
1 

PharmaSUG 2017 Paper TT06 

Check Please: An Automated Approach to Log Checking 
Richann Watson, Experis  

ABSTRACT  
In the pharmaceutical industry, we find ourselves having to re-run our programs repeatedly for each 
deliverable. These programs can be run individually in an interactive SAS® session, which enables us to 
review the logs as we execute the programs. We could run the individual programs in batch and open 
each individual log to review for unwanted log messages, such as ERROR, WARNING, uninitialized, have 
been converted to, and so on. Both of these approaches are fine if there are only a handful of programs 
to execute. But what do you do if you have hundreds of programs that need to be re-run? Do you want to 
open every single one of the programs and search for unwanted messages? This manual approach could 
take hours and is prone to accidental oversight. This paper discusses a macro that searches a specified 
directory and checks either all the logs in the directory, only logs with a specific naming convention, or 
only the files listed. The macro then produces a report that lists all the files checked and indicates 
whether issues were found. 

INTRODUCTION  
Checking the logs for unwanted messages is one of the first steps in ensuring that a program was 
executed successfully.  When running the program interactively this can be easily done by manually 
reviewing the log in the interactive session.  However, if you execute the program in batch mode or from a 
‘driver’ program and the logs are saved as individual files, then you need to open the log using SAS 
Universal Viewer or some other type of text editor in order to review the log. Regardless of the method 
you use, the log still needs to be perused in order to find these pesky messages. 

TYPES OF LOG MESSAGES 
There are a variety of log messages that may cause problems in the program and these messages need 
to be investigated.  Some of the more common messages include: 

• ERROR 

• WARNING 

• UNINITIALIZED 

• MORE THAN ONE DATA SET WITH REPEATS OF BY 

• VALUES HAVE BEEN CONVERTED 

• MISSING VALUES WERE GENERATED AS A RESULT 

• INVALID DATA 

• AT LEAST ONE W.D FORMAT TOO SMALL 

How these log messages are to be fixed is dependent on the data and project needs.  ‘ERROR’ 
messages should always be corrected since this can affect the output.  Additionally, the ‘MORE THAN 
ONE DATA SET WITH REPEATS OF BY’ should be fixed so that a many-to-many merge is not done in a 
data step. Some other messages may not have an effect on the data and may not be as critical to fix; 
however, that is dependent on what the client deems as critical. There are some clients that do not wish 
to see any unwanted log messages and request that they all be fixed. 

In addition to the common messages that you may look for in the logs, the client may have a more 
extensive list of messages that they may not want to appear.  Other types of log messages that may 
cause issues are: 

• ORDERING BY AN ITEM THAT DOESN’T APPEAR IN 



Check Please: An Automated Approach to Log Checking, continued 

 

2 

• OUTSIDE THE AXIS RANGE 

• RETURNING PREMATURELY 

• QUERY DATA 

• QUESTIONABLE  

OTHER LOG MESSAGES TO CONSIDER 
When determining the list of possible unwanted log messages to build into the macro (provided in 
Appendix A), you may need to consider other types of messages that may cause the macro to flag the 
program as containing unwanted messages.  Additionally, if you are aware of specific types of log 
messages that will trigger an issue to be reported, then it would be wise to build into the macro the types 
of messages that are allowed. 

For example, when a SETINIT may be close to the expiration date, the log will have several types of 
WARNING messages. Since these WARNING messages do not have an impact on the actual execution 
of the program, then logic can be incorporated to look for these types of messages. 

• UNABLE TO COPY SASUSER 

• BASE PRODUCT PRODUCT 

• EXPIRE WITHIN 

• BASE SAS SOFTWARE …  EXPIRING SOON 

• UPCOMING EXPIRATION 

• SCHEDULED TO EXPIRE 

• SETINIT TO OBTAIN MORE INFO 

LOG CHECKING PROBLEM 
With all the various types of messages that need to be checked during the log review, one can plainly see 
how quickly this process of checks and fixes can become tedious and burdensome.  This manual 
approach to reviewing these logs can lead to several other concerns. 

1. It is easy to overlook a particular message in a log while scrolling through the log. 

2. When searching for a particular message, it is easy to mistype the message or get the casing 
incorrect and thus overlooking the unwanted message. 

3. If there are a lot of logs to check, it is easy to overlook a log altogether. 

4. The programmer may be short on time and may just make the assumption that the program ran clean 
the last time and there is an output produced so it should still be fine. 

THE SOLUTION - CHECKLOGS 
Rather than leave the log checking to ‘chance’ and human error an automated alternative can be 
implemented through use of the CHECKLOGS macro (Appendix A).  The macro will parse through each 
of the indicated logs in a specified directory looking for the unwanted messages, and then produce a 
report summarizing the findings.   

MACRO PARAMETERS 
The macro has five input parameters, with only one being required: 

• ‘loc’ – location of where the log files reside. 

• ‘fnm’ – optional parameter that indicates which types of files to look at; if more than one type of file is 
specified then it should be separated by a space. 



Check Please: An Automated Approach to Log Checking, continued 

 

3 

• ‘out’ – optional parameter that indicates the name of the output report file that will be produced. 

• ‘loc2’ – optional parameter that indicates the location of where the report should be saved. 

• ‘delm’ – optional parameter that indicates what delimiter is used in the ‘fnm’ parameter. 

For the optional parameter ‘fnm’, the macro will build a where clause that will be used to exclusively 
extract the logs of interest.  For example, if all your logs are stored in the same folder and you are only 
concerned with viewing the logs for the tables and figures, and all the tables and figures logs have a 
standard naming convention (e.g., ‘t_#_#_#.log’ for tables and ‘f_#_#_#.log’ for figures where ‘#_#_#’ 
represents the output number) then you can use the standard portion for each type separated by a 
delimiter such as ‘~’.  

fnm = t_~l_ 

Note that the building of the where clause does not care if the standard portion is a prefix or a suffix as 
long as there is a standard and that the standard  is not used for other log types.  So if the table logs had 
a naming convention of ‘xxxxx_t.log’ and the figure logs had a naming convention of ‘xxxxx_f.log’ where 
‘xxxxx’ represents the output name, then you can still use the standard portion for each type separated by 
a delimiter such as ‘~’. 

fnm = _t.~_l. 

If the ‘out’ parameter is not specified, then the file name for the report will default to ‘all_checklogs.rtf’.  
Ideally, if you are executing the macro to look at only specific types of files, then the name of the report 
should be specified so that the report is not overwritten when executed later for another file type. 

If the ‘loc2’ parameter is not specified, then the output location for the report will default to the location 
where the log files reside.  

If the ‘delm’ parameter is  not specified, then the delimiter defaults to ‘@’.  Note that this needs to match 
the delimiter that is used if ‘fnm’ is specified and more than one file name type is indicated in the ‘fnm’ 
macro parameter.  For example, above ‘fnm’ used a ‘~’ as a delimiter therefore ‘delm’ would need to be 
specified. Note that it is not ideal to use a space as a delimiter since the directory path and/or the file 
names could have spaces. 

 delm =~   

Table 1 illustrates some sample calls of the macro and what the expected outcome is.  Note that the 
samples in this paper are based off of the Windows environment.  However, the program will work with a 
Unix environment as well.  The user just needs to make sure the slashes in the ‘loc’ parameter are 
pointing in the correct direction.  

Sample Call Expected Outcome 
%checklogs(loc=C:\Users\user\Desktop\SGF\
Check Logs\Logs) 

• Check ALL the logs in the specified directory  
• Use default name “all_checklogs” for the report name. 

%checklogs(loc=C:\Users\user\Desktop\SGF\
Check Logs\Logs, out=all_output_logs) 

• Check ALL the logs in the specified directory  
• Use specified name”all_output_logs” for the report 

name. 
%checklogs(loc=C:\Users\user\Desktop\SGF\
Check Logs\Logs, fnm=table, 
out=Tables_Logs) 

• Check ONLY the logs that contain “table” in the file 
name  

• Use specified name “Table_Logs” for the report 
name. 

%checklogs(loc=C:\Users\user\Desktop\SGF\
Check Logs\Logs, out=Analysis Dataset and 
Tables Logs, fnm = ad@table) 

• Check ONLY the logs that contain “ad” OR “table” in 
the file name using the default delimiter “@” 

• Use specified name “Analysis Dataset and Tables 
Logs” for the report name. 

%checklogs(loc=C:\Users\user\Desktop\SGF\
Check Logs\Logs, out= Analysis Dataset 
and Tables Logs delm, fnm = ad~table, 
delm=~) 

• Check ONLY the logs that contain “ad” OR “table” in 
the file name  

• Use the specified delimiter ‘~’  
• Use specified name “Analysis Dataset and Tables 

Logs delm” for the report name. 
%checklogs(loc=C:\Users\user\Desktop\SGF\
Check Logs\Logs, 

• Check ONLY the logs that contain “table1” OR 
“table2” in the file name  



Check Please: An Automated Approach to Log Checking, continued 

 

4 

Sample Call Expected Outcome 
loc2=C:\Users\user\Desktop\SGF\Check 
Logs\Log Report, out=Tables 1 and 2 Logs 
delm, fnm = table1!table2, delm=!) 

• Use the specified delimiter ‘!’  
• Write the report to another location  
• Use the specified name “Tables 1 and 2 Logs delm” 

for the report name. 
Table 1 Sample CHECKLOG Calls and Expected Outcome 

NUTS AND BOLTS OF THE MACRO 
So how does this macro actually work?  There are a variety of steps in the macro and each step will be 
explained. 

Determining Working Environment 
The first thing the macro does is determine in what working environment the command is being executed.  
The macro is able to run in either Windows or Unix environment.  Depending on the environment, the 
macro will determine what form the pipe command should take and in which direction the slash in the 
path name should be pointing. 

During this initial part of the macro, the following two macro variables are set and will be used in the 
macro: 

• ppmcd – represents the pipe command 

• slash 

If the execution environment is Windows (i.e., &SYSSCP = WIN), then following macro variables are set 
as  
    %let ppcmd = %str(dir); 
    %let slash = \; 

If the execution environment is Unix (i.e., &SYSSCP = LIN X64), then following macro variables are set 
as  
    %let ppcmd = %str(ls -l); 
    %let slash = /; 

What Log Files Are Being Checked? 
If the ‘fnm’ input parameter is specified, the macro will then parse through each token in the parameter to 
build a where clause.  If there is more than one token in ‘fnm’, then the either the default delimiter or the 
the one specified in ‘delm’ parameter, will be used to parse ‘fnm’.  The where clause will use the SAS 
function INDEX to look for a specific value in the filename.  If no input parameter is specified, then the 
macro will check every log file in the specified directory.   

Using the sample calls in Table 1 the associated where clauses for each call are illustrated (see Table 2). 

Sample Call Where Clause Built 
%checklogs(loc=C:\Users\user\Desktop\SGF
\Check Logs\Logs) 

No where clause.  Macro will check all logs in the 
directory. 

%checklogs(loc=C:\Users\user\Desktop\SGF
\Check Logs\Logs, out=all_output_logs) 

No where clause.  Macro will check all logs in the 
directory. 

%checklogs(loc=C:\Users\user\Desktop\SGF
\Check Logs\Logs, fnm=table, 
out=Tables_Logs) 

where index(flog, “table”) 

%checklogs(loc=C:\Users\user\Desktop\SGF
\Check Logs\Logs, out=Analysis Dataset 
and Tables Logs, fnm = ad@table) 

where index(flog, “ad”) or index(flog, “table”) 

%checklogs(loc=C:\Users\user\Desktop\SGF
\Check Logs\Logs, out= Analysis Dataset 
and Tables Logs delm, fnm = ad~table, 
delm=~) 

where index(flog, “ad”) or index(flog, “table”) 



Check Please: An Automated Approach to Log Checking, continued 

 

5 

Sample Call Where Clause Built 
%checklogs(loc=C:\Users\user\Desktop\SGF
\Check Logs\Logs, 
loc2=C:\Users\user\Desktop\SGF\Check 
Logs\Log Report, out=Tables 1 and 2 Logs 
delm, fnm = table1!table2, delm=!) 

where index(flog, “table1”) or index(flog, “table2”) 

Table 2 Sample CHECKLOG Calls and Where Clause Built 

Extracting the Logs 
After the pipe command is built and the where clause is determined (if applicable) the program will bring 
in every file within the specified directory and create a data set.  This data set will only contain the logs 
files that are indicated by the where clause, in the event that a where clause is built.  Additionally, the 
name of the log, the date and time can be extracted from the various tokens in the filename.  When the 
pipe command reads in each file all the information for that file is captured on one line (one variable) and 
the data can be parsed to extract each component.   

Table 3 below illustrates how the filename would look if executed in a Windows environment and what the 
log, date and time are once they are extracted.  Then numtok indicates how many tokens are in the 
filename. This is used to determine if there are any spaces within the filename, so that the macro will 
correctly assign flog. 

filename flog ftim fdat numtok 
09/07/2016 03:00 AM 48,511 adpr.log adpr 7-Sep-16 3:00 AM 5 
09/19/2016 08:03 AM 76,849 adpsga.log adpsga 19-Sep-16 8:03 AM 5 
08/30/2016 05:43 AM 58,634 adsl.log adsl 30-Aug-16 5:43 AM 5 
08/28/2015 05:14 AM 20,028 AE.log AE 28-Aug-15 5:14 AM 5 
09/01/2015 04:41 AM 22,392 DA.log DA 1-Sep-15 4:41 AM 5 
08/26/2015 10:59 AM 19,734 dm.log dm 26-Aug-15 10:59 AM 5 
10/13/2016 08:49 AM 23,491 graph 1_1.log graph 1_1 13-Oct-16 8:49 AM 6 
10/13/2016 08:49 AM 11,934 graph 1_3.log graph 1_3 13-Oct-16 8:49 AM 6 
09/11/2015 08:06 AM 46,331 LB.log LB 11-Sep-15 8:06 AM 5 
10/17/2016 07:27 AM 24,652 table 3_1_1.log table 3_1_1 17-Oct-16 7:27 AM 6 
10/17/2016 07:28 AM 33,002 table 3_1_2.log table 3_1_2 17-Oct-16 7:28 AM 6 
09/28/2016 10:02 AM 45,680 table1-1.log table1-1 28-Sep-16 10:02 AM 5 
10/08/2015 08:21 AM 24,857 table1_2.log table1_2 8-Oct-15 8:21 AM 5 
10/05/2016 11:08 AM 91,155 table2.1.2.log table2.1.2 5-Oct-16 11:08 AM 5 
10/08/2015 08:21 AM 36,413 table3_2_1.log table3_2_1 8-Oct-15 8:21 AM 5 

Table 3 Files Retrieved and Log Name, Date and Time Extracted 

Parsing Each Log File and Creating the Log Report 
Once it is determined which logs are to be checked, the macro will then go through each file and check 
for ‘common’ undesired log messages as well as other ‘not-so-common’ undesired log messages.  At this 
point, the user may wish to add ‘user-defined’ log messages that should be investigated.  If an undesired 
log message is found, it is saved to a data set so it can be included in the check log report.  If there are 
no undesired log messages, then a ‘dummy’ record is created for that file with a generic message so that 
the user can be confident that the log was actually checked and not inadvertently left out of the checking 
process. 

After each log is checked a report will be generated.  If the ‘loc2’ parameter is specified, then a report will 
be written to the indicated location otherwise the report will be written to the location where the logs 
reside. If the ‘out’ parameter is specified during the macro call, the value of the parameter will be used as 



Check Please: An Automated Approach to Log Checking, continued 

 

6 

the name of the report otherwise the name of the report will default to ‘all_checklogs’.  The report will 
contain the name of the log, the date the log was created, the time it was created (if applicable) and the 
undesired log message or generic message.  In addition to this, the report will contain a blank column that 
will allow the user to input any additional information such as a comment as to why that specific message 
was allowed while they are reviewing the report.   

For example, in Display 1 the logs for ADSL, DM and GRAPH1_3 had a message that contained the word 
‘warning’.  This was part of a comment so was not an actual program warning, thus the message is 
allowed and so a reason is manually added to the report during the review process.  Furthermore, the log 
for LB had two messages that contained ‘??’ (a sponsor-defined message).  In the case of the first 
message  the flagged section was part of a comment so the message is allowed and a reason is 
manually added.  As for the other message, a comment is added indicating that for this particular 
deliverable it will be allowed but must be fixed for the next deliverable. 

 

 

Display 1 Sample CHECKLOGS Report 

 

Log Name Log Date Log Time Log Message Reason Message is Allowed 
ADPR 07SEP2016 03:00 AM No undesired messages.  Log is clean.  

 

ADPSGA 19SEP2016 08:03 AM NOTE: MERGE statement has more than one data set 
with repeats of BY values. 

 

 

ADSL 30AUG2016 05:43 AM 12735  /*      otherwise put "warning exendtc= " 
exendtc; 

This is a comment.  There is no 
issue to fix. 

 

AE 28AUG2015 05:14 AM No undesired messages.  Log is clean.  

 

DA 01SEP2015 04:41 AM NOTE: Character values have been converted to 
numeric values at the places given by: 

 

 01SEP2015 04:41 AM NOTE: Missing values were generated as a result of 
performing an operation on missing values. 

 

 

DM 26AUG2015 10:59 AM 23         SITEID at the begining of the first data step to 
avoid warning messages. A worning 

This is a comment.  There is no 
issue to fix. 

 

GRAPH 1_1 13OCT2016 08:49 AM No undesired messages.  Log is clean.  

 

GRAPH 1_3 13OCT2016 08:49 AM WARNING: The intervals on the axis labeled 
"Analysis Visit (N)" are not evenly spaced. 

This is a SAS generated comment.  
There is no issue to fix. 

 

LB 11SEP2015 08:06 AM 402      ! ??)*/ This is a comment.  There is no 
issue to fix. 

 11SEP2015 08:06 AM 403          RESLTVALN = input(RESLTVAL, 
?? best12.); 

‘??’is used as part of the format 
statement.  To be fixed in next 
deliverable. 

 

TABLE 3_1_1 17OCT2016 07:27 AM No undesired messages.  Log is clean.  
 

 

TABLE 3_1_2 17OCT2016 07:28 AM No undesired messages.  Log is clean.  

 

TABLE1-1 28SEP2016 10:02 AM 6043                                    no non-missing values of 
randexc1-randexc4, so it cause warnings and errors, 

This is a comment.  There is no 
issue to fix. 

 28SEP2016 10:02 AM NOTE: MERGE statement has more than one data set 
with repeats of BY values. 

 

 28SEP2016 10:02 AM NOTE: MERGE statement has more than one data set 
with repeats of BY values. 

 

 

TABLE1_2 08OCT2015 08:21 AM No undesired messages.  Log is clean.  

 

TABLE2.1.2 05OCT2016 11:08 AM No undesired messages.  Log is clean.  

 

TABLE3_2_1 08OCT2015 08:21 AM No undesired messages.  Log is clean.  

 
 



Check Please: An Automated Approach to Log Checking, continued 

 

7 

CONCLUSION 
Checking the logs for a deliverable is a task we all dread doing, but it must be done. It is a necessary 
‘evil’.  However, with the CHECKLOGS macro, this process can be simplified while simultaneously 
producing a report that can be saved with the deliverable to help explain any log messages that were not 
addressed.  

REFERENCES 
UNIX commands 

http://www.shareittips.com/data/unix.png 

CMD commands 

http://ss64.com/nt/ 

ACKNOWLEDGMENTS 
Thanks to Karl Miller and Deanna Schreiber-Gregory for reviewing the paper and providing additional 
insight. 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the author at: 

Richann Watson 
Experis 
richann.watson@experis.com 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

APPENDIX A: CHECKLOGS MACRO 
/* retrieve all the logs in the specified directory */ 
%macro checklogs(loc=,  /* location of where the log files are stored       */ 
      loc2=, /* location of where report is stored (optional)    */ 
                 fnm=,  /* which types of files to look at (optional)       */ 
       /* e.g., Tables – t_, Figures – f_, Listings – l_   */  
       /* separate types of files by delimiter indicated in*/ 
                        /* the delm macro parameter (e.g., t_@f_)           */ 
                 delm=@,/* delimiter used to separate types of files (opt'l)*/ 
                 out=   /* log report name (optional)                       */); 
      
  /* need to determine the environment in which this is executed   */ 
  /* syntax for some commands vary from environment to environment */ 
  /* end macro call if environment not Windows or Linux/Unix       */ 
  %if &sysscp = WIN %then %do; 
    %let ppcmd = %str(dir); 
    %let slash = \; 
  %end; 
  %else %if &sysscp = LIN X64 %then %do; 
    %let ppcmd = %str(ls -l); 
    %let slash = /; 
  %end; 
  %else %do; 
    %put ENVIRONMENT NOT SPECIFIED; 
    abort abend; 
  %end; 

http://www.shareittips.com/data/unix.png
http://ss64.com/nt/
mailto:richann.watson@experis.com


Check Please: An Automated Approach to Log Checking, continued 

 

8 

 
  /* if a filename is specified then build the where clause */ 
  %if "&fnm" ne ""  %then %do; 
    data _null_; 
      length fullwhr $2000.; 
      retain fullwhr; 
 
      /* read in each log file and check for undesired messages */ 
      %let f = 1; 
      %let typ = %scan(&fnm, &f, "&delm"); 
  
      /* loop through each type of filename to build the where clause */ 
      /* embed &typ in double quotes in case filename has any special */ 
      /* characters or spaces                                         */ 
      %do %while ("&typ" ne ""); 
 
        partwhr = catt("index(flog, '", "&typ", "')"); 
  fullwhr = catx(" or ", fullwhr, partwhr); 
 
  call symputx('fullwhr', fullwhr); 
 
        %let f = %eval(&f + 1); 
        %let typ = %scan(&fnm, &f, "&delm"); 
      %end; 
 
    run; 
  %end; 
 
  /* need to build pipe directory statement as a macro var  */ 
  /* because the statement requires a series of single and  */ 
  /* double quotes - by building the directory statement    */ 
  /* this allows the user to determine the directory rather */ 
  /* than it being hardcoded into the program               */ 
  /* macro var will be of the form:'dir "directory path" '  */ 
  data _null_; 
    libnm = "&loc"; 
    dirnm = catx(" ", "'", "&ppcmd", quote(libnm), "'"); 
    call symputx('dirnm', dirnm); 
  run; 
 
  /* read in the contents of the directory containing the logs */ 
  filename pdir pipe &dirnm lrecl=32727; 
 
  data logs (keep = flog fdat ftim filename numtok); 
    infile pdir truncover scanover; 
    input filename $char1000.; 
 
    length flog $25 fdat ftim $10; 
 
    /* keep only the logs */ 
    if index(filename, ".log"); 
 
    /* count the number of tokens (i.e., different parts of filename) */ 
    /* if there are no spaces then there should be 5 tokens for WIN   */ 
    /* or 9 tokens for LIN X64                                        */ 
    numtok = countw(filename,' ','q'); 
 
    /* need to build the flog value based on number of tokens */ 
    /* if there are spaces in the log name then need to grab  */ 
    /* each piece of the log name                             */ 
    /* the first token that is retrieved will have '.log' and */ 
    /* it needs to be removed by substituting a blank         */ 
    /* also need to parse out the date and time these are in  */ 



Check Please: An Automated Approach to Log Checking, continued 

 

9 

    /* specific spots within the filename so aren't based on  */ 
    /* number of tokens but will have different locations     */ 
    /* depending on environment - so parsing of each piece of */ 
    /* information will be environment dependent              */ 
    /* note on the scan function a negative # scans from right*/ 
    /* and a positive # scans from the left                   */ 
 
    /*********** WINDOWS ENVIRONMENT ************/ 
    /* the pipe will read in the information in */ 
    /* the format of: date time am/pm size file */ 
    /* e.g. 08/24/2015 09:08 PM 18,498 ae.log   */ 
    /*    '08/24/2015' is first token from left */ 
    /*    'ae.log' is first token from right    */ 
    %if &sysscp = WIN %then %do; 
      do j = 5 to numtok; 
  tlog = tranwrd(scan(filename, 4 - j, " "),  ".log", ""); 
  flog = catx(" ", tlog, flog); 
      end; 
      ftim = catx(" ", scan(filename, 2, " "), scan(filename, 3, " ")); 
      fdat = put(input(scan(filename, 1, " "), mmddyy10.), date9.); 
    %end; 
  
    /***************************** UNIX ENVIRONMENT ******************************/ 
    /* the pipe will read in the information in the format of: permissions, user,*/ 
    /* system environment, file size, month, day, year or time, filename         */ 
    /* e.g. -rw-rw-r-- 1 userid sysenviron 42,341 Oct 22 2015 ad_adaapasi.log    */ 
    /*    '-rw-rw-r--' is first token from left                                  */ 
    /*    'ad_adaapasi.log' is first token from right                            */ 
    %else %if &sysscp = LIN X64 %then %do; 
      do j = 9 to numtok; 
   tlog = tranwrd(scan(filename, 8 - j, " "),  ".log", ""); 
   flog = catx(" ", tlog, flog); 
      end; 
      _ftim = scan(filename, 8, " "); 
 
      /* in Unix if year is current year then time stamp is displayed */ 
      /* otherwise the year last modified is displayed                */ 
      /* so if no year is provided then default to today's year and if*/ 
      /* no time is provided indicated 'N/A'                          */ 
      if anypunct(_ftim) then do; 
        ftim = put(input(_ftim, time5.), timeampm8.); 
        yr = put(year(today()), Z4.); 
      end; 
      else do; 
        ftim = 'N/A'; 
        yr = _ftim; 
      end; 
 
      fdat = cats(scan(filename, 7, " "), upcase(scan(filename, 6, " ")), yr); 
    %end; 
  run; 
 
  /* create a list of logs, dates, times and store in macro variables */ 
  proc sql noprint; 
    select flog, 
           fdat,  
           ftim 
           into : currlogs separated by "&delm", 
          : currdats separated by " ", 
    : currtims separated by "@" 
    from logs 
    %if "&fnm" ne "" %then where &fullwhr;     ; /* need to keep extra semicolon */ 
  quit; 



Check Please: An Automated Approach to Log Checking, continued 

 

10 

 
  /* need to make sure the alllogs data set does not exist before getting into loop */ 
  proc datasets; 
     delete alllogs; 
  quit; 
 
  /* read in each log file and check for undesired messages */ 
  %let x = 1; 
  %let lg = %scan(&currlogs, &x, "&delm"); 
  %let dt = %scan(&currdats, &x); 
  %let tm = %scan(&currtims, &x, '@'); 
 
  /* loop through each log in the directory and look for undesirable messages */ 
  /* embed &lg in double quotes in case filename has special characters/spaces*/ 
  %do %while ("&lg" ne ""); 
    /* read the log file into a SAS data set to parse the text */ 
    data logck&x; 
      infile "&loc.&slash.&lg..log" missover pad; 
      input line $1000.; 
 
      /* keep only the records that had an undesirable message */ 
      if index(upcase(line), "WARNING") or 
         index(upcase(line), "ERROR:") or 
         index(upcase(line), "UNINITIALIZED") or 
         index(upcase(line), "NOTE: MERGE") or 
         index(upcase(line), "MORE THAN ONE DATA SET WITH REPEATS OF BY") or 
   index(upcase(line), "VALUES HAVE BEEN CONVERTED") or 
   index(upcase(line), "MISSING VALUES WERE GENERATED AS A RESULT") or 
         index(upcase(line), "INVALID DATA") or 
   index(upcase(line), "INVALID NUMERIC DATA") or 
   index(upcase(line), "AT LEAST ONE W.D FORMAT TOO SMALL") or 
   index(upcase(line), "ORDERING BY AN ITEM THAT DOESN'T APPEAR IN") or 
         index(upcase(line), "OUTSIDE THE AXIS RANGE") or 
         index(upcase(line), "RETURNING PREMATURELY") or 
         index(upcase(line), "UNKNOWN MONTH FOR") or 
         index(upcase(line), "QUERY DATA") or 
         index(upcase(line), "??") or 
         index(upcase(line), "QUESTIONABLE"); 
 
      /* create variables that will contain the log that is being scanned */ 
      /* as well as the and date and time that the log file was created   */ 
      length lognm $25. logdt logtm $10.; 
      lognm = upcase("&lg"); 
      logdt = "&dt"; 
      logtm = "&tm"; 
 
      /* create a dummy variable to create a column on the report that will allow */ 
      /* users to enter a reason if the message is allowed                        */ 
      logrs = ' '; 
    run; 
 
    /* because there are sometimes issues with SAS certificate */ 
    /* there will be warnings in the logs that are expected    */ 
    /* these need to be removed                                */ 
    data logck&x._2; 
      set logck&x.; 
      if index(upcase(line), 'UNABLE TO COPY SASUSER') or 
         index(upcase(line), 'BASE PRODUCT PRODUCT') or 
         index(upcase(line), 'EXPIRE WITHIN') or 
         (index(upcase(line), 'BASE SAS SOFTWARE') and  
          index(upcase(line), 'EXPIRING SOON')) or 
         index(upcase(line), 'UPCOMING EXPIRATION') or 
         index(upcase(line), 'SCHEDULED TO EXPIRE') or 



Check Please: An Automated Approach to Log Checking, continued 

 

11 

         index(upcase(line), 'SETINIT TO OBTAIN MORE INFO') then delete; 
    run; 
 
    /* determine the number of undesired messages were in the log */ 
    data _null_; 
      if 0 then set logck&x._2 nobs=final; 
      call symputx('numobs',left(put(final, 8.))); 
    run; 
 
    /* if there is no undesired messages in log create a dummy record for report */ 
    %if &numobs = 0 %then %do; 
      data logck&x._2; 
        length lognm $25. line $1000. logdt logtm $10.; 
        line = "No undesired messages.  Log is clean."; 
        lognm = upcase("&lg"); 
        logdt = "&dt"; 
        logtm = "&tm"; 
 
        /* create a dummy variable to create a column on the report that will allow */ 
        /* users to enter a reason if the message is allowed                        */ 
        logrs = ' '; 
        output; 
      run; 
    %end; 
 
    /* append all the results into one data set */ 
    %if &x = 1 %then %do; 
      data alllogs; 
        set logck&x._2; 
      run; 
    %end; 
    %else %do; 
      proc append base=alllogs 
                  new=logck&x._2; 
      run; 
    %end; 
 
    %let x = %eval(&x + 1); 
    %let lg = %scan(&currlogs, &x, "&delm"); 
    %let dt = %scan(&currdats, &x); 
    %let tm = %scan(&currtims, &x, '@'); 
  %end; 
 
  /* since a list of files can be provided then the files may not be in order */ 
  proc sort data=alllogs presorted; 
    by lognm line; 
  run; 
 
  /* if the name of the output file is not specified then default to the name */ 
  %if "&out" =  "" %then %do; 
    %let out=all_checklogs; 
  %end; 
 
  /* if the name of the output file is not specified then default to the name */ 
  %if "&loc2" = "" %then %do; 
    data _null_; 
   call symputx("loc2", "&loc"); 
 run; 
  %end; 
 
  /* create the report */ 
  ods listing close; 
  options orientation=landscape; 



Check Please: An Automated Approach to Log Checking, continued 

 

12 

 
  ods rtf file="&loc2.&slash.&out..rtf"; 
 
  proc report data=alllogs ls=140 ps=43 spacing=1 missing nowindows headline; 
    column lognm logdt logtm line logrs;  
    define lognm / order   style(column)=[width=12%]      "Log Name";  
    define logdt / display style(column)=[width=12%]      "Log Date";  
    define logtm / display style(column)=[width=12%]      "Log Time";  
    define line  / display style(column)=[width=30%] flow "Log Message"; 
    define logrs / display style(column)=[width=20%] flow "Reason Message is Allowed"; 
 
    /* force a blank line after each file */ 
    compute after lognm; 
      line " "; 
    endcomp; 
  run;  
 
  ods rtf close; 
  ods listing; 
%mend checklogs; 


	Abstract
	Introduction
	Types of Log Messages
	Other Log Messages to Consider
	Log Checking Problem
	The Solution - CHECKLOGS
	Macro Parameters
	Nuts and Bolts of the Macro
	Determining Working Environment
	What Log Files Are Being Checked?
	Extracting the Logs
	Parsing Each Log File and Creating the Log Report


	Conclusion
	References
	Acknowledgments
	Contact Information
	Appendix A: CHECKLOGS Macro

