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ABSTRACT  

Many times, statistical programmers cannot implement deep analyses of clinical data without advanced 
statistical knowledge, and answers to their questions may be too simple to bother the statisticians for 
help. In the article we address a few of the statistical issues programmers often face. Mastering these 
methods allows deeper understanding of the clinical data and may even help in detecting inconsistencies 
in the data analysis 

INTRODUCTION  

Among numerous of problems which appear in the clinical trials data processing, we discuss three main 
issues in this article. The first issue is standard methods of analyzing non-normally distributed data. For 
example, the t-test is widely used to analyze results of clinical trials, and a normal data distribution is 
required for this test. General clinical data is normally distributed but it will be helpful to know what needs 
to be changed if we do not have expected distribution. In an attempt to find out if non-normal distributions 
could cause erroneous results, 10 papers were analyzed in the “Statistical Evaluation of Method-
Comparison Data” article (Gaw Tzu Wu, Stanley L. Twomey, and Ralph E. Thlers, 1975). In three of 
them, data had non-normal distributions but standard methods were used. Moreover, two of these three 
non-normal distributions directly influenced the result. Since any errors in the results are unacceptable in 
clinical trials, we suggest a general approach to analyze both normally and non-normally distributed data. 
Additionally, in some cases a by-variable analysis (e.g., by visit) is needed and normality should be 
checked for every value of this variable. The suggested part of the program implements this analysis in 
SAS® and is suitable for any type of distribution. 

Another issue reviewed in this paper is related to the Kaplan-Meier approach, which is often used in 
efficacy analyses. The Kaplan-Meier survival analysis indicates efficiency of the treatment and it involves 
estimations of time to the target event. The common issue that occurs here is why a value of ‘NE’ 
sometimes arises instead of numeric values for the median or quartiles. Typically, in ordinary statistics 
these values always exist, but it is not so with the Kaplan-Meier analyses. In this article we explain why 
quartiles may not exist and provide an algorithm for checking if the results are correct. 

The next question is related to the confidence limits, namely which type of confidence limits is better to 
select: asymptotic or exact. Some procedures calculate both types by default and leaves the choice to a 
programmer. “Exact” sounds better, right? However, in some cases even exact method cannot be reliable 
enough, and in others, difference in results of asymptotic and exact methods is not significant whereas 
asymptotic is much more clear. We discuss different methods, their advantages and limitations, and give 
recommendations on using some of them. 

HOW TO CHOOSE A TEST 

The purpose of this section is to provide an algorithm of analyzing data depending on its distribution. In 
efficacy analyses, we compare the effect of the investigated treatment between groups. Most often to find 
out if a difference exists, confidence intervals for a difference of means or a difference of proportions are 
calculated, which is equivalent to testing of hypothesis of means equality. We analyze some parameters 
for each group, e.g. results of laboratory tests. Therefore, we consider categorical variable (e.g. treatment 
group) as input variable and quantitative variable (e.g. a laboratory test result) as outcome variable. In 
addition, we assume that data are mutually independent and study design should guarantee it. 

There are two types of tests: parametric and non-parametric. Parametric tests make an assumption about 
data distribution. This is often the assumption about normality of data distribution. The widely used t-test 
is parametric and it requires the data to be normally distributed. Non-parametric tests are also called 
“distribution-free”, thus they can be applied both to normally and non-normally distributed data. Then you 
may ask why do we not use non-parametric tests in all cases? There are a couple of reasons and the 
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most significant one is that parametric tests have more statistical power than their non-parametric 
equivalents. In other words, they are more likely to detect a significant difference when it truly exists. 

Let us formulate steps to provide the most suitable analysis assuming data independence: 

1. Check data for distribution normality; 

2. Depending on the first step result, select the best-fit test; 

3. Realize this approach in SAS®. 

The first step can be easily implemented using the CAPABILITY procedure. It performs the Shapiro-Wilk 
test which checks hypothesis on data distribution normality. As was mentioned in the introduction, we 
would like to produce a by-variable analysis. It means that normality should be checked for each value of 
by-variable. The following PROC CAPABILITY step performs appropriate analysis: 

proc capability data = &dsin. normaltest outtable = _PROBN_; 

   by &arm. &byvar.; 

   var &var.; 

run; 

In the above code, the NORMALTEST option makes the PROC CAPABILITY perform the Shapiro-Wilk 
test. It tests null hypothesis that data sample came from normally distributed population. The 
OUTTABLE= option creates the data set _PROBN_ which contains all calculated statistics including p-
value for normality test. Values of the variable _PROBN_ mean p-value for Shapiro-Wilk test. In case 
when the _PROBN_ variable is less or equal 0.05, we can reject null hypothesis and handle our data as 
non-normally distributed. In other cases, we can apply tests that require normal distribution of data. 

To perform the second step, it is necessary to identify non-parametric tests equivalent to well-known 
parametric ones. We consider two cases: when input variable has two and more than two categories. In 
the Table 1 below the most common tests for each set of the variables are presented: 

 

Outcome variable 

Normal Non-normal 

In
p

u
t 

v
a
ri

a
b

le
 2 values Student’s t-test 

Wilcoxon-Mann-
Whitney 

>2 values 
Analysis of variance 

(ANOVA) 
Kruskal-Wallis 

Table 1: Statistical hypothesis depending on number of input variable values and outcome 
variable distributio 

Note that this table is just a guide, and each real case should be considered separately.  

Now let us take a look at the tests requirements and realization. 

THE STUDENT’S T-TEST  

The Student’s t-test tests null hypothesis that the means of two populations are equal. Its assumptions 
are as follows:  

 Each of the two populations being compared should follow a normal distribution. 

 The two populations being compared should have the same variance. If the sample sizes in the two 
groups being compared are equal, the Student's t-test is highly robust to the presence of unequal 
variances.  

 The data used to carry out the test should be sampled independently from the two populations being 
compared. In general, this is not testable from the data, but if the data are known to be dependently 
sampled (that is, if they were sampled in clusters), then the classical t-tests discussed here may give 
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misleading results. 

We assume that the PROC CAPABILITY has already checked normality of distribution.  

The TTEST procedure envisages case of unequal variance. For this purpose the COCHRAN option might 
be added to the PROC TTEST statement in order to use the Cochran approximation. Anyway, the 
Satterthwaite approximation for unequal variances is included by default. 

   proc ttest data = &dsin.; 

      class &arm.; 

      var &var.; 

   run; 

The study design should guarantee independency of sampling. Population follows all sample constrains, 
i.e. if just women after 30 took part in the study then conclusions spreads just on women after 30. 

THE WILCOXON-MANN-WHITNEY TEST 

The non-parametric equivalent for t-test is the Wilcoxon-Mann-Whitney (WMW) test. The WMW test 
checks null hypothesis about equality of distributions of both populations. These are following general 
assumptions for it: 

 All the observations from both groups are independent of each other. 

 The responses are ordinal (i.e., we can compare values and say which one of two observations is the 
greater) 

As previously, we assume that independence is guaranteed by study protocol. 

Since we consider the quantitative variable as outcome variable, the second assumption is also satisfied. 

Note that this test is non-parametric, therefore the WMW test can be applied to arbitrary distributed data. 

To realize the WMW test we can use the NPAR1WAY procedure with some options: 

proc npar1way data = &anl wilcoxon; 

   class &arm.; 

   var &var.; 

run; 

In the PROC step above the WICOXON option is used to provide the WMW test for the analysis variable. 
In addition, this option includes the Kruskal–Wallis analysis by default. 

The two previously discussed tests perform comparison of two populations. The following tests are 
applied for two or more population comparison. 

ONE-WAY ANALYSIS OF VARIANCE 

One-way analysis of variance (ANOVA) tests the null hypothesis that two or more samples are drawn 
from populations with equal means. This technique can be used only for numerical outcome variable, and 
numerical or (usually) categorical input variable. ANOVA is “one-way” because we examine the influence 
of one input variable on one dependent variable. These are the following assumptions for this test: 

 Outcome variable residuals are normally distributed (or approximately normally distributed). 

 Variances of populations are equal. 

 Outcomes for each group are independent and identically distributed normal random variables, i.e. 
each random variable has the same probability distribution as the others and all are mutually 
independent. 

Several procedures are available to realize ANOVA in SAS®, and the ANOVA procedure is widely used 
for this purpose. The PROC ANOVA handles balanced data (that is, data with equal numbers of 
observations for every combination of the classification factors), whereas the procedures like the GLM 
procedure can analyze both balanced and unbalanced data. Because the PROC ANOVA takes into 
account the special structure of a balanced design, it is faster and it uses less storage than the PROC 
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GLM for the balanced data. The PROC NPAR1WAY also realizes a standard analysis of variance on the 
raw data. Which procedure is better to use should be decided for specific data. We suggest using the 
PROC NPAR1WAY because it is the most convenient for our purpose. 

proc npar1way data = &anl anova; 

   class &arm.; 

   var &var.; 

run; 

In this code the ANOVA option produces one-way analysis of variance for the variable specified in the 
VAR statement. 

THE KRUSKAL–WALLIS TEST 

The Kruskal–Wallis test by ranks is a non-parametric method for testing whether the sample medians are 
equal. It does not require equal sample sizes or normal distribution. However, there are the following 
simple assumptions: 

 Outcome variable should be measured at the ordinal or continuous level. 

 Input variable should consist of two or more categorical independent groups.  

 Independence of observations, which means that there is no relationship between the observations in 
each group or between the groups. 

This test is non-parametric, therefore the data can have non-normal distribution. However, if we can make 
the less stringent assumptions of an identically shaped and scaled distribution for all groups, except for 
any difference of medians, then the Kruskal-Wallis test compares medians for different groups. 
Otherwise, just mean ranks of the groups can be compared. 

The PROC NPAR1WAY realizes the Kruskal-Wallis test the same as the WMW test: 

proc npar1way data = &anl wilcoxon; 

   class &arm.; 

   var &var.; 

run; 

As we mentioned above the WOLCOXON option implements the Kruskal-Wallis test in case when the 
variable specified in the CLASS statement has more than two levels. 

We have described variants of analyses depending on type of the data distribution. Therefore, now we 
can see that non-parametric tests also have requirements, but generally, they are easier to follow. It is 
necessary to remember that the incorrect test or non-fulfillment of the test requirements can lead to 
erroneous conclusion, which is unacceptable in clinical trial analyses. Next, we propose general part of 
code that implements analysis depending on normality in the first item in the Additional Materials. 

THE KAPLAN-MEIER APPROACH IN EFFICACY ANALYSIS 

The Kaplan-Meier survival analysis, or product-limit estimator, is commonly used in processing of clinical 
trials results to handle time to event. E.g. in oncology studies it is often used to measure the fraction of 
patients living for a certain amount of time after treatment. The time starting from a defined point to the 
occurrence of event is called survival time. For subjects for whom the event does not occur before the 
end of the study, or was lost to follow up, or was drug withdrawn etc., the date of event is censored, i.e. is 
set to the date predefined by the protocol, and the survival time is calculated relatively to the censored 
date. For analysis, a set of data pairs for each subject that contains time to event (or time to censoring) 
and the subject’s status (event occurrence or censored) is required. The survival analysis includes the 
plot with survival curve and several statistics. We are interested in the median and quartiles because they 
differ from corresponding sample statistics. In some cases the value of “NE” appears instead of numerical 
value of the median or quartile, whereas the sample median and quartiles always exist. Next, we 
formulate an analytical consideration for calculating target statistics and find out the reason of “NE” 
appearance. 

Let 𝑡1 <  𝑡2  <  … <  𝑡𝐷 represent the distinct event times. For each 𝑖 = 1, … , 𝐷, denote the number of 
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surviving units as 𝑛𝑖. It means that 𝑛𝑖 subjects are at risk prior the time point 𝑡𝑖. Let 𝑑𝑖 be the number of 

events at 𝑖th time point.  

Then the product-limit estimator is given by the statement: 

𝑆̂(𝑡𝑖) = ∏ (1 −
𝑑𝑗

𝑛𝑗

)

𝑖

𝑗=1

 

This estimator is right continuous, i.e. events at 𝑖th time point are included in 𝑆̂(𝑡𝑖). 

The first quartile (or the 25th percentile) of the survival time is the time point beyond which 75% of the 
subjects in the population are expected to survive. Estimation of the first quartile is: 

𝑞0.25 = min {𝑡𝑖|𝑆̂(𝑡𝑖) < 0.75} 

If product-limit estimate is exactly equal to 0.75 at all interval from 𝑡𝑗 to 𝑡𝑗+1, the first quartile is set to (𝑡𝑗 +

 𝑡𝑗+1)/2.  

If 𝑆̂(𝑡𝑖) > 0.75 for all values of 𝑖 then the first quartile cannot be estimated. That is the reason why the first 

quartile does not exist. Next, we discuss it in more details below. 

The general formula for estimating the 100𝑝 percentile is: 

𝑞𝑝 = min {𝑡𝑖|𝑆̂(𝑡𝑖) < 1 − 𝑝} 

Therefore, the median and the third quartile correspond to 𝑝 = 0.5 and 𝑝 = 0.75.  

With just the expression above we cannot predict non-existence of the quartile form the data. For this 
purpose, we formulate and prove the theorem about correlation between the number of events and 
existence of quartiles.  

Theorem: if 100𝑝 percentile does not exist then the total number of events is less then 100𝑝% of the 

subject number in population. In the symbols for 25th percentile it looks as follows: 

∏ (1 −
𝑑𝑗

𝑛𝑗

)

𝑖

𝑗=1

> 0.75 for each 𝑖 = 1, … , 𝐷 ⇒  ∑
𝑑𝑗

𝑁

𝐷

𝑗=1

< 0.25  

To prove this equivalence we prove the equality:  

∑
𝑑𝑗

𝑁

𝐷

𝑗=1

= 1 − ∏ (1 −
𝑑𝑗

𝑛𝑗

)

𝐷

𝑗=1

 

Let 𝑁 to be the number of subjects in the population. Then the number of subjects live up to the first time 
point 𝑡1 equals to 𝑛1 = 𝑁. For each 𝑖 = 1, … , 𝐷 number of subjects live up to the time point 𝑡𝑖+1 equals to 

𝑛𝑖+1 = 𝑛𝑖 − 𝑑𝑖.  

The product-limit estimator for the time point 𝑡𝑖 equals to: 

𝑆̂(𝑡𝑖)  =  ∏ (1 −
𝑑𝑗

𝑛𝑗

)

𝑖

𝑗=1

 =  ∏
𝑛𝑗 − 𝑑𝑗

𝑛𝑗

𝑖

𝑗=1

 =  ∏
𝑛𝑗+1

𝑛𝑗

𝑖

𝑗=1

 =  
𝑛2

𝑛1

∙
𝑛3

𝑛2

∙∙∙  
𝑛𝑖+1

𝑛𝑖

=
𝑛𝑖+1

𝑛1

 =  
𝑛𝑖+1

𝑁
  

The number of events that happen at the time point 𝑡𝑖 equals to 𝑑𝑖 = 𝑛𝑖 − 𝑛𝑖+1. Consider sum in the left-
hand-side of the target equation: 

∑
𝑑𝑗

𝑁

𝑖

𝑗=1

=
∑ 𝑑𝑗

𝑖
𝑗=1

𝑁
=

𝑑1 + 𝑑2 + ⋯ + 𝑑𝑖

𝑁
=

𝑛1 − 𝑛2 + 𝑛2 − 𝑛3 … + 𝑛𝑖 − 𝑛𝑖+1

𝑁
=

𝑛1 − 𝑛𝑖+1

𝑁
=

𝑁 − 𝑛𝑖+1

𝑁
= 1 −

𝑛𝑖+1

𝑁

= 1 − 𝑆̂(𝑡𝑖) = 1 − ∏ (1 −
𝑑𝑗

𝑛𝑗

)

𝑖

𝑗=1
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Since this equation is satisfied for each 𝑖 = 1, … , 𝐷, then: 

∑
𝑑𝑗

𝑁

𝐷

𝑗=1

= 1 − ∏ (1 −
𝑑𝑗

𝑛𝑗

)

𝐷

𝑗=1

 

The theorem is proved.  

The inverse of the abovementioned theorem is not generally true. The reason is in the data censoring. 
There are several types of censoring, but commonly used in clinical trials is right censoring. Right 
censoring means that a data point is above a certain value but it is unknown by how much. In practice, we 
select subjects for whom an event did not occur. The subject could be lost to follow-up, or discontinued 
from the study, or event did not occur to the end of the study. For them the date of the event is set to any 
date predefined by the protocol such as the date of the last visit or the date of any other event. Time to 
event is calculated from the date of start to follow-up to the date of event when it occurred or the 
censored date when it did not. There is a question if censored dates influence the product-limit 
estimation. Of course, they do, but not in a way we expected.  

Formally, a time point, which corresponds to the censored date, provides 1 as multiplier to the product-

limit estimator (1 −
𝑑𝑗

𝑛𝑗
=  1 −

0

𝑛𝑗
= 1). 𝑆̂(𝑡) is not calculated at these points at all, whereas number of the 

censored dates affects the estimation for the next point. An event does not occur at the censored point, 
but the patient is still not included in the estimation for the next point. Let us remind some designations: 
we consider 𝑁 subjects, 𝑛𝑖 equals to the number of subjects alive just prior the time point 𝑡𝑖, and 𝑑𝑖 

equals to the number of events at 𝑖th  time point. In the Table 2 below there is an example illustrated how 
censoring influences the median existing: 

Time point 

* - censored 
𝒏𝒊 𝒅𝒊 (𝟏 −

𝒅𝒊

𝒏𝒊

) ∏ (𝟏 −
𝒅𝒋

𝒏𝒋

)

𝒊

𝒋=𝟏

  

12 10 1 0.9 0.9  

16* 9 0 1   

21 8 1 0.875 0.7875  

25* 7 0 1   

26 6 1 0.833 0.656 - 25th percentile 

29* 5 0 1   

30 4 1 0.75 0.492 - 50th percentile 

32* 3 0 1   

33* 2 0 1   

35* 1 0 1   

Table 2: An example illustrates how censored values influence the product-limit estimation 

In this example, the number of subjects equals to 10, the number of events – 4. The percentage of events 

100 ∙
4

10
= 40% which is less than 50, but the 50th percentile exists and equals to 30. This happens 

because censored values are not concentrated at the end, but mixed up with occurred events. 

Next, we consider an example where we can apply the theorem. 

Assume that we investigate an effect of the treatment in two variants compared with placebo. For this 
purpose, 10 patients were randomized to each treatment group. We calculate time from the 
randomization to the target event. In case when this event does not occur during the study, we use cut-off 
date as censored date of this event. The results of life-test are presented in the Display 1. The first item in 
the Additional Materials generates data set and provides following output. 



Statistician in my Soul. Statistical Questions from SPA, continued 
 

7 

 

Display 1: Output for Time Point Analysis 

The target event occurred for 4 patients in the Active treatment group, 6 patients in the Active+ treatment 
group, and 8 patients among Placebo treated subjects. Since by default percentage for events is 
displayed, we can just look at it and make a conclusion. For the Active treatment 40% of the patients 
have the event, other 60% were censored. The median and the third quartile do not exist, and we know 
this result is correct, because 40% < 50% and 40% < 75%. Next, 60% of the Active+ group have the 
event and 40% were censored. For this group just the third quartile does not exist, therefore 60% < 75%. 
In addition, for the Placebo treatment all quartiles exist, and the percentage of the patients with occurred 
event equals to 80% > 75%. 

As we discussed above the quartiles could exist when the percentage in small, but anyway, if the quartile 
does not exist, now we understand what the reason is. 

CONFIDENCE LIMITS: ASYMPTOTIC VS EXACT 

Let us imagine that we run a procedure to calculate the confidence interval for the proportion. For 
instance: 

proc freq data = anl2 noprint; 

   by TRTGROUP; 

   tables RESP / binomial (level = "Y") out = freqs; 

   output out = datain BINOMIAL; 

run;  

Note that the FREQ procedure with the BINOMIAL option in the TABLES statement requires work around 
to have both levels of analysis variable for every set of variables specified in the BY statement. More 
details about test data for this example are in the second item in the Additional Materials section. 

In the result of performing this PROC step we get the result data set DATAIN which is specified in the 
OUTPUT statement. Table 3 presents this data set. 

Obs 
Treatment 

Group 

Number 
of 

Subjects 

Binomial 
Proportion 

P 

Lower CL, 
Binomial 

Proportion 

Upper CL, 
Binomial 

Proportion 

Exact 
Lower CL, 
Binomial 

Proportion 

Exact 
Upper CL, 
Binomial 

Proportion 

1 Active 10 0.6 0.29636 0.90364 0.26238 0.87845 

2 Placebo 10 0.2 0.00000 0.44792 0.02521 0.55610 

Table 3: Result data set DATAIN of the PROC FREQ procedure with the BINOMIAL option 

By default, we get an output that contains both asymptotic and exact confidence intervals. Which one 
should we select, and what is the difference between them?  

The standard Wald asymptotic confidence limits are based on the normal approximation to the binomial 
distribution. The formula for Wald confidence limits is clear: 

𝑝 ̂ ±  𝑧√
𝑝 ̂(1 − 𝑝 ̂)

𝑛
 

Where 𝑝 ̂ = 𝑛𝑆 𝑛⁄  is the sample proportion of successes, and 𝑧 is the 100(1 −
𝛼

2
) percentile of the standard 

normal distribution. 
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However, this approximation is unreliable for small samples and in case when the success probability is 
close to 0 or 1, because it is based on central limit theorem. 

The Clopper-Pearson interval is based on the cumulative probabilities of the binomial distribution, and 
does not approximate distribution, but exactly corrects it. That is why the other name of the Clopper-
Pearson interval is “exact”. The formula for confidence limits is more complicated: 

𝑝𝐿  =  (1 +
𝑛 − 𝑛𝑆 + 1

𝑛𝑆𝐹 [
𝛼
2

; 2𝑛𝑆, 2(𝑛 − 𝑛𝑆 + 1)]
)

−1

 

𝑝𝑈  =  (1 +
𝑛 − 𝑛𝑆

(𝑛𝑆 + 1)𝐹 [1 −
𝛼
2

; 2(𝑛𝑆 + 1), 2(𝑛 − 𝑛𝑆)]
)

−1

 

Where 𝐹[𝛼; 𝑛1, 𝑛2] is the 𝛼th percentile of the 𝐹 distribution with 𝑛1 and 𝑛2 degrees of freedom. 

For the Clopper-Pearson interval for any fixed parameter value, the actual coverage probability can be 
much larger than the nominal confidence level unless n is quite large. For instance, the true coverage rate 
of a 95% Clopper–Pearson interval may be well above 95%. Mostly, it is out of our interests to have the 
confidence interval wider than the nominal coverage, thus another method is preferable. For big 𝑛 even 
Wald interval is better to use.   

A compromise solution is the confidence interval based on inverting the approximately normal test that 
uses the null, rather than the estimated, standard error. It is the Wilson score interval with the formula for 
the confidence limits: 

𝑝 ̂ +
𝑧2

2𝑛

1 +
𝑧2

𝑛

 ± 
𝑧

1 +
𝑧2

𝑛

√
𝑝 ̂(1 − 𝑝 ̂)

𝑛
+

𝑧2

4𝑛2
 

Where 𝑧 is the 100(1 −
𝛼

2
) percentile of the standard normal distribution. 

The Wilson score interval is an improvement over the normal approximation interval in which the actual 
coverage probability is closer to the nominal value. This interval has good properties even for a small 
number of trials and an extreme probability. Moreover, it provides the shorter interval with actual 
coverage probability less then but very close to nominal level.   

There are several more methods for calculating confidence limits for proportion, such as Adjusted Wild 
interval (Agresti-Coull), Jeffreys interval, Arcsine transformation and so on. Which one should be selected 
depends on data, but we can make at least some general recommendation. 

The Wald interval is reliable when 𝑛 is big and 𝑝 ̂ ≈  
1

2
, and it is the clearest and fastest method to 

calculate.  

The Clopper-Pearson interval is more reliable for small 𝑛 and small 𝑝 ̂, but it provides interval with the 
actual coverage probability larger than the nominal. 

The Wilson interval has a much better performance than the Wald interval and the Clopper-Pearson 
interval, the only point is that the actual coverage probability could be less than the nominal level in case 
of small 𝑛.  

CONCLUSION 

We have discussed just a small portion of the issues, which we meet in our work. We hope that our 
recommendations will help to prevent mistakes related to chosen statistical methods. Note that the theory 
we proposed is just a guide, and every set of data should have its own approach. Unified approach is not 
possible, because every study is unique and requires special analyses. It is statisticians’ area of work, but 
we should understand methods and results. In addition, there are cases, which were not covered in this 
article such as other types of input or outcome variable, or other methods for confidence limits 
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computation. These and other issues require additional investigation in the future. 

ADDITIONAL MATERIALS 

1. The following part of program implements comparing of two groups by calculating p-value for the null 
hypothesis about equality of means or medians depending on the distribution. To be able to use this 
code you have to predefine macro variables: MAXVIS = <number of the last analysis visit>, ANL = 
<name of the analysis data set>, ARM = <name of the variable which contains treatment groups 
identifiers>, VAR = <name of the analysis variable>. 

/*create empty data set to save calculated statistics there*/ 

data result; 

run; 

/*create macro to call statistical procedures*/ 

%macro calc_pvalue; 

/*cycle by visit from 1 to maximum number of visit*/ 

%DO visit = 1 %TO &maxvis.; 

    /*check the data at visit for distribution normality*/ 

    data datain; 

        set _PROBN_ (where = (VISITNUM = &visit)); 

        call symput ('pvalue', _PROBN_); 

    run; 

    /*use the test for non-normal distribution*/ 

    %IF &pvalue. LE 0.05 %THEN %DO; 

         proc npar1way data = &anl (where = (VISITNUM = &visit)) wilcoxon; 

             class &arm.; 

             var &var.; 

             output out = statdiff wilcoxon; 

         run; 

         data statdiff; 

             set statdiff; 

             VARIABLE = "&var."; 

             VISITNUM = &visit.; 

             METHOD = "Wicoxon"; 

             PVALUE = P2_WIL; 

         run; 

    %END; 

    /*use the test for normal distribution*/ 

    %ELSE %DO; 

         proc ttest data = &anl. (where = (VISITNUM = &visit)); 

             class &arm.; 

             var &var.; 

             ods output TTests = statdiff ; 

         run; 

         data statdiff; 

             /*keep results assuming equality of variances; otherwise 

               METHOD = "Satterthwaite" can be selected*/ 

             set statdiff (where = (METHOD = "Pooled")); 

             VARIABLE = "&var."; 

             VISITNUM = &visit.; 

             METHOD = "t-test"; 

             PVALUE = PROBT; 

         run; 

    %END; 

    /*keep results of calculations for every visit in one data set*/ 

    data result; 

        set result statdiff; 
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        if not missing(PVALUE); 

        keep VARIABLE VISITNUM METHOD PVALUE; 

    run; 

%END; 

%mend calc_pvalue; 

/*call macro*/ 

%calc_pvalue; 

 

2. Test data for analysis are presented in the Table 4Table 4. The following program performs survival 
analysis and produces an output with statistics. 

Obs USUBJID TRTGROUP RANDDT EXACERB CUTOFF 

1 TEST001 Active 1Jan2015 . 10Mar2018 

2 TEST002 Active 12Feb2015 27Oct2016 10Mar2018 

3 TEST003 Active 10Jan2015 12Oct2016 10Mar2018 

4 TEST004 Active 3Sep2015 . 10Mar2018 

5 TEST005 Active 20Jun2015 3Dec2016 10Mar2018 

6 TEST006 Active 3Mar2016 . 10Mar2018 

7 TEST007 Active 3Mar2015 11Feb2016 10Mar2018 

8 TEST008 Active 11Jan2016 . 10Mar2018 

9 TEST009 Active 27Apr2016 . 10Mar2018 

10 TEST010 Active 13Aug2015 . 10Mar2018 

11 TEST011 Active+ 17Apr2015 . 10Mar2018 

12 TEST012 Active+ 9Apr2016 20Dec2017 10Mar2018 

13 TEST013 Active+ 27Aug2015 1Jan2017 10Mar2018 

14 TEST014 Active+ 11Jan2016 13Jan2018 10Mar2018 

15 TEST015 Active+ 25Mar2015 28Feb2016 10Mar2018 

16 TEST016 Active+ 12Oct2015 . 10Mar2018 

17 TEST017 Active+ 1Sep2015 30May2016 10Mar2018 

18 TEST018 Active+ 23May2015 . 10Mar2018 

19 TEST019 Active+ 30Jun2016 . 10Mar2018 

20 TEST020 Active+ 29Feb2016 18Jun2017 10Mar2018 

21 TEST021 Placebo 1Jan2016 11Apr2017 10Mar2018 

22 TEST022 Placebo 13Apr2016 . 10Mar2018 

23 TEST023 Placebo 13May2015 30Oct2016 10Mar2018 

24 TEST024 Placebo 12Dec2015 11Jun2016 10Mar2018 

25 TEST025 Placebo 22Mar2016 3Nov2016 10Mar2018 

26 TEST026 Placebo 10Sep2015 2Jan2017 10Mar2018 

27 TEST027 Placebo 18Jun2015 . 10Mar2018 

28 TEST028 Placebo 7Feb2015 16Feb2016 10Mar2018 

29 TEST029 Placebo 29Apr2015 8Apr2016 10Mar2018 

30 TEST030 Placebo 16May2015 25Oct2016 10Mar2018 

Table 4: Data set for survival analysis 

/*generate variable for the time to event and censoring flag*/ 

data anl; 

    set asl; 

    if missing(EXACERB) then do; 

        EVENTDT = CUTOFF; 

        CENSFL = 0; 

    end; 

    else do; 

        EVENTDT = EXACERB; 

        CENSFL = 1; 
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    end; 

    TIMETEM = (EVENTDT - RANDDT + 1) / 30.25; 

run; 

proc sort data = anl; 

    by TRTGROUP; 

run; 

/*calculate number of subjects with and without event*/ 

proc freq data = anl;  

 table CENSFL / out = freqs; 

    by TRTGROUP; 

run; 

/*perform survival analysis*/ 

proc lifetest data = anl method = km; 

 time TIMETEM * CENSFL (0) ; 

 by TRTGROUP ; 

    ods output Quartiles = surv; 

run; 

 

3. The following part of the program convert our test data to the needed format and call the PROC 
FREQ to calculate binomial proportions and confidence limits for them. 

/*create analysis data set for the calculating of confidence limits for 

proportion*/ 

data anl2; 

    set anl (where = (TRTGROUP in ("Active", "Placebo"))); 

    if CENSFL = 0 then RESP = "Y"; 

    else RESP = "N"; 

    label TRTGROUP = "Treatment Group"; 

run; 

/*calculate confidence limits for proportion*/ 

proc freq data = anl2 noprint; 

   by TRTGROUP; 

   /*save frequencies to the data set FREQS*/ 

   tables RESP / binomial (level = "Y") out = freqs; 

   /*save binomial statistics to the data set DATAIN*/  

   output out = datain BINOMIAL; 

run; 
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