PharmaSUG 2017 - Paper TT15

Merge with Caution: How to Avoid Common
Problems when Combining SAS Datasets
Joshua M. Horstman, Nested Loop Consulting, Indianapolis, IN

ABSTRACT

Although merging is one of the most frequently performed operations when manipulating SAS datasets,
there are many problems which can occur, some of which can be rather subtle. This paper examines
several common issues, provides examples to illustrate what can go wrong and why, and discusses best
practices to avoid unintended consequences when merging.

INTRODUCTION

Anyone who has spent much time programming with SAS has likely found themselves needing to
combine data from multiple datasets into a single dataset. This is most commonly performed by using the
MERGE statement within a DATA step. While the merge seems like a relatively simple and
straightforward process, there are many traps waiting to snare the unsuspecting programmer.

In a seminal pair of papers, Foley (1997, 1998) catalogs some 28 potential traps related to merging.
These range from rather mundane oversights such as omitting the BY statement to more esoteric matters
relating to the inner workings of SAS. Some can be rather subtle and pernicious. In this paper, we will
examine three examples that highlight three common problems: mismatched BY variable lengths,
overlapping variables, and the automatic retain.

EXAMPLE 1: MISMATCHED BY VARIABLE LENGTHS
THE DATA

For our first example, we have the following two SAS datasets:

EMPLOYEES Dataset SALARIES Dataset
Brooks Secretary Brooks 50000
Howard President Brookstein 75000
Slagle Custodian Howard 100000

Slagle 25000

For the purposes of this example, it is important to note that the variable LASTNAME has different lengths
in the two datasets. Inthe EMPLOYEES dataset, the length of LASTNAME is 6, while in the SALARIES
dataset it is 10.

Notice also that the SALARIES dataset contains an extra record that is not in the EMPLOYEES dataset.
Perhaps it is an old record from a terminated employee that was not properly purged from the database.
Data is not always as clean in the real world as we would like it to be.

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

THE MERGE

We perform a simple merge of these two datasets using LASTNAME as the BY variable. Since the
datasets are already sorted by LASTNAME, it is not necessary to sort them prior to the merge.

data mergel;
merge employees salaries;
by lastname;

run;

The resulting dataset is not what we were expecting:

MERGE1 Dataset

LASTNAME TITLE SALARY

Brooks Secretary 50000
Brooks Secretary 75000
Howard President 100000
Slagle Custodian 25000

We have two records with the last name of Brooks, but one of them has the salary information associated
with Brookstein. What has gone wrong here? Fortunately, in this case, the SAS log provides a clue:

WARNING: Multiple lengths were specified for the BY variable lastname by
input data sets. This might cause unexpected results.

Furthermore, if we inspect the properties of the MERGE1 dataset, we will find that the LASTNAME
variable there has a length of 6. Thus, the value “Brookstein” was truncated to 6 characters and is now
indistinguishable from “Brooks”.

THE EXPLANATION

In order to explain these strange results, we need to take a look under the hood of the DATA step and
discuss the program data vector. The program data vector (PDV) is a temporary location in memory that
SAS uses during the normal processing of a DATA step.

The structure of the PDV is determined during DATA step compilation by scanning the DATA step code
that was submitted. In our example, since the EMPLOYEES dataset appears first in the code, the
variables from the EMPLOYEES dataset and their associated attributes are added first to the PDV. Thus,
the variable LASTNAME is assigned a length of 6 in the PDV.

As the scanning continues and the SALARIES dataset is encountered, the compiler recognizes that the
PDV already includes a variable called LASTNAME and takes no further action with respect to that
variable. The fact that the variable has a different length has no impact on the PDV at that point.

Once the compilation phase is complete and DATA step execution begins, data which are read in using
our MERGE statement are placed into the appropriate locations in the PDV. If a value is too long to fit
into the corresponding variable in the PDV, it is simply truncated. Thus, in our case, “Brookstein”
becomes “Brooks”.

THE CORRECTION

One might think this code could be corrected by using the IN= dataset option to ensure that only records
with a corresponding entry in the EMPLOYEES dataset are present in the output dataset. That code
would look like this:

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

data mergelb;
merge employees (in=a) salaries;
by lastname;
if a;
run;
However, this produces the same result as the original DATA step code. Because of the truncation, SAS

matches up the Brookstein salary record with the Brooks employee record. Thus, as far as SAS is
concerned, both input datasets contributed to the resulting record.

Of course, one could solve this problem by altering the input datasets to ensure that then lengths of
shared BY variables match. Another simple solution is to reverse the order of the datasets on the
MERGE statement so that the dataset having the longer length associated with the BY variable comes
first. However, this may not always be possible in situations with multiple BY variables that have
mismatched lengths.

A more proactive solution is to take control of the process by explicitly declaring the desired variable
length using a LENGTH statement. It is important that the LENGTH statement appear prior to the
MERGE statement in the DATA step so that it will be encountered first by the compiler during the process
of constructing the PDV.

data mergelc;
length lastname $10;
merge employees salaries;
by lastname;

run;

This produces the dataset one might have expected in the first place.

MERGE1C Dataset

LASTNAME TITLE SALARY

Brooks Secretary 50000
Brookstein 75000
Howard President 100000
Slagle Custodian 25000

If one did not wish to include observations based only on one of the input datasets, one could modify the
above code using the IN= dataset option and a subsetting IF statement as shown further above.

THE LESSON

The key lesson from this example is to avoid merging datasets on BY variables having mismatched
lengths. Instead, use a LENGTH statement to explicitly control the process. A second lesson is to
always check the SAS log carefully and don't just ignore SAS warnings. See Virgile (2003) for additional
discussion of this topic.

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

EXAMPLE 2: OVERLAPPING VARIABLES
THE DATA

Our second example is based on the following two datasets.

BASELINE Dataset
POSTBASE Dataset

SUBJID VISIT LBSTRESN (=1 SUBJID LBSTRESN

1 1 85.7 SD 1 90.0
1 2 94.3 SD 2 75.5
1 3 71.2 PD
2 1 66.6 SD
2 2 88.8 PR

The BASELINE dataset contains one observation for each subject, SUBJID, in a research study as well
as a baseline value, LBSTRESN, for some unspecified laboratory test. The POSTBASE dataset contains
multiple observations for each subject. Each record includes a visit number (VISIT), a lab result from that
visit (LBSTRESN), as well as a response variable, RESP.

THE MERGE

Suppose we wish to perform some computation or derivation involving the response at each visit and the
baseline lab result. Since it is commonly known that variables from a dataset further to the right on the
MERGE statement overwrite the values of variables from datasets listed earlier, we might be tempted to
merge these datasets using the following code.

data merge?2;
merge postbase baseline;
by subjid;

run;

The result of this operation is not what was intended.

MERGE?2 Dataset
SUBJID VISIT LBSTRESN RESP

1 1 90.0 SD
1 2 94.3 SD
1 3 71.2 PD
2 1 75.5 SD
2 2 88.8 PR

Notice that the first and fourth rows of the resulting dataset include the value of LBSTRESN from the
BASELINE dataset while the other rows still include the values from the POSTBASE dataset.

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

THE EXPLANATION

Once again, the explanation of these results involves the Program Data Vector (PDV). As we discussed
earlier, the structure of the PDV is determined during DATA step compilation. At execution time, data
which are read in using statements such as SET, MERGE, and INPUT are placed into the appropriate
locations in the PDV. DATA step statements that manipulate the values of dataset variables are actually
interacting with the PDV. When it is time for an output record to be written, the contents of the PDV are
copied to the output dataset.

When the first record is read from the POSTBASE dataset, the value of LBSTRESN in the PDV is 85.7.
Next, the first record from the BASELINE dataset is read and the value of LBSTRESN in the PDV is
overwritten with 90.0. Since this DATA step contains no other executable statements, the PDV is written
to the output dataset. Thus, the first record in MERGEZ2 contains a value of 90.0.

During the next iteration of the DATA step, the MERGE statement reads the second record from
POSTBASE. This record contains a value of 94.3 for LBSTRESN, and that value is written to the PDV.
Since all of the record for the current BY group (SUBJID=1) have already been read from the BASELINE
dataset, the MERGE statement does not read any additional records from BASELINE. As a result, the
value of 94.3 for LBSTRESN remains in the PDV, and that is what is written to the output dataset as the
second record.

THE CORRECTION

If our intention was for the value of LBSTRESN from BASELINE to overwrite all of the values from
POSTBASE, we will need to modify our code. One way to solve this problem is to simply drop (or
rename) LBSTRESN from the POSTBASE dataset before merging. This can be accomplished as follows.

data mergelb;
merge postbase (drop=lbstresn) baseline;
by subjid;

run;

When the MERGE statement reads records from POSTBASE, there will be no LBSTRESN variable to
read since it has already been dropped from the input dataset. Consequently, all values of LBSTRESN in
the output dataset will be those read from BASELINE.

THE LESSON

When merging datasets, it is necessary that there be some variables in common on which to merge.
These are the BY variables. When the datasets have additional variables in common aside from the BY
variables, these are often referred to as overlapping variables. In general, it is best to avoid overlapping
variables to prevent problems like the one described above. Drop (or rename) any overlapping variables
so that each occurs in only one of the datasets being merged.

EXAMPLE 3: AUTOMATIC RETAIN
THE DATA

For our final example, we have two SAS datasets containing data, once again pertaining to medical
research. The DEMOG dataset contains demographic information such as the patient’s age and weight.
This information is recorded only once at the beginning of the study, so there is only one record per
patient. The VITALS dataset contains vital signs measurements such as heart rate. These
measurements are recorded at each study visit, so there can be multiple records per patient.

Both datasets include a patient identification number which provides a unique key to the data. The
VITALS dataset also includes a visit number. The combination of the patient identification number and
the visit number uniquely identifies a particular record.

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

DEMOG Dataset VITALS Dataset
SUBJID AGE WEIGHT ‘ ‘ SUBJID VISIT HEART ‘
1 42 185 1 1 60
2 55 170 1 2 58
3 30 160 2 1 74
2 2 72
2 3 69
3 1 71
THE MERGE

We wish to merge these two datasets. We also wish to convert the patient’s weight from pounds to
kilograms. We write the following SAS code:

data merge3;

merge demog vitals;

by subjid;

weight = weight / 2.2;
run;

As expected, the dataset resulting from the merge contains 5 variables and 6 records.

MERGE3 Dataset

SUBJID AGE WEIGHT VISIT HEART
1 42 84.090909091 1 60
1 42 38.223140496 2 58
2 55 77.272727273 1 74
2 55 35.123966942 2 72
2 55 15.965439519 3 69
3 30 72.727272727 1 71

Unfortunately, a careful inspection of the WEIGHT variable reveals a serious error. Notice that the value
of WEIGHT changes for each record, even within the same patient. This is clearly not the desired result.

THE EXPLANATION

Once again, we turn our attention to the Program Data Vector (PDV). As mentioned previously, there are
two distinct phases to running SAS code: compilation and execution. To understand what has gone
wrong, we'll walk step-by-step through the process of compiling and executing this code.

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

Compilation

As SAS compiles our example code above, the first statement that affects construction of the PDV is the
MERGE statement. The first dataset listed on the MERGE statement is DEMOG, which includes three
variables: SUBJID, AGE, and WEIGHT. All three are included in the PDV using the same attributes
(length, format, label, etc.) present in the input dataset. The next dataset listed is VITALS, which includes
three variables: SUBJID, VISIT, and HEART. Since, SUBJID is already on the PDV, only the latter two
are added.

Upon the completion of DATA step compilation, the following PDV structure is in place. Note that no
actual values have been written to the PDV yet. That will occur during the execution phase.

Program Data Vector for MERGE3

Variable: SUBJID AGE WEIGHT VISIT HEART

Value:

Execution

As we discuss the execution of the DATA step, it is important to remember that a DATA step is essentially
a loop. The statements in the DATA step are executed repeatedly until certain conditions are met that
cause execution to terminate. One such condition is a SET or MERGE statement that runs out of new
records to read from all of the input datasets listed within the statement. In the meantime, the contents of
the PDV are written to the specified output dataset each time execution returns to the top of the DATA
step (unless you override this behavior using statements such as OUTPUT).

As our example code begins, the first statement to execute is the MERGE statement. Since the DEMOG
dataset is listed first, the first record from DEMOG is read into the PDV. Next, the first record from the
VITALS dataset is read. Since both datasets contain the SUBJID variable, the value from VITALS
overwrites what had been previously read from DEMOG. Fortunately, since SUBJID is a BY variable, it
has the same value on both datasets. Once the MERGE statement has executed for the first time, the
PDV looks like this:

Program Data Vector for MERGE3
Variable: SUBJID AGE WEIGHT VISIT HEART ‘
Value: 1 42 185 1 60
The next statement to execute is our weight conversion. This statement reads the value of WEIGHT from

the PDV, divides it by 2.2, and then writes the result back to the PDV. After this statement executes, we
have the following PDV:

Program Data Vector for MERGE3
Variable: SUBJID AGE WEIGHT VISIT HEART
Value: 1 42 84.0909 1 60
We have now reached the bottom of the DATA step. Execution returns to the top and the current

contents of the PDV are written to the ALLDATA dataset. So far, everything is proceeding exactly as
expected.

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

Automatic Retain

There is a common misconception that the values in the PDV are reset to missing when execution returns
to the top of the DATA step. This is only true for variables which are assigned values by an INPUT or
assignment statement (unless overridden by a RETAIN statement). For variables read with a SET,
MERGE, MODIFY, or UPDATE statement, the values are automatically retained from one iteration of the
DATA step to the next.

In our example, all of the variables on the PDV were read with a MERGE statement, so all values are
retained. When the second iteration of the DATA step begins, the PDV looks just like it did when the first
iteration ended.

Next, the MERGE statement executes again. Since the DEMOG dataset does not contain any more
records for the current BY group (SUBJID = 1), nothing is read from DEMOG. There is still one record for
the current BY group in the VITALS dataset, so the values from that record are copied to the PDV. Since
nothing was read from DEMOG, the existing values of AGE and WEIGHT survive. The PDV now has the
following state:

Program Data Vector for MERGE3

Variable: SUBJID AGE WEIGHT VISIT HEART

Value: 1 42 84.0909 2 58

Now we come once again to the weight conversion statement. The current value of WEIGHT (84.0909) is
read from the PDV and divided by 2.2, and the result (38.2231) is written back to the PDV. Having
reached the end of the DATA step, the contents of the PDV are written out as the second record of the
output dataset.

At last we have uncovered the source of our problem. The value of WEIGHT is read only once for each
BY group, while the weight conversion statement executes once for each iteration of the DATA step. The
WEIGHT continues to be divided by 2.2 repeatedly until the end of the BY group is reached.

THE CORRECTION

Now that we understand what is causing this unexpected behavior, what can we do about it? The safest
and most conservative option is to limit all merges to the required statements and perform additional
processing in a separate DATA step.

data merge3bl;
merge demog vitals;
by subjid;
run;
data merge3b;
set merge3bl;
weight = weight / 2.2;
run;

However, it is not always necessary to take such drastic action. This merge can be made to perform as
expected within a single DATA step by simply renaming one of the input variables as follows:

data merge3c (drop=weight lbs);
merge demog (rename=(weight=weight 1lbs)) vitals;
by subjid;
weight = weight 1lbs / 2.2;

run;

As shown below, this modified code produces the output dataset we were expecting. Since
WEIGHT_LBS is retained but not modified, each record within a given BY group will have the same value
of WEIGHT.

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

MERGE3C Dataset

SUBJID AGE WEIGHT VISIT HEART
1 42 84.090909091 1 60
1 42 84.090909091 2 58
2 55 77.272727273 1 74
2 55 77.272727273 2 72
2 55 77.272727273 3 69
3 30 72.727272727 1 71

THE LESSON

It is advisable to be very careful when adding complex logic to a DATA step that performs a merge. One
should clearly understand how the PDV works and the ramifications of the automatic retain. If these
concepts are unclear, or one simply wishes to play it safe, move the additional logic to a separate DATA
step.

CONCLUSION

Merging datasets is one of the most basic and common functions performed in SAS. However, the
underlying procedure is more complex than it might first appear

Even the most skilled programmer can sometimes overlook subtle traps. Thus, it is advisable to
habitually practice certain programming techniques to defend against these errors:

1. Always set the length explicitly when merging on a BY variable with mismatched lengths, or
avoid the situation in the first place.

2. Don’t merge with overlapping variables unless there is a specific reason you need to do so,
and then only with full knowledge of how the merge actually works.

3. Avoid adding additional statements beyond those required for the merge: the DATA
statement, the MERGE statement, the BY statement, possibly a subsetting IF statement, and
of course the RUN statement. If this is too cumbersome, then at the very least, refrain from
modifying the values of existing variables from an input dataset in a merge.

Finally, it is imperative for an effective SAS programmer to be equipped with a thorough understanding of
the internal workings of the DATA step to avoid mistakes like the ones discussed in this paper. See
Johnson (2012) or Li (2013) for a comprehensive treatment of the program data vector and Virgile (2000)
for additional discussion of the PDV specifically as it relates to merging.

REFERENCES

Foley, Malachy J. “Advanced MATCH-MERGING: Techniques, Tricks, and Traps.” Proceedings of the
Twenty-Second Annual SAS® Users Group International. Cary, NC: SAS Institute Inc., 1997.
Paper 39. http://www?2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER39.PDF

Foley, Malachy J. “MATCH-MERGING: 20 Some Traps and How to Avoid Them.” Proceedings of the
Twenty-Third Annual SAS® Users Group International. Cary, NC: SAS Institute Inc., 1998.
Paper 47. http://www?2.sas.com/proceedings/sugi23/Advtutor/P47.pdf

Johnson, Jim. “The Use and Abuse of the Program Data Vector.” Proceedings of the SAS® Global
Forum 2012 Conference. Cary, NC: SAS Institute Inc., 2012. Paper 255-2012.
http://support.sas.com/resources/papers/proceedings12/255-2012.pdf

http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER39.PDF
http://www2.sas.com/proceedings/sugi23/Advtutor/P47.pdf
http://support.sas.com/resources/papers/proceedings12/255-2012.pdf

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

Li, Arthur. “Essentials of the Program Data Vector (PDV): Directing the Aim to Understanding the DATA
Step!” Proceedings of the SAS® Global Forum 2013 Conference. Cary, NC: SAS Institute Inc.,
2013. Paper 125-2013. http://support.sas.com/resources/papers/proceedings13/125-2013.pdf

Virgile, Bob. “How MERGE Really Works.” Proceedings of the Pharmaceutical Industry SAS® Users
Group 2000 Annual Conference. Chapel Hill, NC: PharmaSUG, 2000. Paper DM12.
http://www.lexjansen.com/pharmasug/2000/DMandVis/dm12.pdf

Virgile, Bob. “Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!” Proceedings of the
NorthEast SAS Users Group 2003 Conference, Washington, DC. Paper AT005.
http://www.lexjansen.com/nesug/nesug03/at/at005.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Joshua M. Horstman

Nested Loop Consulting
317-721-1009
josh@nestedloopconsulting.com

10

http://support.sas.com/resources/papers/proceedings13/125-2013.pdf
http://www.lexjansen.com/pharmasug/2000/DMandVis/dm12.pdf
http://www.lexjansen.com/nesug/nesug03/at/at005.pdf

