
1

PharmaSUG 2018 - Paper AD-04

A Linux Shell Script to Automatically Compare Results of Statistical
Analyses

Chen Wang, Shu Zan and Joshua Conrad, Gilead Sciences, Inc. Foster City, CA

ABSTRACT

Double programming is a standard validation method used in statistical programming in the
pharmaceutical industry. With this method, production and validation programmers independently
generate and compare data sets or statistical analyses outputs to ensure their correctness. While the
SAS

®
 COMPARE procedure is readily used to compare data sets, there are no standard tools available to

compare the analytic results in form of tables, figures, and listings (TFL). Generation of a text file in
parallel with each TFL PDF file allows us to compare using programming tools such as the diff command
on Linux systems. However, when the number of TFLs increases, it is time consuming to manually write
the commands and difficult to track the results. To automate this process, we developed a Linux shell
script that automatically retrieves all output files from production and validation directories using regular
expressions, performs diff comparisons, and concatenates the results into a single text file. Options exist
to allow users to select subsets of output files to compare or to ignore case or certain non-critical text
when comparing. The output file consists of a summary section and a details section. The former contains
information on missing files, timestamp violations and mismatched files; while the latter contains detailed
diff results. This script provides an efficient way to compare the TFL outputs from double programming
and to visualize the comparison results. It greatly reduces the cycle time for production to correct any
programming errors, which is especially important when under tight timelines.

INTRODUCTION

In the pharmaceutical industry, the main job responsibility of statistical programmers is to process clinical
data, generate analytical results and present them in the form of TFLs. The TFLs are included in the
clinical study report and submitted to regulatory agencies as part of the filing package or used for
publications. It is essential that the contents and formats of these documents are validated vigorously to
ensure accuracy and completeness. Among various validation methods, double programming is thought
as the industry standard and widely used (Shiralkar, 2010). Although this method can reduce
programming errors to a minimum extent, it requires significant amount of resources. Therefore
automation of any step involved is very beneficial. One such step is comparing the production and
validation TFL outputs.

Pairs of text files can be compared by machine using the SAS procedure PROC COMPARE or Linux
command diff. Some other software exists as well, which is well summarized by Fredette (Fredette,
2008). However, these methods are still time consuming, especially when a task involves a large number
of TFLs. Ideally, a comparison program should be able to automatically compare all validation and
production outputs for a task and document the results in a file which can be easily searched and
reviewed. We decided to develop such a program using Linux shell script for the following reasons: 1. our
TFL output files are stored on servers running Linux operating systems; 2. the diff command can be
directly used to compare files; 3. powerful regular expression and text editing tools come with Linux
allowing us to pre-process files in a batch mode as needed; 4. a shell script can be run from any location
in the system if saved appropriately.

We named our comparison program diffdir. In this paper, we introduce the tools and logic that we used
to develop this program.

DIRECTORY STRUCTURE AND NAMING CONVENTIONS

We programmed diffdir based on certain conventions that we use to name and store TFL files. For
example, we can save all production files in a directory called ‘production’ and all validation in a directory
called ‘validation’ at the same level. For each TFL, we use SAS programs to generate a pdf file (.pdf) and

A Linux Shell Script to Automatically Compare Results of Statistical Analyses , continued

2

a text file (.out or .gsf) with the same contents. The names of production tables, figures and listings start
with ‘t-’, ‘g-’ and ‘l-’ respectively. Their corresponding validation output bears the same name except that it
starts with ‘v-’. An example is provided in Table 1.

TFL type Production Validation

Tables t-ae.out/t-ae.pdf v-t-ae.out/v-t-ae.pdf

Listings l-ae.out/l-ae.pdf v-l-ae.out/v-l-ae.pdf

Figures g-lab.gsf/g-lab.pdf v-g-lab.gsf/v-g-lab.pdf

Table 1. TFLs Naming Convention

LINUX COMMANDS USED IN THE COMPARISON PROGRAM

The program diffdir consists of a series of Linux commands. For some of them, we list the general syntax
and explain their usage briefly with examples. For detailed use, please refer to (Robbins, 2006) or the
man pages coming with the Linux system. All sample code follows the syntax of BASH, which is a
commonly used shell program on Linux based systems. They can be executed either individually in the
shell or as part of a shell script. Just note, Linux commands and variables, unlike SAS, are case
sensitive. The square brackets in the syntax mean optional, and the ‘#’ sign in the sample code means
start of comments.

COMMAND USED TO COMPARE TEXT FILES

The diff command is widely used to compare text files line by line and is the core of our comparison
program. It uses the following syntax:

diff [options] file1 file2

It has multiple options to control the mode of comparison. We use two very simple example files here to
demonstrate how these options might affect the output. The contents of the two files are shown in Table
2, each consisting of two lines of text with some difference in cases or spaces.

file1 file2

Line 1: HELLO, WORLD!

Line 2: hello, world!

Line 1: Hello, World!

Line 2: hello,world!

Table 2. Example Text Files

Example #1

diff file1 file2

Figure 1. Result of diff Command without Options

In example #1, the two files are compared without any option; therefore, all characters are compared. The
output is shown in Figure 1. In the output, the first line ‘1,2c1,2’ consists of two line ranges separated by
a letter. The line ranges indicate where the difference exists, with the first range from the first file and the
second range from the second file. The letter between indicates the operation to be taken to make the
two files identical. Here ‘c’ stands for change. Other operations you probably see are ‘a’ (append) and ‘d’
(delete). The lines beginning with ‘<’ or ‘>’ sign display the differing lines.

Example #2

A Linux Shell Script to Automatically Compare Results of Statistical Analyses , continued

3

diff –i file1 file2

Figure 2. Result of diff Command Using Option -i

Example #3

diff –w file1 file2

Figure 3. Result of diff Command Using Option -w

In example #2, option -i is used to ignore case; therefore, only Line 2 is different, as shown in Figure 2. In
example #3, option -w is used to ignore all white space; therefore, only Line 1 is different, as shown in
Figure 3. If both options -iw are used, the two files are thought identical and the output is an empty file.

The following example can be used to compare text TFL output files from validation and production:

Example #4

diff –w ../production/t-ae.out ../validation/v-t-ae.out

For any validation task, we can manually write such a command for each pair of TFL, using appropriate
options. Alternatively, we can use the Linux commands introduced thereafter to search file names
automatically.

COMMANDS USED TO RETRIEVE FILES AUTOMATICALLY FROM DIRECTORIES

The following example is used to search the validation directory for all TFL files whose names contain
certain patterns. It consists of three individual commands separated by a vertical bar. Each component
will be explained in more detail.

Example #5

ls ../validation | egrep "v-" | egrep ".*-[tgl]-.*\.(out|gsf)$"

Pipeline

The output of Linux commands is printed by default to standard output, usually the display screen. The
vertical bar | between individual commands is called a pipeline. It functions to redirect the output of the
first command to the input of the second command. Therefore, there is no need to create temporary files
or variables just to store the mid-step output. Multiple pipelines and commands can be used in each
command line. In the above example, files in the validation directory are displayed by ls and then filtered
by two egrep commands to select those with names containing certain patterns.

ls

The command ls displays directory contents or lists files with names matching that specified in the
command line. If no name is specified, files in the current directory are listed. It adopts the syntax:

ls [options] [directory or file names]

egrep

The command egrep (standing for ‘enhanced global regular expression print’) searches a file or standard
input and prints lines matching a pattern. It uses syntax:

egrep [options] pattern [file…]

A Linux Shell Script to Automatically Compare Results of Statistical Analyses , continued

4

Patterns can be simple text consisting of only literal characters or complex symbolic notations. In
example #5, the first egrep command is an example for the earlier case, which prints any line containing
the string ‘v-’. The pattern in the second egrep, ‘.*-[tgl]-.*\.(out|gsf)$’, appears strange. It contains both
literal characters and characters with special meanings, which together form so-called regular
expressions. For example, the dot ‘.’ matches any character. Such characters are called metacharacters.
Table 3 is a list of metacharacters and their matches in the regular expressions supported by egrep.

Metacharacter Matches

. Any character

^ Beginning of a line

$ End of a line

* The previous element 0 or more times

[] Any character in the brackets

| The character(s) before or after

\ The next character literally

Table 3. Metacharacters

In example #5, the pattern ‘.*-[tgl]-.*\.(out|gsf)’ matches strings containing these components: any number
of any character; a ‘-’; a ‘t’, ‘g’, or ‘l’; a ‘-’; any number of any character; a ‘.’; the string ‘out’ or ‘gsf’ at the
end of a line.

Some options are available for egrep. A commonly used one is -i, which allows matching by ignoring
case.

PROGRAM USED TO EDIT TEXT FILES

Program sed is a stream editor that edits file(s) or standard input on a line by line basis. It uses syntax:

sed [options] 'script' [input-file]

The 'script' can be a file containing commands or that are typed in the command line. The commands are
applied to each line of the input text. Below is a simplified example extracted from our diffdir program:

Example #6

sed 's/_//g' file1

The ‘script’ in this example is ‘s/_//g’. The letter ‘s’ stands for substitute, and ‘/_//’ is an expression of
‘/pattern/replacement/’. This ‘script’ searches the pattern ‘_’ and replaces it with an empty string. sed
supports regular expressions in the pattern. The letter g is a flag to replace all matched instances in each
line. Without this flag, only the first matched instance in each line is replaced. The above example
removes all underline characters existing in file1 and prints the output to standard output.

OUTPUT AND INPUT REDIRECTION

In addition to the pipeline described earlier, there are also ways to redirect output to and input from file.

The output redirection, denoted by the > sign, is used to redirect the output to a file. When a single > is
used, the specified file is created if not existing or overwritten if already exiting. When a double >> is
used, the output is appended to the file. Example #7 shows how the output of a diff command is
redirected to a file to be saved permanently.

Example #7

diff -w file1 file2 >> tmpfile

The standard input of a command can be typed in or redirected with the < sign from a file or output of
other commands. Example #8 below is used in our comparison program, in which two files are first
transformed by sed (each with two commands separated by a ‘;’ in its ‘script’) and then redirected to diff.
The output of diff in turn is redirected to a file.

A Linux Shell Script to Automatically Compare Results of Statistical Analyses , continued

5

Example #8

diff -wi <(sed 's/_//g; /Source.*v9.*Output file:/d' file1) <(sed 's/_//g;

/Source.*v9.*Output file:/d' file2) >> difftmp

FUNCTIONS OF THE COMPARISON PROGRAM

Our resulting program diffdir uses the following syntax:

diffdir [options] dir1 dir2 [output-file]

The two required parameters dir1 and dir2 are the names of the directories to be compared. These
directories can be any two accessible in the system and can be provided as relative or full paths.
According to our naming convention, if the directory is named ‘validation’, the program assumes files
under have names starting with ‘v-’. The name of the output file can be optionally specified as the third
argument. The program itself consists of several functions that are called in the main program. We
explain these functions as below and provide some sample codes in Appendix I.

PROGRAM OPTIONS

We use command getopts to capture the options passed from command line. These options allow users
some flexibility to compare only a subset of output, to retrieve filenames from dir1 or from an alternative
source (TNF file), or to pre-process the files before comparison. They are summarized in Table 4.

Option Description Default

-k filenames retrieved from TNF file dir1

-tlga compare tables, listings, figures or all tables and listings

-c compress '_' and 'Source xxx' lines

-i ignore case

-h usage

Table 4. Options Available for diffdir

FUNCTION TO RETRIEVE FILENAMES

Function compd searches dir1, by default, for filenames identifying them as TFL text output, as shown in
example #5. Pattern ‘tgl’ is replaced by a variable whose value is determined by program options -tlga. If
dir1 is named validation, prefix ‘v-’ in the filename is removed in order to retrieve the corresponding
filename from dir2. Option -k requests the function to read filenames from a TNF file. This file contains the
key part of names for all TFLs, ‘t-ae’ and ‘l-ae’, for example. Appropriate suffix (such as ‘.out’ for tables
and listings) and prefix (such as ‘v-’ for validation) are added to make a complete filename. When the
filenames for each pair to compare are in place, other functions are called to check the existence of these
files, to compare their timestamps and to compare their contents. The code of function compd is omitted
due to length, but we will provide upon request.

FUNCTION TO COMPARE TWO FILES

Function compf accepts two files passed as arguments and compares them using diff in ways
determined by program options. By default, the comparison ignores white space. Program option -i
requests the function to ignore case as well. In our experience, some other information in the TFL files
can be ignored too, such as the underline characters and the last line of each page bearing the time
stamp and the program source etc. Program option -c requests the function to remove this information
before comparison. This last option is very organization specific but can significantly simplify the final
output to reduce the reviewing time.

FUNCTION TO FIND AND SUMMARIZE MISSING FILES

Function nexistf checks if any TFL is missing in one or both of the directories. If filenames are retrieved
from dir1 and the counterparts of any file are not found in dir2, the file is thought as missing from dir2. Or

A Linux Shell Script to Automatically Compare Results of Statistical Analyses , continued

6

if filenames are retrieved from TNF and any file is not found in either directory, it is thought as missing
from that directory. The information of the missing files is summarized and displayed in the output file.

FUNCTION TO COMPARE TIMESTAMPS

Function compt uses command stat to compare the timestamps of two files. If one file is from validation
but the other is not, then we assume the validation file should be generated later than the non-validation
file. The information on files violating this rule is also summarized and displayed in the output file.

Just note, although the examples we give here always involve a validation and a production directory, the
program can compare any two directories if only the filenames follow our naming conventions. Therefore,
this program can also be used to compare different versions of production.

STRUCTURE OF THE OUTPUT

The output of diffdir is saved in a file optionally specified as the third argument for the program. If not
specified, the program defines a name depending on the options used. For example, if option -c is used,
the output file is named ‘diffdir-tl-c.lst’, indicating tables (t) and listings (l) are compared (by default) and
option -c is used. Each option used will be added to the name sequentially.

The output consists of a summary section and a details section. The summary section provides
administrative information which might warn the user to take some actions even before looking into the
detailed result of comparison. The details section allows users to examine any difference between each
pair of TFLs and determine how to correct TFL programs if necessary.

SUMMARY SECTION

The summary section consists of four pieces of information, as shown in Figure 4. The first part lists the
full paths of the two directories, the types (patterns) of TFLs compared, the source of filenames (from dir1
or TNF file) and the number of files to compare. The second part is a list of files missing in either
directory. If identified, validation or production programmers need to add the missing TFL. The third part
lists files that violate the timestamp rule. If identified, validation programmers need to rerun their TFL
programs. The last part lists files with mismatches. If identified, programmers need to look at the details
section. If there is no missing file, timestamp violation, or mismatches, the corresponding part will not
appear.

Figure 4. The Summary Section of the Output from diffdir

DETAILS SECTION

The detailed section is the diff result of each pair of TFL listed one after another, as shown in Figure 5. A
subtitle is added to indicate which files are compared, following which is the difference between the two
files. If the difference part is missing, it means the two files completely “match” with the options used.

Directory information

Missing files

Files with timestamp violation

Files with mismatches

A Linux Shell Script to Automatically Compare Results of Statistical Analyses , continued

7

Figure 5. The Details Section of the Output from diffdir

CONCLUSION

Although our program diffdir is centered on Linux, most of the commands used can find their
counterparts in other operating systems, such as Windows. Therefore the same methodology can be
adapted to develop a similar program for other systems.

The diffdir program has been well accepted and utilized within our programming group. It has saved us a
significant amount of manual work and greatly improved our efficiency in identifying programming errors
in the validation process. As a result, we can focus our time and energy on modifying the programs for
the analyses themselves. This is very important to assure high quality of the statistical analysis results
especially when working with limited resources and under tight timelines.

REFERENCES

Fredette, J. (2008). Using Automated File Comparisons to Increase Efficiency and Accuracy in SAS Code
Development & Validation. PharmaSUG Proceedings. Atlanta, GA.

Robbins, A. (2006). Unix in a Nutshell, 4th Edition. O'Reilly Medi, Inc.

Shiralkar, P. (2010). Programming Validation: Perspectives and Strategies. PharmaSUG Proceedings. Orlando, FL.

ACKNOWLEDGMENTS

We are very grateful to our wonderful co-workers who have generously shared their ideas and provided
their support during the development of the diffdir program.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Please contact the authors at:
Chen.Wang@gilead.com, Shu.Zan@gilead.com or Joshua.Conrad@gilead.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:Chen.Wang@gilead.com
mailto:Shu.Zan@gilead.com
mailto:Joshua.Conrad@gilead.com

A Linux Shell Script to Automatically Compare Results of Statistical Analyses , continued

8

APENDIX I

FUNCTION TO COMPARE TWO FILES

compf(){

 fname1=$1

 fname2=$2

 printf "%s\n" "" >> $difftmp

 printf "%s\n" " COMPARING $_dir1/$(basename $fname1) with

$_dir2/$(basename $fname2)" >> $difftmp

 #if -c remove -- throughout and source line at the end of each page and

append output to $difftmp

 if ["$_ignorecase" = "1"]; then

 if ["$_compress" = "1"]; then

 diff -wi <(sed 's/_//g; /Source.*v9.*Output file:/d' $fname1)

<(sed 's/_//g; /Source.*v9.*Output file:/d' $fname2) >> $difftmp

 else

 diff -wi $fname1 $fname2 >> $difftmp

 fi

 else

 if ["$_compress" = "1"]; then

 diff -w <(sed 's/_//g; /Source.*v9.*Output file:/d' $fname1)

<(sed 's/_//g; /Source.*v9.*Output file:/d' $fname2) >> $diffmp

 else

 diff -w $fname1 $fname2 >> $difftmp

 fi

 fi

}

FUNCTION TO FIND MISSING FILES

nexistf(){

 fname1=$1

 fname2=$2

 _misstfl=$(($_misstfl+1))

 if [$_misstfl -eq 1] ; then

 printf "%-70s %s\n" " $_dir1" " $_dir2" >>

$misstmp

 fi

 if [! -r "$fname1"]; then

 printf "%-70s" " $(basename $fname1)" >> $misstmp

 if [! -r "$fname2"]; then

 printf "%s\n" " $(basename $fname2)" >> $misstmp

 else

 printf "%s\n" "" >> $misstmp

 fi

 elif [! -r "$fname2"]; then

 printf "%-70s %s\n" "" " $(basename $fname2)" >> $misstmp

 fi

}

FUNCTION TO COMPARE TIMESTAMPS

compt(){

 fname1=$1

 fname2=$2

A Linux Shell Script to Automatically Compare Results of Statistical Analyses , continued

9

 #get timestamp for the two files

 f1time=`stat --printf=%y $fname1 | cut -d. -f1`

 f2time=`stat --printf=%y $fname2 | cut -d. -f1`

 if ["$_bdir1" = "validation" -a ! "$_bdir2" = "validation"]; then

 if ["$f1time" \< "$f2time"] ; then

 _dirstvil=$(($_dirstvil+1))

 if [$_dirstvil -eq 1]; then

 #printf "%s\n" "WARNING: following .out files in $_dir1

modified earlier than in $_dir2" >> $timetmp

 printf "%-70s %s\n" " $_dir1" "

$_dir2" >> $timetmp

 fi

 printf " %-40s : %s %-40s : %s\n" "$(basename

$fname1)" "$f1time" "$(basename $fname2)" "$f2time" >> $timetmp

 printf "%s\n" "" >> $timetmp

 fi

 fi

 if [! "$_bdir1" = "validation" -a "$_bdir2" = "validation"]; then

 if ["$f1time" \> "$f2time"] ; then

 _dirstvil=$(($_dirstvil+1))

 if [$_dirstvil -eq 1]; then

 printf "%-70s %s\n" " $_dir1" "

$_dir2" >> $timetmp

 fi

 printf " %-40s : %s %-40s : %s\n" "$(basename

$fname1)" "$f1time" "$(basename $fname2)" "$f2time" >> $timetmp

 fi

 fi

}

