS DATA=&dsn;

74 RUN;

75 %DONE;

76 %MEND means;

77 %MACRO univariate;

78 PROC UNIVARIATE DATA=&dsn;

79 RUN;

80 %DONE;

81 %MEND univariate;

82 %MACRO done;

83 %put PROC is finished.;

84 %MEND done;

85 %MACRO statsproc (PROC, DSN);

86 %IF %UPCASE(&proc)=MEANS %THEN %DO;

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 11

87 %MEANS;

88 %END;

89 %ELSE %DO;

90 %UNIVARIATE;

91 %END;

92 %MEND statsproc;

93 %statsproc (means, SASUSER.movies);

MLOGIC(STATSPROC): Beginning execution.

MLOGIC(STATSPROC): Parameter PROC has value means

MLOGIC(STATSPROC): Parameter DSN has value SASUSER.movies

MLOGIC(STATSPROC): %IF condition %UPCASE(&proc)=MEANS is TRUE

MLOGIC(STATSPROC.MEANS): Beginning execution.

NOTE: Writing HTML Body file: sashtml2.htm

NOTE: There were 22 observations read from the data set SASUSER.MOVIES.

NOTE: PROCEDURE MEANS used (Total process time):

 real time 0.68 seconds

 cpu time 0.43 seconds

MLOGIC(STATSPROC.MEANS.DONE): Beginning execution.

MLOGIC(STATSPROC.MEANS.DONE): %PUT PROC is finished.

PROC is finished.

MLOGIC(STATSPROC.MEANS.DONE): Ending execution.

MLOGIC(STATSPROC.MEANS): Ending execution.

MLOGIC(STATSPROC): Ending execution.

Debugging with Google Search

As a SAS programmer, I’ve used an assortment of debugging techniques with varying degrees of success. A debugging technique
that I’ve used more often than not is to use the power of Google® search. By copying an error message from the SAS Log and
pasting it into the Google search box, the likelihood of finding a satisfactory solution to many, if not most, of the errors
produced by errant SAS programs increases significantly. The following example illustrates using Google Search to find results
related to “sas error message variable is uninitialized.”

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 12

Conclusion

The focus of this paper has been to understand the various types of program errors along with their causes, in order to achieve
greater success in investigating and identifying program errors before and when they occur. Various strategies and techniques
were illustrated to debug SAS program errors and warnings, including using system options to debug DATA and PROC step code,
system options to debug macro code, return codes to assist the debugging process, and a brief introduction of using Google
Search to understand, fix, and resolve errors and warnings. The expectations are to improve the likelihood of preventing, fixing
and/or resolving program errors allowing code to work as intended.

References

Brin, Sergey and Lawrence Page (1998), “The Anatomy of a Large-Scale Hypertextual Web Search Engine,” Computer Science
Department, Stanford University, Stanford, California, http://infolab.stanford.edu/~backrub/google.html.

Burlew, M., Debugging SAS® Programs: A Handbook of Tools and Techniques, SAS Publishing.

Delwiche, Lora d. and Susan J. Slaughter (2003); “Errors, Warnings and Notes (Oh My) A Practical Guide to Debugging SAS®
Programs,” Proceedings of the 2003 SAS Users Group International (SUGI) Conference.

DiIorio, Frank., The SAS(r) Debugging Primer, http://www2.sas.com/proceedings/sugi26/p054-26.pdf.

Fahmy, Adel (2010); “Logging the Log Magic: Pulling the Rabbit out of the Hat,” Proceedings of the 2010 PharmaSUG
Conference; Benchworkzz, Austin, Texas, USA.

Lafler, Kirk Paul (2016); “SAS® Debugging 101,” Proceedings of the 2016 SAS Global Forum (SGF) Conference; Software
Intelligence Corporation, Spring Valley, California, USA.

Lafler, Kirk Paul (2015); “SAS® Debugging 101,” Proceedings of the 2015 SAS Global Forum (SGF) Conference; Software
Intelligence Corporation, Spring Valley, California, USA.

Lafler, Kirk Paul (2014); “SAS® Debugging 101,” Proceedings of the 2014 SouthEast SAS Users Group (SESUG) Conference;
Software Intelligence Corporation, Spring Valley, California, USA.

http://infolab.stanford.edu/~backrub/google.html
http://www2.sas.com/proceedings/sugi26/p054-26.pdf

SAS
®
 Debugging 101, Continued PharmaSUG 2017

Page 13

Lafler, Kirk Paul (2014); “SAS® Debugging 101,” Proceedings of the 2014 MidWest SAS Users Group (MWSUG) Conference;
Software Intelligence Corporation, Spring Valley, California, USA.

Lafler, Kirk Paul (2014); “Strategies and Techniques for Debugging SAS® Program Errors and Warnings,” Proceedings of the 2014
PharmaSUG Conference; Software Intelligence Corporation, Spring Valley, California, USA.

Lafler, Kirk Paul (2013); “Strategies and Techniques for Debugging SAS® Program Errors and Warnings,” Proceedings of the 2013
MidWest SAS Users Group (MWSUG) Conference; Software Intelligence Corporation, Spring Valley, California, USA.

Russell, Kevin and Russ Tyndall (2010); “SAS® System Options: The True Heroes of Macro Debugging,” Proceedings of the 2010
NorthEast SAS Users Group (NESUG) Conference; SAS Institute Inc., Cary, North Carolina, USA.

SAS Institute Inc., SAS® Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

Staum, R.; “To Err is Human; to Debug, Devine”, http://www2.sas.com/proceedings/sugi27/p064-27.pdf.

Wicklin, Rick (2010); “How to Find and Fix Programming Errors”, http://blogs.sas.com/content/iml/2010/12/13/how-to-find-
and-fix-programming-errors.html .

Acknowledgments

The author thanks William E. Benjamin Jr. and Frank Canale, Techniques & Tutorials Section Co-Chairs, for accepting my
abstract and paper; Rob Howard, PharmaSUG 2017 Academic Chair and Ellen Brookstein, PharmaSUG 2017 Operations Chair;
the PharmaSUG Executive Board, and the PharmaSUG 2017 Conference Committee for organizing and supporting a great
conference!

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

About the Author

Kirk Paul Lafler is an entrepreneur, consultant and founder of Software Intelligence Corporation, and has been using SAS since
1979. Kirk is a SAS Certified Professional, provider of IT consulting services, professor at UC San Diego Extension and educator
to SAS users around the world, mentor, and emeritus sasCommunity.org Advisory Board member. As the author of six books
including Google® Search Complete (Odyssey Press. 2014) and PROC SQL: Beyond the Basics Using SAS, Second Edition (SAS
Press. 2013); Kirk has written hundreds of papers and articles; been an Invited speaker and trainer at hundreds of SAS
International, regional, special-interest, local, and in-house user group conferences and meetings; and is the recipient of 25
“Best” contributed paper, hands-on workshop (HOW), and poster awards.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Senior SAS® Consultant, Application Developer, Data Analyst, Educator and Author

E-mail: KirkLafler@cs.com
LinkedIn: http://www.linkedin.com/in/KirkPaulLafler

Twitter: @sasNerd

http://www2.sas.com/proceedings/sugi27/p064-27.pdf
http://blogs.sas.com/content/iml/2010/12/13/how-to-find-and-fix-programming-errors.html
http://blogs.sas.com/content/iml/2010/12/13/how-to-find-and-fix-programming-errors.html
mailto:KirkLafler@cs.com
http://www.linkedin.com/in/KirkPaulLafler

