PharmaSUG 2018 - Paper AA-05

Build Models without Code with the new SAS® Viya® Visual Interface
Jim Box, SAS Institute

ABSTRACT

SAS has made it even easier to build statistical and machine learning models with a new visual
interface. See how to partition data, build and compare multiple models without writing any code. Learn
how to export model and scoring code for future use.

INTRODUCTION

The new SAS Viya visual interface makes it very easy to build and compare several types of models. Itis
an excellent tool to use when investigating potential models and performing discovery on your endpoints
of interest. There are multiple ways to create models: through tasks from SAS Studio, a model building
interface that is very similar to SAS Enterprise Miner, and through a visual exploration of the data. For
this paper, we will focus on the visual exploration approach. Figure 1 shows the SAS Home page with
tiles for actions we can take; we’ll use the Explore and Visualize Data button to get started.

= SAS® Home

™ Browse =+ Shortcut + Tile

Manage

D Visualize

Data

[ELETT] : .
Environment

‘ Explore and *

Build . Manage .
Models Models

Manage . Manage '
Decisions Workflows

Figure 1: SAS Home Page

DATA PREPERATION
SELECTING AND EXPLORING DATA

Selecting the Explore and Visualize Data tile takes you to the data screen, where we add the data source.
For this example, we will use the SASHELP.HEART data, which has results from the Framingham Heart
Study. Figure 2 shows the data selection screen, and it gives us a count of the number of rows and
columns. We can also get a snapshot of the data in a table to further look at the values.

Build Models Without Code, continued

Open Data Source

Available Data Sources Import 5% HEART y =
o 5 0 @ B Details 3E Samy

A Status "
5 HEART Fy
7 03/06/18 11:24 AM e jimbox cher =
5 HIMSS_DEMO_POST e DeathCause Columns Rows

| 17 5.2K
= ONS_160K AgeCHDdiag
=¥ v double Size
1.4 MB
& LB Sex
- 02/10/18 05:35 PM @ prdesa char Label
Not available
g LB_DM e AgeAtStart
02/08/18 03:03 PM ® prdesa
double

cas-shared-default/Public

A\ Hoight .

Figure 2: Data Selection

The response variable we are interested in is the Status variable — it is an indicator of survival. We'll use
the exploration tools to get an understanding of this response. Figure 3 shows that we select the objects
button from the left menu and select a bar chart, and then select the Status variable to get a distribution of
the responses.

_ Objects i . Data i
Cata s
HEART - B
jel
o I
o o
¥ Graphs
= — 4+ New data item
=) HE
- il Bar Chart i
[#¥ Box Plot v Gategoy
|ﬁ Bubble Change Plot M Blood Pressure Status - 3
|s% Bubble Plot e of
s Bubble Plot M Ceuseof Death - 6
G Butterfly Chart M Cholestero! Status - 4
o rative Time Series Plot
iy Comparative Time Series Plot M Sex-2
| Correlation Matrix

M Smoking Status - &

Dot Plot
DeotPlot M Status -2 —

Dusal Axis Bar Chart =
M Weight Status - 4

&=

Iﬂ Dual Axis Bar-Line Chart

|#| Dual Axis Line Chart ™ Messing

148 Dual Axis Time Series Plot & AgeatDesth

® Gauge ¢ AgeatStart

 Gee Map ¢ Age CHD Diagnosed
B! HeatMap & Cholestero

Figure 3: Create Bar Chart of Status

Build Models Without Code, continued

We can set up the bar chart a variety of ways by choosing different Options and Roles. Figure 4 shows
the results of using vertical bars and showing Data Labels in the Options menu and selecting both
Frequency and Frequency Percent as Measures in the Roles menu. As a result, we see that just over
38% of the records show a status of “Dead.” We would like to explore some different model options and
fits a good model that predicts death as a status for future patients.

Outcome Variable N
Frequency, Frequency Percent by Status <z
Frequency
3,218
3,000 1

1,991

2,000 A
1,000 1

O -
Frequency Percent

61.78%
60% -

38.22%

Alive Dead

Status

Figure 4: Endpoint Breakdown

PARTITIONING DATA

When developing models that will be used for prediction, it's important to evaluate their predictive power.
It's also important to not overfit the data — we want the model to be useful at predicting outcomes for data
that was not part of the construction of the model. To that end, it's a modelling best practice to partition
the data into at least two segments — one to develop the model on (the training data) and one to use to
evaluate the model’s ability to predict outcomes for new observations (the validation data). People
generally use 60-70% of the data to train and the remaining to validate.

If a partition variable exists in the dataset (usually coded as a 0 or 1, randomly assigned), we can identify
the variable as a partition data type, but generally we’ll need to make a partition variable. Figure 5 shows
how we accomplish this. First, we click on the data table and select the “Add partition data item ...”
option. Then we give the partition column a name, tell it that we want to use two partitions, and set the
training partition size to 70%. If we wanted, we could identify the random seed to use to create this
partition; here we will leave it blank.

Now that we have the data selected and partitioned, we are ready to start building models.

Build Models Without Code, continued

Cause of Death - &

M =

m

m

m CJ"‘.’\ 2
m

m

m

Cholesterol Status - 4

Smoking Status - 6
Status - 2

Weight Status - 4

il

Add data source...

Remove data source
Change data source...

Refresh data source

Apply data source filter..

Set unique identifier data item..

Add partition data item...

View measure details...

Add Partition Data lkem

Simple random sampling v
P a m

J E o

= -

70

Figure 5: Partition Creation

MODEL BUILDING

There are several types of models we could build to predict the status variable. For this demonstration,

we will make four different models with the training data, then have the system compare the four models
and tell us which one did the best job correctly predicting the status of patients in the validation partition.
There are two general types of models we might try out: statistical models and machine learning models.

STATISTICAL MODELS

The first approach is to look at some of the traditional statistical models that could be used. Figure 6
shows the different model types we could use. Since our response variable has a binary outcome, we will
use the two main approaches for this type of data: a Decision Tree and a Logistic Regression.

v SAS Visual Statistics

i Logistic Regress
* Model Comparison

Nonparametric Logistic Regression I

Figure 6: Statistical Models

Build Models Without Code, continued

Decision Tree

We start with a decision tree, as it is generally the easiest model to understand. To build the tree we’ll
add a new tab to our exploration, go into the objects menu and select the decision tree in the list we saw
in Figure 6. Next, we go to the Roles tab on the left menu and set the Response variable to Status and
the Partition ID to Partition. Finally, we will select the Predictors we want to consider. Decision trees can
take both category and measure types of variables. It is a best practice to not select multiple variables
that address the same thing. For example, in Figure 7 we are selecting Smoking (measured in number of
cigarettes) but not Smoking Status, which is a category variable made from the smoking variable.

Add Data ltems

©

w

® 0 0O

O 00O

©

0O 0 OE O
XY D Y D Y % v v I 3T

I

lw}

©

Figure 7: Variable Selection

As soon as the variables are selected, the decision tree is generated and output is produced in the tab.

Figure 8 shows the tree. The first split was on age, indicating that this variable was the most important in
predicting the status. The data was cut on the value of age of 46.7, with 62% of patients older than that
having a status of Dead (compared to the overall 38%). Note that we can choose the model comparison
statistic we want to look at. Here we have chosen to look at the misclassification rate in the validation
partition. This is telling us that the model was built on the training data and when it was used to predict
the status of the validation subjects, it was wrong 27.96% of the time. This statistic will be useful when
we are comparing all four models at the end of the process.

Build Models Without Code, continued

Decision Tree Status (event=Dead) Validation Misclassification Rate 0.2726 Observations Used 5,209

Tree .
=
AgeatStart Choose a
Model
Summary
Statistic
Age at Start Blood Pressu...
- Sex - S...
Age at... Bloo@d Pr.. Ch... -

Status
B Alive B Dead

Figure 8: Decision Tree

Logistic Regression

The next model we will build will be a logistic regression. We could add a new tab and then assign roles
like we did with the decision tree, but we have a shortcut available to us that makes it easier.

Figure 9 shows the way to do this; to get to that menu, we will click on the three vertical dots we see at
the top right on the decision tree we see in Figure 8 (this three-dot menu is sometimes called the
snowman menu). When the menu pops up, hold down the ALT key and the “Duplicate as” selection
becomes “Duplicate on New Tab as”. Here we will select Logistic Regression, and all the Response,
Predictors and Partition selections we made on the Decision Tree will be copied onto the Logistic
Regression roles in a new tab. If we did not hold down the ALT key, Logistic Regression output would
have been added below the Decision Tree, which makes it hard to see both models.

Build Models Without Code, continued

Choose event level...

xn
o

Hold ALT key Remove all role assignments
and this will
Duplicate on Add title I
new Page Beleia
Duplicate
& Cluster Duplicate as >

4, Forest Create pipeline...

& Generalized Additive Model Save image

| Generalized Linear Model Export data...

4, Gradient Boosting Export model...

[# Linear Regression Derive predicted...

| Logistic Regression Derive a leaf ID variable g
% Neural Network Change Decision Tree to >

B Nonparametric Logistic Regression

E2 Support Vector Machine
T —

Figure 9: Duplicate Models

The Logistic Regression output is shown in Figure 10. We have selected the same validation
misclassification rate to be the model statistic; it's a little better than the Decision Tree. Remember that a
logistic regression model requires that there be no missing values in any of the selected predictors; any
patient with a missing value is excluded. In this case, that meant we had to throw away 170 of the
patients. That’s a small number here, but it is important to consider when we are looking at other
datasets.

Logistic Regression Status (event=Dead) Validation Misclassification Rate (Event) 0.2710
Observations Used 5,039 Unused 170

Fit Summary

Logistic regression
only uses complete

Age at Start

g cases
Blood Pressure Status
Sex
Height 0.4 0.6
Cholestero Predicted Probabili
Weight
Lift
Cumulative Lift
1.0 K
= . Percentile g 40 80
0.1 0.001 <0.00001 EAIten RRing
p-value Mode| ==

Figure 10: Logistic Regression

Build Models Without Code, continued

MACHINE LEARNING MODELS

In addition to the traditional statistical models, we also can use some of the more advanced machine
learning models. Figure 11 shows the types of machine learning models that are available. They will
often have less restrictive assumptions than do the statistical models, and it is helpful to read up on how
they work before considering them as candidate models. Here we will use two of the most commonly
talked about machine learning models: Gradient Boosting and Neural Networks.

e
e
[n)
o
o
0
w
o
o
>
Q

B &
Z
T
o
P
D
(o]
,

Figure 11: Machine Learning Models

Gradient Boosting

Gradient Boosting is a popular machine learning technique for this type of classification problem. It's a
complex model, but for our purposes, we can think of it a as a technique that uses a bunch of different
decision trees to make a better, combined predictive model. We won’t get into the discussion of how to
tune parameters here, but the Options menu gives us a great deal of control over how the model is
implemented. We’'ll just stick with the defaults and look at the outputs. Figure 12 shows that output; note
that we see the same sort of variable importance that we have in the Decision Tree, and that we can still
look at the Validation Misclassification Rate.

Gradient Boosting Status event=Dead Validation Misclassification Rate 0.2924 Observations Used 5,209

Variable Importance

Figure 12: Gradient Boosting

Build Models Without Code, continued

Neural Networks

The final model we will add is probably the most complicated: the Neural Network. A high-level view of a
Neural Network is that is a collection of nested regressions to get to the predicted variable. Like the
Gradient Boosting model, we can just use the model defaults for this exercise, but there are a variety of
options we could adjust to try to fine-tune the network.

As before, we can see the Validation Misclassification Rate in Figure 13. Notice that this model also
requires complete cases, and 170 observations were not used.

Neural Network Status (event=Dead) Validation Misclassification Rate | 0.2730 Observations Used 5,039 Unused 170
Network Iteratic
Objectiv
. N
3
N
N
0
0
Life
Cu
2.8
2.
1.t
Weight 1.0
0.4943 '@ I 04943 '- EEE——— Percentil
0.0369 .0.4943 0.4933 0-0312 -0.4943 0.4933 Partitio!
Neuron Absolute Average Neuron Average Link Absolute Link

Figure 13: Neural Networks

MODEL SELECTION & SCORING

Now that we have created four candidate models, it's time to do a model comparison. Figure 14 shows
the process. First, we add a new tab to the exploration, then select the Objects menu on the left. In the
Visual Statistics menu, select Model Comparison, and a dialog box pops up. The data source, Partition,
Response, Event Level and Group By selections are all made by default to match the first model. All
models that match that criteria show up in the Available Models section (you cannot compare a model
that has a validation partition with one that does not, for example). Here we selected all, and the results
were added to the tab.

Build Models Without Code, continued

Bbicas : Add Model Comparison
bjects :
Data source AT
HEART =
0
[0 Container Use validation partition »
[l Data-Driven Content Reisenia
- e Status ¥
Image
® Prompt Container v lewet Dead »
T Text B
Group by
€ Web Content
v SAS Visual Statistics Available models
Y Cluster
{3, Decision Tree Select all
& Generalized Additive Mode
i, Decision Tree 1
WY Generalized Linear Model
T am— [Logistic Regression 1
% L r ressic
lit. Logistic Regression & Gradient Boosting 1
it Logist ar r
8. ModelComparison F Neural Network 1
Bl Nonparametric Logistic Regression I Model Comparison: Compares predictive models with matching criteria.

Figure 14: Model Comparison Setup

The model comparison results are show in Figure 15. Also note that by right-clicking on any of the model
bars, we can change the statistic we use to compare the models. There are several available, on both
the training and the validation partition. We’ve chosen the Validation Misclassification Rate, since an
accurate prediction is how we want to select the final model.

Validation Cumulative % Captured
Model Comparison Status (event=Dead)

Validation Cumulative % Events
Fit Statistic Validation Cumulative Lift
slidation F1 Scor
Validation: Misclassification Rate (Event) Validetion £ Score it

Validati

25
20
Validati
Fit statistic > Training > v Validation Misclassification Rate (Event)
- Validation Tat
015 Validation > Validation Tau
10

Decision Tree 1 n1 Gradient

Model =D

Figure 15: Model Comparison Results

10

Build Models Without Code, continued

Based on our model selection criteria, the Logistic Regression is the winner. Note that there is not a lot of
difference between these selections, so if we had a valid reason, we may choose to implement a different
model. The two statistical models are much easier to explain and implement than the two machine
learning models, so that may be an important factor. Decision Trees (and Gradient Boosting) allow for
missing values, so if we have a concern about future data missing some values, we may make that a key
component of the choice. The model selection decision should be a combination of statsitical and
practical decisions. Once we have made that decision, we can export the score code and set up a
process to implement it for future observations. As Figure 16 shows, right-click on the bar and select
Export Specific Model.

Model Comparison Status (event=Dead)

Fit Statistic

Validation: Misclassification Rate (Event)

Export selected model...

Model

Figure 16: Exporting Models

Once the export has been selected, the box in Figure 17 appears. This contains the SAS code that would
be applied to new observations and would generate a predicted value for Status. We would use this to
evaluate new patients who were being seen and evaluated for risk of death. Once we have observed
several more outcomes, we could redo the entire process with the old and new data and refresh our
models.

11

Build Models Without Code, continued

Export Mode
1 /e e
2 The options statement below should be placed
3 before the data step when submitting this code.
5 options VALIDM ND VALIDVAR
7 Generated SAS Scoring Code
8 Date : 11Mar2018:11:12:51
9 : en_US
10 : Logistic Regression
11 le: AgeAtStart(Age at Start)
12 le: Cholesterol
13 e: Smoking
14 Weight
15 : Height
16 : Status
17 : BP_Status(Blood Pressure Status)
13 : Sex
19 Response : Status
20 Distributi Binar
21 Link Function Logit
24 Generated SAS Scoring Code
25 Date: 11Mar2018:11:12:51
26 | e *
27
28
29
31

Figure 17: Exporting Code

CONCLUSION

The new SAS Viya interface makes it very easy to produce, evaluate and export models. There are
options for traditional statistical methods and for newer, more complex machine learning models. Users
can have a lot of control over the model options, or they could accept the defaults provided. There are
other ways to build models without code in this interface (see the Build Models tab on Figure 1), but the
Visual Exploration method is the easiest way to interact with complicated models.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jim Box
SAS Institute
Jim.Box@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

12

