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ABSTRACT

Multicollinearity can be briefly described as the phenomenon in which two or more identified predictor
variables in a multiple regression model are highly correlated. The presence of this phenomenon can
have a negative impact on the analysis as a whole and can severely limit the conclusions of the research
study. This paper reviews and provides examples of the different ways in which multicollinearity can
affect a research project, and tells how to detect multicollinearity and how to reduce it once it is found. In
order to demonstrate the effects of multicollinearity and how to combat it, this paper explores the
proposed techniques by using the Youth Risk Behavior Surveillance System data set. This paper is
intended for any level of SAS® user. This paper is also written to an audience with a background in
behavioral science or statistics.

INTRODUCTION

Multicollinearity is often described as the statistical phenomenon wherein there exists a perfect or exact
relationship between predictor variables. From a conventional standpoint, this occurs in regression when
several predictors are highly correlated. (As a disclaimer, variables do not need to be highly correlated to
be collinear, though this is usually the case.) Another way to think of collinearity is “co-dependence” of
variables.

Why is this important? Well, when things are related, we say that they are linearly dependent. In other
words, they fit well into a straight regression line that passes through many data points. In the incidence
of multicollinearity, it is difficult to come up with reliable estimates of individual coefficients for the
predictor variables in a model which results in incorrect conclusions about the relationship between
outcome and predictor variables. Therefore, in the consideration of a multiple regression model in which
a series of predictor variables were chosen in order to test their impact on the outcome variable, it is
essential that multicollinearity not be present!

Another way to look at this issue is by considering a basic multiple linear regression equation:

y=xB+¢
Where y is an nx1 vector of response, x is an nxp matrix of predictor variables, B is a px1 vector of
unknown constants, and € is an nx1 vector of random errors with €i ~ NID(0,0*2). Considering this
equation, consider the fact that multicollinearity tends to inflate the variances of the parameter estimates,
which would lead to a lack of statistical significance of the individual predictor variables even though the
overall model itself remains significant. Therefore, the presence of multicollinearity can end up causing
serious problems when estimating and interpreting B.

Why should we care? Consider this example: Your company has just undergone a major overhaul and it
was decided that each department lead should choose an assistant lead to help with their workload. The
assistant leads were chosen by each department lead after a series of rigorous interviews and
discussions with each applicant’s references. It is now time for next year’'s budget to be decided. An
administrative meeting is held during which both department leads and their new assistant leads are
present. It comes time to vote, by show of hands, on a major budget revision. Both the leads and their
assistants (of whom they are also supervisors) will be voting. Do you think any of the assistants will vote
against their leads? Probably not. This will end up resulting in a biased vote as the votes of the
assistants would be dependent on the votes of their leads. A relationship such as this between two
variables in a
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model could lead to an even more biased outcome, thus leading to results that have been affected in a
detrimental way.

Collinearity is especially problematic when a model’'s purpose is explanation rather than prediction. In the
case of explanation, it is more difficult for a model containing collinear variables to achieve significance of
the different parameters. In the case of prediction, if the estimates end up being statistically significant,
they are still only as reliable as any other variable in the model, and if they are not significant, then the
sum of the coefficient is likely to be reliable. In summary if collinearity is found in a model testing
prediction, then one need only increase the sample size of the model. However, if collinearity is found in a
model seeking to explain, then more intense measures are needed. The primary concern resulting from
multicollinearity is that as the degree of collinearity increases, the regression model estimates of the
coefficients become unstable and the standard errors for the coefficients become wildly inflated.

DETECTING MULTICOLLINEARITY

This first section will explain the different diagnostic strategies for detecting multicollinearity in a dataset.
While reviewing this section, the author would like you to think logically about the model being explored.
Try identifying possible multicollinearity issues before reviewing the results of the diagnostic tests.

INTRODUCTION TO THE FIRST DATSET

The Youth Risk Behavior Surveillance System (YRBSS) was developed as a tool to help monitor priority
risk behaviors that contribute substantially to death, disability, and social issues among American youth
and young adults today. The YRBSS has been conducted biennially since 1991 and contains survey data
from national, state, and local levels. The national Youth Risk Behavior Survey (YRBS) provides the
public with data representative of the United States high school students. On the other hand, the state
and local surveys provide data representative of high school students in states and school districts who
also receive funding from the CDC through specified cooperative agreements. The YRBSS serves a
number of different purposes. The system was originally designed to measure the prevalence of health-
risk behaviors among high school students. It was also designed to assess whether these behaviors
would increase, decrease, or stay the same over time. An additional purpose for the YRBSS is to have it
examine the co-occurrence of different health-risk behaviors.

The particular study used in this paper examines the co-occurrence of suicidal ideation as an indicator of
psychological unrest with other health-risk behaviors. The purpose of this study is to serve as an exercise
in examining multicollinearity in a sensitive population through the examination of several health-risk
behaviors and their link to suicidal ideation. The outcome variable of interest in this study was suicidal
ideation and the predictor variables of interest were lifetime substance abuse participation, age of
participant, gender of participant, race of participant, identification of depression within last year, recent
substance abuse participation, being a victim of violence, and being an active participant in violence.

As a first step in the examination of the question being asked — do target health-risk behaviors contribute
to thoughts of suicide in America’s youth — we must first identify which datasets will be used in the
analysis, what differences arise between the datasets, and how to address those differences. In short, we
must clean the data for our analysis. Most of you know this already, but it is a worthy note to make
considering the type of analysis we are about to conduct. The exact method to cleaning the data will not
be covered in this section, for the sake of space and time, but the author would like to note that YRBS
years 1991 — 2015 were cleaned and prepped for the purposes of this analysis, with years 1999 — 2015
ending up in the final cut due to the variety of target variables available during these years. These years
were then concatenated into one dataset and the contents procedure run to verify its contents:

/* Note: Years 1991, 1993, 1995, 1997 excluded due to lack of
Depression Variable */

proc contents data=YRBS_Total;

run;
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Next, frequency procedures were performed in order to explore the descriptive and univariate statistics of
our target predictor variables within the dataset:

/* Building of Table 1: Descriptive and Univariate Statistics */
proc freq data=YRBS_Total;

tables SubAbuseBin_Cat * SI_Cat;

run;

proc freq data=YRBS_Total;

tables (SubAbuse Cat Age Cat Sex_ Cat Race_Cat Depression_Cat RecSubAbuse Cat
VictimViol _Cat ActiveViol _Cat) * SI_Cat / chisq;

run;

data newYRBS_Total (keep = SubAbuse SubAbuse Cat Age Age Cat Sex
Sex_Cat Race Race_Cat Depression Depression_Cat RecSubAbuse
RecSubAbuse_Cat VictimViol VictimViol _Cat ActiveViol ActiveViol _Cat SlI
S1_Cat SubAbuseBin_Cat);

set YRBS Total (where= ( (SubAbuse in (0,1,2,3)) and (Age
in(12,13,14,15,16,17,18)) and (Sex in (1,2)) and (Race in
(4,2,3,4,5,6)) and (Depression in (0,1)) and (RecSubAbuse in (0,1)) and
(Victimviol in (0,1,2)) and (ActiveViol in (0,1,2)) and (SI in (0,1))
and (SubAbuseBin in (0,1)) ));

run;

proc freq data=newYRBS_Total;

tables ( Age_Cat Sex_Cat Race_Cat Depression_Cat RecSubAbuse Cat
VictimViol _Cat ActiveViol_Cat ) * SubAbuse Cat / chisq;

run;

After we have reviewed these results and obtained a good grasp on the relationships between each of the
variables, we can then run the descriptive and univariate statistics on the predictor variables and the
target outcome variable:

/* Building of Table 2: Descriptive and Univariate Statistics */
proc freq data=newYRBS_Total;

tables (SubAbuse Cat Age_Cat Sex_Cat Race Cat Depression_Cat
RecSubAbuse Cat VictimViol_Cat ActiveViol_Cat) * Sl1_Cat / chisq;
run;

After another thorough review of these results, we can then run a preliminary multivariable logistic
regression analysis to examine the multiplicative interaction of the chosen variables. An initial
examination of the interactions can be made at this time through the results of the analysis:

proc logistic data = newYRBS_Total;

class S1_Cat (ref="No") SubAbuse Cat (ref="1 None") / param=ref;
model S1_Cat = SubAbuse Cat / lackfit rsq;

title "Suicidal Ildeation by Lifetime Substance Abuse Severity,
Unadjusted”;

run;

proc logistic data = newYRBS _Total;

class S1_Cat(ref="No") SubAbuse Cat (ref="1 None®") Age_Cat (ref="12 or
younger®) Sex Cat (ref="Female") Race_Cat (ref="White") Depression_Cat
(ref="No") RecSubAbuse_Cat (ref="No") VictimViol_Cat (ref="None")
ActiveViol _Cat (ref="None") / param=ref;

model S1_Cat = SubAbuse_Cat Age_Cat Sex Cat Race_Cat Depression_Cat
RecSubAbuse_Cat VictimViol _Cat ActiveViol _Cat / lackfit rsq;
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title "Suicidal ldeation by Lifetime Substance Abuse Severity, Adjusted
- Multivariable Logistic Regression-;
run;

MULTICOLLINEARITY INVESTIGATION

Finally! We can begin to explore whether or not our chosen model is suffering the effects of
multicollinearity! Given the analyses we conducted above, could you identify any possible variable
interactions that could be ending in multicollinearity? Here’s a hint: could being a victim of violence lead to
depression? Could recent substance abuse be highly correlated with lifetime substance abuse? These
are questions we will be able to answer through our multicollinearity analysis.

Our first step is to explore the correlation matrix. We can do this through implementation of the corr
procedure:

/* Examination of the Correlation Matrix */

proc corr data=newYRBS Total;

var Sl SubAbuse Age Sex Race Depression RecSubAbuse VictimViol
ActiveViol;

title "Suicidal Ideation Predictors - Examination of Correlation
Matrix"”;

run;

Pretty easy right? Now let’s look at the results:

Pearson Correlation Coefficients, N = 119374
Prob = |r| under H0: Rho=0

Sl | SubAbuse Age Sex Race | Depression RecSubAbuse | VictimViol @ ActiveViol

| 1.00000 0.16274 | -0.02536 -0.12442  0.03251 0.41170 0.13484 0.18064 0.12845

<0001 <0001 <0001 =0001 =.0001 =.0001 =.0001 =.0001

SubAbuse 0.16274 1.00000 0.17483 0.07054 -0.01079 0.16046 0.67232 0.09992 0.31903

<0001 <0001 <0001 0.0002 <0001 <0001 <0001 <0001

Age -0.02536 0.17483 | 1.00000 0.04411 -0.02015 0.00497 0.12273 -0.04538  -0.02538

=.0001 =.0001 <0001 <0001 0.0863 =.0001 =.0001 =.0001

Sex -0.12442 0.07054 | 0.04411 1.00000 -0.00597 -0.16646 0.02899 0.00651 0.26876

=.0001 <0001 <0001 0.0393 =.0001 =.0001 0.0245 =.0001

Race 0.03251 -0.01079 | -0.02015 -0.00587 | 1.00000 0.06307 -0.01675 0.02870 0.01487

<0001 0.0002 <0001 0.0393 =.0001 <0001 <0001 <0001

Depression 041170 0.16046 | 0.00437 -0.16646 0.06307 1.00000 0.13819 0.20213 0.11232

<0001 <0001 00863 <0001 <0001 <0001 <0001 <0001

RecSubAbuse | 0.13484 0.67232 | 012273 0.0289% -0.01675 0.13819 1.00000 0.07573 0.26472

<0001 <0001 =000 <0001 <0001 =.0001 <0001 <0001

VictimViol 0.18064 0.09992  -0.04538 0.00651  0.02870 0.20213 0.07573 1.00000 017718

=.0001 <0001 <0001 0.0245 =«.0001 =.0001 =.0001 =.0001

ActiveViol 0.12845 0.31903 | -0.02538 0.26876 0.01487 0.11232 0.26472 017718 1.00000
<0001 <0001 <0001 <0001 =0001 <0001 <0001 <0001

Figure 1: Pearson Correlation Results

Keep in mind, while reviewing these results we want to check to see if any of the variables included have
a high correlation — about 0.8 or higher — with any other variable. As we can see, upon review of this
correlation matrix, there does not appear to be any variables with a particularly high correlation. We are
not done yet, though. Next we will examine multicollinearity through the Variance Inflation Factor and
Tolerance. This can be done by specifying the “vif’, “tol”, and “collin” options after the model statement:

/* Multicollinearity Investigation of VIF and Tolerance */
proc reg data=newYRBS Total;
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model S1 = SubAbuse Age Sex Race Depression RecSubAbuse VictimViol
ActiveViol 7/ vif tol collin;

title "Suicidal ldeation Predictors - Multicollinearity Investigation
of VIF and Tol";

run;

quit;

First we will review the parameter estimates, tolerance, and variance inflation.

Parameter Estimates

Parameter Standard Variance
Variable DF Estimate Error | t Value | Pr = |t| | Tolerance | Inflation
Intercept 1 0.25112 0.01319 19.04 | =.0001 . 0
SubAbuse 1 0.02387 0.00113 ) 21.05 <0001 0.51212 | 1.95266
Age 1 -0.00994 0.00080178 -12.40 =.0001 0.95617 | 1.04584
Sex 1 -0.06526 0.00205 | -31.88 =<.0001 0.88446  1.13064
Race 1 0.00175 | 0.00070814 247 0.0136 0.99460  1.00543
Depression 1 0.29035 0.00223 | 13047 =.0001 0.89608  1.11597
RecSubAbuse 1 0.01239 0.00262 473 <0001 0.54332 1.84053
VictimViol 1 0.03899 0.00121 3225 <0001 0.93201 | 1.07295
ActiveViol 1 0.03161 0.00137 | 23.07 <0001 0.79769 = 1.25362

Figure 2: Tolerance and VIF Investigation Results

In reviewing tolerance, we want to make sure that no values fall below 0.1. In the above results, we can
see that the lowest tolerance value is 0.51212, so there is no threat of multicollinearity indicated through
our tolerance analysis. As for variance inflation, the magic number to look out for is anything above the
value of 10. As we can see from the values indicated in this column, our highest value sits at 1.95266,
indicating a lack of multicollinarity, according to these results. However, we are not done yet, we will now
look at the collinearity diagnostics for an eigensystem analysis of covariance comparison:

Collinearity Diagnostics

Proportion of Variation

Number | Eigenvalue Con:jr:gzz Intercept | SubAbuse Age Sex Race | Depression | RecSubAbuse | VictimViol | ActiveViol
1 6.15520 1.00000  0.00012813 0.00401 | 0.00013209 0.00202 | 0.00532 0.00674 0.00489 0.00724 0.00657
2 071214 | 2.93994 0.00017002 0.00454 | 0.00018935 0.00604 | 0.00805 0.44505 0.00874 0.30195 | 0.00008712
3 0.66835 3.03335 | 0.00053394 0.03582 | 0.00051801 0.00610 | 0.06081 0.00025086 0.12401 0.01577 0.20191
4 0.567755 3.26458 | 0.00000936 0.00648 | 0.00001596 0.00091695 0.00212 0.38056 0.02326 041327 0.17436
5 0.46314 3.64555 | 0.00000662 0.02879 | 0.00000214 0.00205 | 0.00678 0.09846 0.12903 0.25195 0.50663
6 0.22094 5.27823 0.00151 0.00347 0.00167 0.05590 | 0.86056 0.01125 0.04167 0.00335 0.01567
[ 0.14138 6.59826 | 0.00026638 0.89472 | 0.00018248 0.01189 | 0.01069 0.00417 0.66683 | 1.773809E-7 0.00611
8 0.05795 | 10.30616 0.01681 0.00857 0.01889 0.91118 | 0.04010 0.05263 0.00150 0.00224 0.08357

9 0.00276 | 47.22351 0.98057 0.01361 0.97840 0.00389 | 0.00556 0.00088405 0.00005364 0.00424 0.00429

Figure 3: Collinearity Investigation Results

In review of these results, our focus is going to be on the relationship of the eigenvalue column to the
condition index column. If one or more of the eigenvalues are small (close to zero) and the corresponding
condition number large, then we have an indication of multicollinearity. As we can see from the above
results, none of our eigenvalues and condition index associations match this description.

So what is our conclusion from this example? This example was covered in order to show you that
multicollinearity can not be deduced from simply thinking about the data in a logical manner. Knowing
your data and thinking about possible confounding interactions is certainly a best practices guideline, but
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multicollinearity analyses should still be conducted to test your theory before taking measures to combat
something that is not there.

COMBATING MULTICOLLINEARITY

Do you feel betrayed? Don't feel that way! Next we will cover a dataset that is flush with multicollinearity in
order to appropriately show you how to combat it. This second section will explain the different strategies
for combating multicollinearity in a dataset. While reviewing this section, the author would like you to,
again, think logically about the model being explored. Try identifying possible multicollinearity issues
before reviewing the results of the diagnostic tests, and then think critically about the different strategies
used to combat the collinearity issue.

INTRODUCTION TO THE SECOND DATSET

This second dataset is easily accessible by anyone with access to SAS®. It is a sample dataset titled
“lipids”. The background to this sample dataset states that it is from a study to investigate the
relationships between various factors and heart disease. In order to explore this relationship, blood lipid
screenings were conducted on a group of patients. Three months after the initial screening, follow-up data
was collected from a second screening that included additional information such as gender, age, weight,
total cholesterol, and history of heart disease. The outcome variable of interest in this analysis is the
reduction of cholesterol level between the initial and 3-month lipid panel or “cholesterolloss”. The
predictor variables of interest are age (age of participant), weight (weight at first screening), cholesterol
(total cholesteroal at first screening), triglycerides (triglycerides level at first screening), HDL (HDL level at
first screening), LDL (LDL level at first screening), height (height of participant), skinfold (skinfold
measurement), systolicbp (systolic blood pressure) diastolicbp (diastolic blood pressure), exercise
(exercise level), and coffee (coffee consumption in cups per day).

To begin our analysis, we will first explore the dataset, just as we did in the earlier example:

/* Example of Multicollinearity Findings */

libname health
"C:\ProgramFiles\SASHome\SASEnterpriseGuide\7.1\Sample\Data";
data health;

set health.lipid;

run;

proc contents data=health;
title "Health Dataset with High Multicollinearity”;
run;

For the sake of time, we will skip the thorough investigation of the relationships between the different
variables in the dataset. Instead, we want to concentrate on the impending incidence of multicollinearity
and how to combat it. Therefore, we will then test for multicollinearity using the procedures outlined earlier
and review the results:

/* Assess Pairwise Correlations of Continuous Variables */

proc corr data=health;

var age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;

title "Health Predictors - Examination of Correlation Matrix”;
run;

proc reg data=health;
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model cholesterolloss = age weight cholesterol triglycerides hdl 1dl

height skinfold systolicbp diastolicbp exercise coffee / vif tol

collin;

title "Health Predictors - Multicollinearity Investigation of VIF and
Tol " ;

run;

Below you will find a clip of the correlation procedure results:

Pearson Correlation Coefficients
Prob = [r| under HO: Rho=0
Number of Observations

Age | Weight Cholesterol | Triglycerides HDL LDL | Height Skinfold | SystolicBP | Di licBP | Exercise | Coffee | CholesterollLoss

Age 1.00000  0.08935 0.26262 0.21167 | 0.20310 | 0.21566 -0.02080 0.10625 0.02384 0.06384 | -0.12193 | 0.25089 0.09914
0.3892 0.0101 0.0395 00484 00356 08414 03055 0.8186 05388 02392 00142 0.5270

95 95 95 95 95 95 95 95 95 95 95 95 43

Weight 0.08935  1.00000 -0.02188 0.10757 | 0.27555 | 0.05743  0.69794 0.07427 0.15740 0.13627 | 0.03254  0.05720 -0.24221
0.3892 0.8333 0.2994  0.0069 05804 <0001 04744 0.1277 0.1879 0.7542  0.5819 0.1176

95 95 95 95 95 95 95 95 95 95 95 95 43

Cholesterol 0.26282 -0.02188 1.00000 0.40081 | 0.35246 | 096170 -0.07521 0.07588 -0.04103 0.15969  0.01305 -0.01157 040318
0.0101 08333 <0001 0.0005 <0001 04688 04649 0.6930 01221 0.9001 09114 0.0073

95 95 95 95 95 95 95 95 95 95 95 95 43

Triglycerides 0.21167 | 0.10757 0.40081 1.00000 -0.27838 0.48304 0.04071 0.09292 0.14545 0.14073 1 -0.11162  -0.00350 0.11396
0.0395 02994 =.0001 0.0063 <0001 06953 03704 0.1596 01737 02815 0.9TH 0.4669

95 95 95 95 95 95 95 95 95 95 95 95 43

HDL 0.20310  -0.27555 0.35246 -0.27838 | 1.00000 0.08340 -0.24465 0.11116 -0.06008 0.02410 | -0.03055 = 0.10955 0.19099
0.0484  0.0069 0.0005 0.0063 04217 0.0169  0.2835 0.5630 0.8167  0.7688  0.2906 0.2199

95 95 95 95 95 95 95 95 95 95 95 95 43

LDL 0.21588 | 0.05743 0.96170 0.48904 = 0.08340 | 1.00000 -0.00777 0.04547 -0.03028 0.16118 | 0.02672 -0.04585 0.37389
0.0356 0.5804 <.0001 <0001 04217 0.9404 06617 0.7708 01187 07972 0651 0.0135

95 95 95 95 95 95 95 95 95 95 95 95 43

Height -0.02080 | 0.69794 -0.07521 0.04071  -0.24465 -0.00777  1.00000 -0.13762 0.08432 0.06327 = 0.00521  0.07165 -0.27042
0.8414 <0001 0.4688 0.6953  0.0169  0.9404 0.1835 0.4166 05424 089600 04902 0.0795

95 95 95 95 95 95 95 95 95 95 95 95 43

Skinfold 0.10625 = 0.07427 0.07588 0.09292 1 011116 | 0.04547 -0.13762 1.00000 -0.09901 0.03817 | -0.26581 | 0.07833 -0.03538
0.3055 04744 0.4649 0.3704 02835 06617 01835 0.3398 0.7134  0.0092 0.4505 0.6218

95 95 95 95 95 95 95 95 95 95 95 95 43

SystolicBP 0.02384  0.15740 -0.04103 0.14545  -0.06008 -0.03028 0.08432 -0.09901 1.00000 0.33476  -0.05138  -0.05048 -0.07917
0.8186 01277 0.6930 0.1596 05630 0.7708 04166  0.3398 0.000% 0.6209 06271 0.6138

95 95 95 95 95 95 95 95 95 95 95 95 43

DiastolicBP -0.06384 | 0.13627 0.15969 014073 0.02410 016118 006327 -0.03817 0.33476 1.00000  -0.03647 0.03908 0.13192
05388 01879 0.1221 01737 08167 01187 05424 07134 0.0009 0.7257  0.7069 0.3991

95 95 95 95 95 95 95 95 95 95 95 95 43

Figure 4: Pearson Correlation Results

Upon inspection of these results, one is quickly drawn to the correlation coefficient of LDL and
Cholesterol which values at a whopping 0.96170. We definitely have a case for further collinearity

investigation here. This is further supported in our review of the parameter estimates results for VIF and

Tol:
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Parameter Estimates

Parameter Standard Variance
Variable DF Estimate Error | tValue | Pr=[t|| Tolerance Inflation
Intercept 1 5.72484 | 108.12644 0.05 0.9581 . 0
Age 1 -0.67645 2.20644 -0.31 0.7613 0.32637 3.06405
Weight 1 -0.20743 | 0.27789 -0.75  0.4612 0.32763 3.06224

Cholesterol 1| -182.68577  170.82886 -1.07 | 0.2934 4.326797E-T 2311178
Triglycerides | 1 291187 273231 1.07 02951 0.00034921  2863.60930

HDL 1 182.75031  170.71293 1.07 02929 0.00000516 193966
LDL 1| 183.05303 170.82561 1.07  0.2925 5.113026E-7 1955789
Height 1 -0.18955 1.61295 -0.12 | 0.9072 0.43551 2.29616
Skinfold 1 -0.07347 | 0.53443 -0.14 | 0.8916 0.77820 1.28502

SystolicBP 1 0.07945 0.63738 012 0.9016 0.66694 1.49939
DiastolicBP 1 -0.08111 0.43028 -0.19 | 0.8518 0.66583 1.50130
Exercise 1 0.05167 | 0.058513 0.94 | 0.3562 0.77863 1.28430
Coffee 1 3.99259 3.68202 1.08 | 0.2868 0.44992 2.22261

Figure 5: Tolerance and VIF Investigation Results

In review of the Tolerance results, we can see several variables — namely cholesterol, triglycerides, HDL,
and LDL — having values well below our 0.1 cutoff value. This finding is echoed in review of the Variance
Inflation results, where these same variables reveal values far larger than our 10 cutoff for this column.
For the sake of completeness, we will also review the collinearity diagnostics:

Collinearity Diagnostics
- Proportion of Variation
Number | Eigenvalue Index Intercept Age Weight | Cholesterol Triglycerides HDL LDL Height Skinfold | SystolicBP | DiastolicBP Exercise Coffee
1 11.29489 1.00000 0.00001138 0.00004637 | 0.00006086 1.18985E-10  6.589162E-7 | 2.117859E-9  2.001E-10 0.00001048  0.00096170 0.00002146 0.00011281 0.00154 0.00092480
2 0.68622 4.05704 0.00000331 0.00000701 0.00001442 1.19889E-10 1.143653E-8 2. 18204E-10 4.01922E-10 0.00000233 0.00417  0.00000915 0.00000136 0.14262 0.28041
3 0.47052 4.89952 1.797612E-8 0.00000475 | 0.00006283 1.43701E-10 0.00007230 6.693999E-9 6.81584E-10 7.934101E-7 0.00922 0.00000181 0.00000201 0.35333 0.11353
4 0.27571 6.40053  0.00007350 0.00002441 0.00066563 | 4.12089E-15 0.00024185 6.082316E-8 3.70204E-10 0.00008019 0.05181  0.00011487 0.00038936 0.17610 0.07292
i) 0.14667 8.77543  0.00009651 0.00053911 0.00028359 | 1.554489E-9 0.00000596  7.219312E-8 1.834574E-9 0.00014592 0.77592  0.00026960 0.00215 0.19373 0.00009012
6 0.06145  13.55776 0.00082045 0.00016295 0.02554  4.483083E-8 0.00000217 | 0.00000126 6.61196E-8 0.00162 0.01235 0.00304 0.00411 0.00501 0.00073618
7 0.02723  20.36502 0.00093349 0.00170 0.04781 4.702702E-8 0.00025889  0.00000293 2.825254E-7 0.00015520 0.00302 0.00381 0.02703 0.00765 0.08354
8 0.02089 2325002 0.00003049 0.04483 0.02385 4.595332E-9 0.00004015  0.00000125 4 .865568E-8 0.00044312 0.00851 0.00011118 0.44175 0.01589 0.00722
9 0.00826  36.97981 0.03667 0.00022313 0.32353  7.986649E-9 0.00012325  0.00000321 1.021936E-7 0.00897 0.00304 0.04829 0.21593 0.07217 0.04171
10 0.00535 4593079 0.00836 0.74848 0.10288 1.801143E-8 0.00013411 | 0.00000190 9.625344E-9 0.02801 0.01629 0.00809 0.13539 0.00271 0.23169
1 0.00195  76.09944 0.07125 0.17866 0.11829 2.005126E-8  5.808795E-8 6.652202E-7 2 868043E-8 0.13026 0.00141 0.85602 0.14837  0.00064741 0.16438
12 000085064 11523088 0.87069 0.01200 0.27559 5.802692E-9 0.00002858  1.490124E-7 2 525126E-8 0.70634 0.10713 006251 0.00076513 0.02725 0.00001376
13 9.448677E-9 34574 0.01106 0.01333 0.08142 1.00000 0.99909 0.99999 1.00000 0.12396 0.00617 0.01772 0.02400 0.00133 0.00234

Figure 6: Collinearity Investigation Results

In review of the eigenvalue and condition index association, we can see a large deviation in the final three
factors, with the eigenvalue resulting very close to zero and the condition index resulting quite large in
comparison.

So, we have found a prime case for multicollinearity. Now that we have identified it, what can we do about
it?

COMBATING MULTICOLLINEARITY

Is there an easy way to combat multicollinearity? Yes! All you need to do is drop one of your problem
variables, rerun your analysis to test for further multicollinearity, and if none exist, then you are good to
go! Can we always do this? Of course not. There are just some variables, no matter how highly correlated
they are, that we need to keep in the model for the sake of scientific advancement and model
completeness. If you run into a case where dropping a variable is not an option, you are in luck! There are
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at least two alternative methods of estimation that can be employed. The main two that will be discussed
in this paper are ridge regression and principal component regression.

Ridge Regression

Ridge regression is a variant to least squares regression and is oftentimes used when a multicollinearity
case is identified. The traditional ordinary least squares (OLS) regression produces unbiased estimates
for the regression coefficients, however, if you introduce the confounding issue of highly correlated
explanatory variables, your resulting OLS parameter estimates end up with large variance. Therefore, it
could be beneficial to utilize a technique such as ridge regression in order to ensure a smaller variance in
resulting parameter estimates. Unfortunately, the trade-off of this is that a method such as ridge
regression results in biased estimates. A more thorough review into the assumptions and specifications of
ridge regression would be appropriate if this is a route you would like to take, but for now, we will run
through the example as though we have decided that this is the best course of action:

/* Ridge Regression Example */

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)
outest=rrhealth ridge=0 to 0.10 by .002;

model cholesterolloss = age weight cholesterol triglycerides hdl Idl
height skinfold systolicbp diastolicbp exercise coffee;

plot / ridgeplot nomodel nostat;

title "Health - Ridge Regression Calculation”;

run;

proc print data=rrhealth;
title "Health - Ridge Regression Results®;
run;

A clip of the results produced by this procedure are outlined below:

Health - Ridge Regression Results

Obs _MODEL_ _TYPE_ | _DEPVAR_ _RIDGE_ _PCOMIT_| _RMSE_ | Intercept Age Weight Cholesterol Triglycerides HDL LDL | Height Skinfold | SystolicBP DiastolicBP Exe
1 MODEL1T PARMS | CholesterolLoss . . 27782 57248 -0.67645 -0.20743 -162.69 291 182.75 183.05 -0.18955 -0.07347 0.07945 -0.08111 0.C
2 MODEL1 RIDGEVIF | CholesterolLoss 0.000 . . . 3.06405 3.08224 2311178.32 2863.61 193965.71 1955789.11 | 2.29616 1.28502 149939 150190 1.2
3 MODEL1 RIDGE CholesterolLoss 0.000 . 274782 57248 -0.67645 -0.20743 -182.69 291 182.75 183.05 -0.18955 -0.07347 0.07945 -0.08111 0.C
4 MODEL1 RIDGEVIF | CholesterolLoss 0.002 . . .| 2.95765 2.74482 0.53 255 217 0.94 198441 1.26699 145826 145013 1.2
5 MODEL1 RIDGE ChaolesterolLoss 0.002 .| 27.6892  18.0400 -0.93560 -0.12267 015 -0.01 0.04 022 -0.79704 -0.02847 016709 -0.00780 0C
6 MODEL1 RIDGEVIF | CholesterolLoss 0.004 B B .| 2.89451 268813 051 251 213 091 195803 125712 144402 143484 12
7 MODEL1 RIDGE CholesterolLoss 0.004 .| 276894 181792 -0.92255 -0.12276 0.16 -0.01 0.03 021 -0.79677 -0.02841 0.16401 -0.00589  0.C
8 MODEL1 RIDGEVIF | CholesterolLoss 0.006 . . .| 2.83372 263353 0.50 246 209 089 193237 124746 143010 141993 12
9 MODEL1 RIDGE CholesterolLoss 0.006 .| 276896 18.3156 -0.90977 -0.12284 0.16 -0.01 0.03 020 -0.79650 -0.02837 0.16100 -0.00403  0C
10 MODEL1 RIDGEVIF | CholesterolLoss 0.008 . . . 277514 2.58093 0.49 242 205 0.87  1.90738 1.23799 141649 140841 1.2
11 MODEL1 RIDGE CholesterolLoss 0.008 .| 27.6900 18.4497 -0.89727 -0.12292 0.16 -0.01 0.03 020 -0.79623 -0.02833 0.15805 -0.00221 0.0

Figure 7: Ridge Regression Results

From these results we want to derive the appropriate ridge parameter or “k” to include in the analysis. The
ridge parameter column is labeled _RIDGE_ and the associated values under each variable column are
the new parameter estimates. There are several schools of thought concerning how to choose the best
value of “k”. | recommend reading Dorugade and Kashid’s 2010 paper for more information on this
matter. For the sake of time and brevity, the current paper will simply look at the least increase in
_RMSE_ and a decrease in ridge variable inflation factors for each variable. In order to achieve this, we
need not look far, as the ridge parameter of .002 increases the _RMSE_ only slightly from 27.1752 to
27.6894 and drops the VIF for each of our problem variables to below our 10 cutoff. Therefore, this study
will choose the ridge parameter of .002 for the resulting parameter adjustments which are completed in
the following code:

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)
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outest=rrhealth_final ridge=.002;

model cholesterolloss = age weight cholesterol triglycerides hdl
height skinfold systolicbp diastolicbp exercise coffee;

plot 7/ ridgeplot nomodel nostat;

title "Health - Ridge Regression Calculation”;

run;

proc print data=rrhealth_final;
title "Health - Ridge Regression Results”;
run;

The results of which are the final adjusted model with the multicollinearity issue controlled!

Principal Components Regression

Another way to combat multicollineairty is through Principal Components Regression.

/* Principal Component Regression Example */

proc princomp data=health

out=pchealth prefix=z outstat=PCRhealth;

var age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee;

title "Health - Principal Component Regression Calculation®;
run;

The results from this procedure are as follows:

Eigenvalues of the Correlation Matrix

idl

Eigenvalue | Difference | Proportion | Cumulative Scree Plot Variance Explained
1| 248956585 0.46788004 0.2075 0.2075 28 o o
2| 202168581  0.49008701 0.1685 0.3759
2.0 0.8 -
3| 163159881 | 027585212 0.1276 0.5036
4| 125574669 010608628 0.1046 06082 = 15 S 08 o
z = o
5| 1.14966041 | 0.21116409 0.0958 07040 g 5 :
o 10 o 04 =
6| 093849633 | 0.12548045 0.0782 0.7822
7| 081301588 | 0.13686385 0.0678 0.8500 0.5 0.2 \&
Tt
8| 067615203 | 015358194 0.0563 0.9063 -
0.0 0.0 —
9| 052257008 015598914 0.0435 0.9499 i 5 8 10 1o s 4 s 8 10 1
10| 0.36658094 | 0.13165403 0.0305 0.9804 Frincipal Companent Principal Component
11| 023492691 | 023492664 0.0196 1.0000 o Cumulative
12| 0.00000026 0.0000 1.0000 S— Proportion

Figure 8 & 9: Principal Component Analysis Results

The main points we want to pull from these analyses are from the eigenvalues of the correlation matrix
and a general review of the scree plot. Through these reviews we want to decide on the number of factors
to keep for our final model. There are several schools of thought on how to choose this number, one
school of thought being that any factor with an eigenvalue higher than 1.000 can remain in the model as it
explains at least 1 variable’s worth of information. If we were to go by this school of thought, our resulting
model would include 5 factors and would be written like this:

/* With Eigenvalue Cutoff of 1.0000 */

proc reg data=pchealth;

model cholesterolloss

z1 z2 z3 z4 z5 / VIF;
title "Health - Principal Component Regression Adjustment®;

10
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run;

However, there is another school of thought which utilizes a parallel analysis criterion in order to
determine the appropriate number of factors to use in a model. The theory behind this school of thought
explains that the eigenvalue obtained for the Nth factor should be larger than the associated eigenvalue
computed analyzing a set of random data. The program associated with this school of thought is easy to
obtain and available for public use via the site: https://people.ok.ubc.ca/brioconn/nfactors/parallel.sas. A
sample of the user specifications indicated for this example are outlined below, though the program itself
covers many more lines of code:

/ Parallel Analysis Program /
options nocenter nodate nonumber linesize=90; title;
proc iml;

reset noname;

/* enter your specifications here */

Ncases = 95;

Nvars = 12;

Ndatsets = 100;

percent = 95;

/* Specify the desired kind of parellel analysis, where:

1 = principal components analysis

2 = principal axis/common factor analysis */

kind = 1 ;

/* When seed = 0, the clock is used as the seed for the random
number generations. This produces different random numbers

on different runs of the program. To use the same random numbers on
different runs of the program, set seed to a value

other than 0 */

seed = 0;

The results of this analysis are available below and a copy of my previous analysis results are located to
the right for comparison:

Random Data Eigenvalues
Eigenvalues of the Correlation Matrix

Root| Means Prcntyle Eigenvalue Difference | Proportion  Cumulative
1.000000 1.621344 1.750526 1| 248956585 046788004 0.2075 0.2075
2.000000 1.451561 1.559002 2| 202168581 049008701 0.1685 0.3759
3.000000 1.315314 1414883 3| 153159881 0.27585212 0.1276 0.5036
4.000000 1.197585 1.265765 4| 125574669 010608628 0.1046 0.6082
5.000000 1.098348 1.165495 5| 1.14966041 021116409 0.0958 0.7040
6.000000 1.010359 1.079955 6| 093849633 012548045 0.0782 0.7822
7.000000 0.926823 1.004203 7| 0.81301588  0.13686385 0.0678 0.8500
8.000000 0.844350 0910322 8| 067615203 015358194 0.0563 0.9063
9.000000 0.765708 0.825356 9| 052257008 015598914 0.0435 0.9499

10.000000 0677576 0.731967 10 | 0.36658094 | 0.13165403 0.0305 0.9804
11.000000 ' 0.591609 0.666711 11| 0.23492691 | 0.23492664 0.0196 1.0000
12.000000 0.499424 0.582079 12 0.00000026 0.0000 1.0000

Figure 10 & 11: Parallel Analysis Results for Comparison to PCA
In comparing these analyses, we want to look at the Prcntyle column of the Parallel Analysis Criterion

results and the Eigenvalue Column of the target model results. In comparison of these results, we see
that the eigenvalues for factor numbers 1-3 are all greater than the Prcntyle specified by the Parallel

11
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Analysis Criterion, however, all factors after those first three fall short. Therefore, according to this school
of thought, we should only keep 3 factors in our final model. This makes the final multicollinearity-adjusted
model look like this:

/* After Parallel Analysis */

proc reg data=pchealth;

model cholesterolloss = z1 z2 z3 / VIF;

title "Health - Principal Component Regression Adjustment”;
run;

Either way you decide, you have combated multicollinearity in your final model!

CONCLUSION

Multicollinearity, if left untouched, can have a detrimental impact on the generalizability and accuracy of
your model. If multicollinearity exists the traditional ordinary least squares estimators are imprecisely
estimated, which leads to this inaccuracy in your judgment as to how each predictor variable impacts your
target outcome variable. Given this information it is essential to detect and solve the issue of
multicollinearity before estimating the parameters based on a fitted regression model.

Detecting multicollinearity is a fairly simple procedure involving the employment of VIF, Tol, and Collin
model options. The CORR procedure is also useful in multicollinearity detection. After discovering the
existence of multicollinearity, you can take one of three easily conducted roads: (1) drop a variable, (2)
employ ridge regression, or (3) employ principal components regression. Through the steps outlined in
this paper, one should be able to not only detect any issue of multicollinearity, but also resolve it in only a
few short steps!
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