PharmaSUG 2017 - Paper TT04

SAS ® Studio: We Program

Jim Box, SAS Institute, Cary, North Carolina
Matt Becker, SAS Institute, Cary, North Carolina

ABSTRACT

Have you investigated SAS® Studio? From the 1980s into the 2010s | used SAS Display Manager (PC SAS front
end) for all of my clinical table, listing, figure and database program development. | became accustomed to the
program editor, log window, output window and being able to view my working and saved datasets via this
programming IDE. | resisted new coding editors through the years UNTIL SAS® Studio came to fruition.

SAS Studio is a web-based application that accesses your SAS environment — cloud, local server(s), grid or PC.
With the environment, you can access your data libraries, files and existing programs ... and write new programs!
Additionally, SAS Studio contains pre-defined tasks that generate code for you. Have a specific set of clinical
programming code you always use? Snippets! Want to define a personal or global task for AE table summarization?
Define it within SAS Studio!

INTRODUCTION

SAS Studio is the web browser development interface that allows you to access your data and run code from any
machine, anywhere. It's designed with programmers in mind, and has many features that make programming more
efficient that we will discuss in this paper. Highlights for clinical programmers are: (1) a dataset viewer that allows
you to hide columns, perform elaborate filters, and save the code that executed the filter, (2) a coding editor with
auto-formatting, logs that link directly to the errors, and a submission history to roll-back submitted code, (3) a code
shippet system that comes with several existing code blocks and allows you to store and share your own, and (4) a
task system that generates SAS code for you based on helpful wizards.

SAS Studio was first released in March 2014, and is included in installs of SAS version 9.4. It can run locally, with a
URL that points to your local SAS install, or users can access a server (or the grid manager) by nearly any web
browser from any operating system by using their server credentials. SAS Studio can also be integrated with a
metadata server, allowing granular permissions for data access and for metadata defined library access.

DATASET BROWSING

Let’s start by looking at Studio’s dataset browser (Figure 1). In the left-hand panel, you can browse libraries like you
would in a file system. When you select a library, it expands to show you all of the datasets. When you expand the
dataset, you see all of the variables.

Once you double click to open a dataset, a new tab will appear showing the Column information and the data table.
In the column information panel, you can uncheck columns to remove them from the dataset view, and you can view
the column metadata for a selected column (label, name, length, type, format, and informat). If you prefer, you can
collapse the column information panel to give yourself more viewing area for the data.

When the dataset is open, the first 100 rows will be visible on the screen, and you will be able to page through the
rest of the data in pages of 100 records. This is done to speed up the loading of data if you are accessing a server.
The total number of rows and columns is always displayed. You can also easily apply filters to the data view, either
by clicking the filter funnel and writing valid SAS expressions or by right-clicking a column name and adding it to the
filter. You can filter multiple columns very easily. The number of filtered rows will be displayed, as well as
information about the filter. Studio will keep this filter on the data until you clear it, even if you exit the Studio session.
You can also view the SQL query that was used to create the filtered view, in case you want to save the code to
apply to a program.

SAS ® Studio: We Program, continued

SASGJ Studio FILTER SAS Programmer

DETAILS
» Files and Folders [Program1 x || B SDTM.AE x
p Tasks view: Columnnames ~ | E3 B W B Y Filter:{ AESEV="LIFE THREATENING" OR AESEV="SEVERE") 3
» Snippets
Columns @ ITotaI rows: 101 Total columns: 26 Filtered rows: 13 Rows 1-13
4 Libraries
= selectall USUBJID v AESEQ AESPID AEOCCUR AETERM
&g o1 B O 4 STUDYID e XMB111-521-8058 14 2 v ANEMIA
4 i s0IM . £ DOMAIN 2 14 1 ¥ ANEMIA
gz R ¢ 4 USUBJID 3 XMB111-521-2049 14 3 ¥ GRAFT LOSS
[AE ¢ {y AESEQ 4 KMB111-521-8049 14 2 ¥ GRAFT INFECTION; MSSA.
A AEACN 5 XMB111-521-8049 14 1 ¥ ANEMIA
£ AEADDTRT - & ¥MB111-521-8012 14 6 ¥ CANDIDEMIA
£ AEADDYN - 7 XMB111-521-8012 14 5 ¥ AMEMIA
& AEBODSYS - 8 XMB111-521-8012 14 1 ¥ BACTEREMIA
o 9 XMB111-521-8012 14 g ¥ PURULENT DRAINAGE OF LEFT THU
& mECAT 7 { AECAT
& AECONTST 10 XMB111-521-8005 14 1 ¥ ANEMIA
) ¥ {y AEBODSYS (11 XMB111-521-2005 14 4 v BACTEREMIA
4 AEDECOD 7 4 AESER ST XMB111-521-8004 14 1 Y ANEMIA
& AEENDTC = 13 XMB111-511-8052 14 1 N PAIN RELATED TO BURN INJURY
@ AEEnDy Property Value
& AEENRF Label Serious Event
Mame AESER
£ AEHAYN
B AEOCCUR Length 1
) Type Char
AEQUT
4 Format 51,
& AL o fiformat COLUMN
A ereco METADATA
p File Shortcuts '

Figure 1. Library and Dataset Browser

CODE EDITOR

The code editor is where you will spend most of your time, and there are some very nice features in Studio to make
programming easier. Figure 2 shows the code editor. Note that the code, log and results windows are part of a
tabbed display system, making it very easy to switch between them. If you have the screen real estate, you can also
separate the tabs and view two in the same window. The code uses the same syntax highlighting as the Windows
Display Manager. In Figure 2, I've called out one of my favorite features — the code formatting button. As
programmers, we know that properly formatted code is much easier to read and understand, but being busy means
we don’t always take the time to properly format the code. SAS Studio will do that for you at the press of a button, as
you can see in Figure 3.

SAS ® Studio: We Program, continued

[# *Program 1 % || [£} "Program2 %

I cope T SRR | TABBED CODE & OUTPUT

F HR O B & W (Les |[® % bW E

1le .

17

18 ** Computing crossing polints *%; Fggrgé-r
19 ** Skip for class presentation **;

20 ** Set two normal density functions equal then solve for X **%;

21

Z2Z2data _null ;
23 file print;

24 mul=3; mul2=2; s1=1*1; sZ=ssigmal¥ssigmaZ; **(macro has sigma, ne=d variance heres) **;

25 c=mul*mul/sl-mu2*mu2/s2 + log(sl/sZ);

26 b=2*mu2/s2-2*mul/sl; a=1/sl - 1/s2;

27 det=b*b-4*%a*c; put a b c det;

81if s1=s52 then do; rootl={mul#mul)/2; root? = rootl; rootl2Rh=.; end;
28 else do;

30 rootl=(-b+sagrt (det))/ (2*%a) ;

root2 = (-b-sgrt(dst))/(2%a); rootZZ = rootZ; end;
put "Roots: " rootl rootZ;

call symput ("rootl™,rootl);

call symput ("root2",rootl);

call symput ("root2A", rootl2d) ;

run; ouit;

[s T 3 TR S O o I

proc sgplot;

series X=X Y=Y / group=color lineattrs=(thickness=2);
refline srootl arootl/axis=i;

Title "Crossing point (s) &rootl sroot2i™;

43 run; guit; |

L Y L ¥ 1 W T 1S T S T W W B WA

b o wom

-

Line 43, Column 12

Figure 2. Code Editor with Unformatted Code
[# *Program 1 % || [83 *Program2 %

CODE LOG RESULTS

& H B E & 9 B er (@ % bMoOoBE Y
26data null ;

27 file print:

28 mul=3;

29 muZ=2;

30 gl=1+%1;

31 s2=&sigmaZ¥*asigmal;

32 *% (macro has sigma, need variance here) *¥*;
33 cemul*mul/sl-muZ*muZ/s2 + log(sl/sZ2);
34 b=2*mul /s2-2*mul/sl;

35 a=1/s1 - 1/s2;

36 det=b*b-4*a*c;

37 put a b c det;

38

39 if s51=s52 then

40 do;

41 rootl=({mul+mu2)/2;

42 rootZ=rootl;

43 rootZh=.;

44 end;

45 elze

46 do;

47 rootl=(-b+sgrt (det))/ (2%a);
] rootZ=(-b-sgrt (det))/ (2%a);

45 rootZBh=rootZ;

50 end;

51 put "Roots: " rootl rootl;

52 call symput("rootl™, rootl):

53 call svmput("root2"™, rootl):

-

Line 65, Column &

Figure 3. Code Editor with Auto-Formatted Code

SAS ® Studio: We Program, continued

Figure 4 shows some code that has been submitted and has returned an error. Before we get to checking the log, |
wanted to point out that when writing the code, | can drag variable names from the library panel directly into the code
editor, so | don’t have to worry about spelling the variables correctly. As you'll see with the error message, | should
have done that with the dataset name, too. Note that the red x in the program tab tells me that | have an error. To

investigate, | just need to click on the Log tab.

SAS® Studio

SAS Programmer ~

ERROR INDICATOR

» Files and Folders ® ‘Program1 x | [£ *Program2 x

» Tasks CODE LOG RESULTS

} Snippets Z - HE B B & ©

1PROC FREQ DATA=SDTM.RE2;

2 TABLE AESEV;

5 4.3 ZRUN;
-
£\ AEADDTRT
£\ AEADDYN
£\ AEBODSYS
& AECAT
£\ AECONTRT
£\ AEDECOD

4 Libraries

£\ AEENDTC
® AEENDY
£\ AEENRF

DRAG VARIABLE NAMES INTO
YOUR CODE WITHOUT TYPING

£ AEHAYN

£\ AEOCCUR
£ AEQUT
£ AEREL
A AESEQ
£ AESER
A AESEV
A AESPID -

p File Shortcuts

Figure 4. Code Editor with Error

Line 3, Column 5

Figure 5 shows what happens when | view the log. The top part of the display, in the grey box, gives me a count of
errors, warnings and notes. When | expand the errors section, | see a list of all of the error messages. When | click
on the error message in that section, | am linked directly to the part of the log where the error shows up. No more

CTRL-F to find the Errors!

SAS ® Studio: We Program, continued

® *Program1l X Iz-'.' *Program2 X
CODE

BB & A4

RESULTS

4 Errors, Warnings, Notes
4@® Errors (2) SUMMARY OF ERRORS, HYPER

: : LINKED TO CODE
ERROR: File SDTM.AE2.DATA does not exist.

ERROR: No data set open to look up variables.

3 Warnings
I @ Motes (11)
a7 | SVG_MODE="INLINE' CSS_PREFIX='.ods_
a7 | BODY_ID='div_a®3c398e-88df-4922-8588-2bd51e19f@8b");
MOTE: Writing HTMLS(WEB) Body file: _HTMLOUT
48 ODS RTF (ID=WEB) STYLE=Rtf FILE=_RJ}FOUT;
MOTE: Writing RTF Body file: _RTFOUT
49 0DS PDF (ID=WEB) STYLE=Pearl FILES PDFOUT;
MOTE: Writing ODS PDF(WEB) output to DISK deffination "_PDFOUT",
5e RGRAPHINIT;
51 OPTIONS FIRSTOBS=1;
52 OPTIONS OBS=MAX;
53 OFTIONS DTRESET DATE NUMBER NOT
54 OPTIONS NOSYNTAXCHECK;
55
56 PROC FREQ DATA = SDTM.AEZ2; TAB AESEV ; RUN ;

ERROR: File SDTM.AE2.DATA does not exist.

Figure 5. Log Viewer

3c398e-88df-4922-8582-2bd51e19f08b "

printer "PDF".

Another handy feature is the submission history button (Figure 6). Studio keeps a record of every time you submit
code during a session, and you can call up the previous sessions. Make some changes to the code and realize you
liked it better on the previous submission? Go to the submission history and call up a previous run. It will open in a
new program tab as a read-only file and you can cut and paste the changes you want into your current program.

Note that this history will clear out when you close the Studio session.

[#3 “Program 1 x
CODE LOG RESULTS
4 - HBE s B & 9 i e O
1p| (1) Aug3,2016,%:02:10AM M.AE; table AESEV: run:
(2) Aug3,2016, %:02:17 AM
(3) Aug3,2016,9:02:23 AM

Figure 6. Submission History

7|
Il

[}
i

SAS ® Studio: We Program, continued

CODE SNIPPETS

If you are like me, somewhere (or maybe several places) you have a document with some examples of cool or really
useful code you have written and want to be able to go back to and use again. Once you get more than just a few of
these code blocks, it can get really hard to manage them. SAS Studio has a built in way to manage these code
shippets. It comes with several well documented snippets that cover things like importing and exporting files, creating
graphs, writing macros and even IML functions. As Figure 7 shows, all you have to do is drag a snippet over to your
programming window, and you add the code to your existing program. In the Import CSV example, all you have to do
is put in the file name, change the output dataset, and remove the section about the Unix filename, and you are all
set.

In addition to the included snippets, you can create your own collection, so you always have your coding toolset with
you no matter where you are accessing the server from. You can also set up shared locations for snippets for study
specific ones to share across the team (like the program header, for example).

} Files and Folders [£ *Program 1 %
p Tasks and Utilities CODE LOG RESULTS
4 Snippets & H & E & [® % kM @ E I
1
[* [%] 2
4 g My Snippets i/“’ FOR CSV Files uploaded from Windows **/
[Es Cleanup S FILENAME CSV "<Your CSV File>" TERMSTR=CRLF;
[EDA 6
7./*% FOR CSV Files uploaded from Unix/MacQ§ **
[Header E/ F s uploa from Unix/Ma /
[E; Library Contents 9 FILENAME CSV "<Your CSV File>" TERMSTR=LF;
4 @8 snippets 10
b8 Catel 11 /%% Import the CSV file. **/
selogs DRAG AND 12
8 pata DROP TO 13 PROC IMPORT
& 0s2 code PROGRAM i ¢

5 DS2 Package
[E; os2 Thread
[E; Generate CSV File

19 /** Print the results. **/

[E; Generate PowerPoint Slide 20

B Generate XML File 21 PROC PRINT DATA=WORK.MYCSV; RUN;
E] (M
22
[55 Import csV File 23 /%% Unassign the file reference. *%/
3 import XLSX File 24

25 FILENAME C8V;

[5; simulate Linear Regression Data 76 ‘

=3 Simulate One-Way ANOVA Data
3 ¥
b @8 Descriptive -
p Libraries

p File Shortcuts Line 26, Column 1

Figure 7. Code Snippets

TASKS

SAS Studio also comes equipped with pre-defined tasks to help you generate code. These are very helpful when it
comes to using procedures and methods you are unfamiliar with. The included tasks cover areas such as data
summarization, graphing, probability, statistics, high-performance statistics, power and sample size, multivariate
analysis, econometrics, forecasting, statistical process control, and data mining. Let's look at a graphing one as an
example.

Figure 8 shows the task for building a bar chart. In the settings panel, you select the dataset to use from a drop
down, and this allows you to select the different variables. In the Options tab, you can set the headers and footers,
and specify data labels. While you are making your selections, code is generated in the code window. When you
submit the code, the results are presented as in Figure 9. Note that once you have the graphical output, you can
easily save it out in one of several formats.

Tasks are an excellent way to learn new procedures or options. Once you have the output working the way you
want, you can just cut and paste the automatically generated code into your own program.

SAS ® Studio: We Program, continued

SAS Programmer

» Files and Folders

[Program1 x

Bar Chart X

4 Tasks Settings | Code/Results split 2 H B 2 Ellog [code

- B OPTIONS NFORMATION CODE LOG RESULTS
[Characterize Data 4 DATA S | = ® | B Edit
™ Describe Missing Data 1>
& e SDTM.AE - B P
B st Data) 7 3 * Task code generated by SAS Studic 3.4
£] Transpose Data » WHERE CLAUSE FILTER 4
£5 stack/Split Columns 4 ROLES 5! * GCenerated on '8/2/16, 2:28 PM'

) 6 * Generated by 'Jjimbox'
£] Filter Data ’Categoryvariabte: it item) 7 % Genserated on sserver 'LTA3IEH.NA.SAS.COM'
£§ select Random Sample 8. * Generated on SAS platform 'X64_7PRO WIN'
£ AESEV - . e AT o
£ Partition Data 9 * Generated on SAS version '9.04.01M3P06242
= ° + 10: * Generated on browser 'Mozilla/5.0 (Window
17 Sort Data Response variable: (1 jtem 11 * Generated on - post
% Rank Data ® 12; CODE AUTOMATICALLY
13 */ GENERATED
£J Transform Data : Group variable: /1 izem + 14
£] standardize Data ¥ LY /*——Set output size——*/
4 8 Graph 16 nds graphics / resset imagsmap;
URL variable; (1 it=m) + '

[l Bar Chart
liz Bar-Line Chart

18/ *--8GPLOT proc statement--*/
Z:Y 1% proc sgplot data=SDTM.ZE;

20 /*——Bar chart settings——*/
§¥ Box Plot - (1 itern + : . — 1 f
fbar SEV rame="Bar"';
1] BY variable: (1 iter 21 vbar AESEV / datalabel name='Bar';
| Bubble Plat (3 22
Lub, Histozram 23 /*——Response Axis——%/
- » DIRECTION 24 yaxis grid;
Al Line Chart - 5 .
lef Line char + crour Lavour | SPECIFYVALUES || 25 run;
» Snippets AND DETAILS =
» STATISTICS 27 0ds graphics / reset;
p Libraries D

Line 1, Column 1

p File Shortcuts

Figure 8. Using Built-In Tasks

SAS Programmer ~

» Files and Folders [# Program 1 % || [l *Bar chart %

4 Tasks Code/Results 2 HEBE Ellog [code

L]
ey

Settings Split

- B O cope
[Characterize Data - B R R B 7
Ry Describe Missing Data
BB List Data

£] Transpose Data

£§ stack/Split Columns
7 Filter Data

£§ select Random Sample
£7 Partition Data

13 Sort Data

LOG RESULTS

SEND
OUTPUT
TO HTWIL,
PDF OR

n RTF

2% Rank Data

£§ Transform Data

Frequency

£] standardize Data 20
4 @8 Graph

[l Bar chart

lizd Bar-Line Chart

|E# Box Plot

|2 Bubble Plot

L, Histogram

| Line Chart - 0
» Snippets

LIFE THREATENING MILD MODERATE

AE Severity

SEVERE

» Libraries

p File Shortcuts

Figure 9. Task Results

SAS ® Studio: We Program, continued

You can also create your own tasks to do just about anything. You just have to set up the options panel using code
that is very much like XML to capture the inputs you want. You can then treat those input as essentially macro
variables to pass into your code for execution. Studio comes equipped with simple and advanced task templates for
you to see how to edit the options.

SAS Programmer ~

IE'.' *Program 1 1‘|'. Odds Ratios and Probability

ES - * W iR ® B X

i1z -
20

21 ="ztring" nams="CptionsTab">0PTIONS</Option>

22 string" nam cbservationsGroup">0dds Ratio</Cptioni

3 string" name="infoText">Provide an Cdds Ratioc to se= a Prob.
24 es="0,15" defaultValues="1.5" inputType="numbertext™ minVal-
26
27 </Metadata>

g8
29 <UIx
30
31 <Container option="0OptionsTab">
32 <Group =n="true" option="observationsGroup">
33 < ionItem option="infoText"/>
34 OptionItem cption="0ddsRatio"/>
35 </Group>
36
37 </Containsr>
38 </UI>
39
40 <CodeTer
41 <!
4z
43

44 ¥macro odds_prob (orat);

S data probs;

46do 1 = 0.001 to .%5% by .001;

47 p A = I;

8 odds R =p A/ (1 -p&B);

4% odds B = odds & / &orat; -
U 3
My Tasks/Example Tasks/Odds Ratios and Probability.ctm Line 1, Column 1

Figure 20. Task Editor

CONCLUSION

SAS Studio is a tool designed specifically to make writing programs easier. Manage your snippets, use tasks to help
generate code, and access your SAS environment from any computer. Once you try it out and see how easy it is to
write and format your code, you'll wonder how you programmed without it.

SAS ® Studio: We Program, continued

RECOMMENDED READING

SAS® Studio Video Library: http://support.sas.com/training/tutorial/studio/index.html

Teach Them to Fish—How to Use Tasks in SAS® Studio to Enable Coworkers to Run Your Reports Themselves
http://support.sas.com/resources/papers/proceedings15/SAS1831-2015.pdf

SAS® Studio Knowledge Base: http://support.sas.com/software/products/sasstudio/#s1=2

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jim Box

SAS Institute

100 SAS Campus Drive
Cary, NC 27513
Jim.Box@sas.com

Matt Becker

SAS Institute

100 SAS Campus Drive
Cary, NC 27513
Matt.Becker@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/resources/papers/proceedings15/SAS1831-2015.pdf
mailto:Jim.Box@sas.com

