
PharmaSUG 2018 – Paper AD-07

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs

To Facilitate Near-Real Time Log Parsing, Performance Analysis,

and Dynamic, Data-Driven Design and Optimization

Troy Martin Hughes

ABSTRACT

Too often in SAS® literature, the role of the program log is narrowly conceptualized as a static, post hoc quality control

review that validates program success through the detection of program failure or the lack thereof. Especially when

software development occurs outside of a formalized software development life cycle (SDLC), as is often the case with

non-production software and within end-user development environments, SAS practitioners must painfully parse logs

in search of notes, warnings, runtime errors, and other often elusive indications of functional failure. A substantial body

of SAS literature advances antediluvian manual log review through the automation of log parsing and analysis and

subsequent communication of program success (or failure) to stakeholders. To a lesser extent, SAS literature depicts

how log parsing can be utilized to extract, analyze, and ultimately improve software performance metrics. After a cursory

review of SAS automated log parsing literature, this text elucidates and expands this second objective of automated

log parsing, demonstrating how performance metrics can be analyzed in near-real time to drive program flow

dynamically. By pinching off shorter logs and saving these as temporary text files, SAS programs can analyze

performance metrics for individual procedures or processes, enabling software to detect anomalous or undesirable

CPU, input/output (I/O), or memory consumption and to respond dynamically to optimize execution.

INTRODUCTION

SAS practitioners are often introduced to the SAS log as the lone method through which SAS programs are validated;

if warnings and runtime errors are absent from the log, the program is assumed to have executed correctly. Logic errors

and other latent defects could of course exist without the presence of warnings or runtime errors, but these are typically

uncovered only through a thorough understanding of the underlying data, resultant data products, and the code that

transforms the former into the latter. Thus, the first toddling steps in a SAS career are typically consumed by executing

snippets of code and immediately evaluating the log for indications of success or failure. This “code and fix” method is

expected from neophytes in any programming language, and even from experienced developers who incrementally

develop and empirically test in rapid succession, but is insufficient for stable, production software that demands both

higher reliability and integrity.

Thus, as production software is approved and released or as software performance requirements increase, reliance on

the SAS log for program validation and failure detection should commensurately decrease in favor of more reliable and

efficient methods. For example, production software intended to be automated, scheduled, and run at regular intervals

cannot rely on SAS practitioners to babysit it, checking its log and changing its diapers whenever it has an accident.

For this reason, dozens of SAS publications are dedicated to demonstrating automated log analysis. Too often in SAS

literature, however, automated log analysis is depicted as the primary or only method to detect warnings, runtime errors,

and other notes or exceptions. While post hoc log analysis can detect exceptions after software completion or

termination, it fails to handle exceptions because by the time detection has occurred, it is too late for the software to

respond dynamically.

For example, rather than implementing a log parsing algorithm that detects the SAS note that is created when division-

by-zero occurs, a more useful solution always is to detect the division-by-zero exception programmatically during

software execution or to prevent the exception by detecting the state (i.e., zero denominator) that produces it.

Thereafter, business rules can prescribe the appropriate action to handle the exception, which may occur behind the

scenes without log alert or stakeholder notification, thus reducing gratuitous notes that would otherwise be printed to

the log. In contrast, most SAS literature demonstrates automated log parsing that generates an exception report (in the

form of a data set, log output, static report, dashboard update, or email) that describes or summarizes issues discovered

in one or more log files. For example, a parsing solution might summarize the location and details of all division-by-

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

2

zero exceptions found in a log file or across several log files. However, the “automated” report thereafter typically

requires manual review by SAS practitioners, thus impeding the objective of automation.

A more practical method to drive reliability and incorporate validation into production software is to implement exception

handling routines that detect warnings, runtime errors, and other exceptions through return code and error code

analysis. This type of exception management is preferred over ad hoc log analysis—even when the latter is

automated—because abnormal events, states, and environments can be detected and handled as they occur and

according to prescribed business rules. For example, SAS global macro variables such as &SYSERR, &SYSCC,

&SQLRC, or &SYSRC—as well as user-defined return codes—can be evaluated programmatically during execution to

validate program success or to detect its failure without reliance on the log. In separate texts, the author introduces

SAS software exception handlingi as well as a toolbox of techniques through which software can handle exceptionsii.

While automated log parsing is primarily depicted in SAS literature as facilitating program validation and failure

detection, to a lesser extent, it demonstrates the evaluation of SAS performance metrics to gauge system resource

(i.e., CPU, I/O, memory) utilization. A handful of publications demonstrate the analysis of SAS FULLSTIMER metrics

to measure, compare, or aggregate the performance of SAS processes. For example, performance analysis is essential

in comparing the relative efficiency of competing programmatic methods, in demonstrating performance variance

through repeated measures analysis, and in the identification of outliers that can indicate or presage performance

failure. Similar to automated log parsing for program validation, however, automated log parsing for performance

analysis unfortunately is also narrowly demonstrated in SAS literature as a post hoc analysis tool.

This text aims to right this wrong by introducing automated log parsing to facilitate near-real time software performance

analysis. By pinching off SAS logs immediately after a single procedure or DATA step, subsequent analysis can drive

program flow based on system resource utilization. For example, if the relative efficiency of software decreases below

an established threshold, exception handling could prescribe that the software should terminate prematurely or limit

parallel processes. Or, if I/O processing increases beyond an established threshold, exception handling could prescribe

that the software limit data throughput, increase parallel processing by spawning additional SAS sessions, or take some

other preventative or corrective action. Thus, near-real time performance analysis can enable software to respond

adroitly to its environment to facilitate performance tuning and optimization.

AUTOMATED LOG ANALYSIS TO SUPPORT PROGRAM VALIDATION AND FAILURE DETECTION

Scores of white papers over the past two decades have demonstrated the inherent benefits of automating the analysis

of SAS log files, namely the increased efficiency and reliability with which program success and performance can be

(indirectly) assessed. In all examples, the SAS log is written to a text file—with the PRINTTO procedure, the LOG

parameter of the SYSTASK statement, or the LOG parameter when SAS is spawned from the operating system (OS)—

after which the text file is parsed by the same or a separate SAS program. The vast majority of log parsing examples

detect warnings, runtime errors, and other exceptions in the log to validate program success. Subsequent exception

reports may be used to analyze, aggregate, or communicate log results, but stakeholders typically must still review

these reports manually.

Log analysis to demonstrate program success or failure can be a critical component of a software quality control plan.

A robust, scalable, and flexible SAS macro can interrogate logs strewn across directories to ferret out warnings, runtime

errors, troublesome notes, and other indications of program failure. SAS support even provides its own SAS Log Error

Checking Tool that produces a synthesized report of warnings and runtime errors detected in SAS logsiii. Log analysis

is especially essential where SAS code, inputs, environmental attributes, or other factors are likely to fluctuate and, for

this reason, is heavily relied upon during software development and testing phases of the SDLC. While automated log

parsing should not be the primary method used to validate program success or detect its failure in stable, production

software, it can provide a valuable quality control safety net. For example, some organizations and industries mandate

that log files not only be parsed but also archived to facilitate auditing.

The following literature review highlights programs that automatically parse log files to validate software success, in all

cases by searching for keywords such as “warning” or “error” or other user-defined words and phrases. Only texts that

demonstrate log file analysis are included, so solutions such as Derek Morgan’s SAS Component Language (SCL)

program (which emails SAS logs to stakeholders when their programs fail) are excludediv. Other texts that demonstrate

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

3

only the addition of user-defined comments to the SAS log, such as Lafler and Rosenbloom’s solution, can improve log

readability but are similarly excluded from this reviewv. Finally, texts that instead aim to assess SAS performance rather

than functional success are described later in this text.

In chronological order, white papers that demonstrate automated analysis of SAS logs to support failure detection and

validation of software execution include:

• Lauren Haworth (1997) demonstrates parsing logs to search for keywords such as “error” or “uninitialized”

and then prints selected lines using the GPRINT procedurevi.

• Li and Troxell (2001) demonstrate a DATA step that reads all log files in a directory and saves only those lines

that contain “note”, “warning”, or “error”vii.

• Carey Smoak (2002) describes the CHECKLOG macro that searches a log file for keywords and phrases such

as “warning”, “error”, or “repeats of BY values” and prints these lines to the logviii. Unfortunately, the macro is

not included in the text.

• Malachy Foley (2004) demonstrates a program that searches for “info”, “warning”, “error”, and “note” in the

log after which selected lines are printed to the logix.

• MaryAnne Hope (2004) searches log files for “suspicious messages” in the log, including notes, warnings, and

runtime errors, after which a data set is produced containing the exceptionsx.

• Adel Fahmy (2004) demonstrates a phenomenal log parsing tool comprised of several modular macros that

search for keywords and phrases located in a separate user-defined text filexi. This scalable approach ensures

customizable reporting without the need to alter the underlying code. His 2010 text is largely a reprisal of this

2004 work so it definitely should be read but is not included in Table 1xii.

• Aaron Augustine (2006) demonstrates the LOGCHECK macro that parses a log file for keywords such as

“warning” or “error”, creates a report, and emails this alert to stakeholdersxiii.

• Kevin Lee (2007) demonstrates a solution that saves log files, searches for keywords “warning” or “error”, and

prints those lines to the SAS logxiv.

• Milorad Stojanovic (2008) demonstrates a program that parses a log file in search of notes, warnings, and

runtime errors, and displays a summary reportxv.

• Suzanne Humphreys (2008) demonstrates the macro LOGCHECK that searches a specified directory for log

files, parses all logs in search of notes, warnings, and runtime errors, and summarizes these in a reportxvi.

• Fang and Gorrell (2009) demonstrate output from a utility program (a single-line batch file) that searches log

files for keywords such as “warning” or “error” and prints selected lines in a command prompt windowxvii.

• Amit Baid (2009) demonstrates the macro SCANLOG that scans a user-specified directory then parses all log

files in search of a keywords and phrases such as “warning”, “error”, or “has 0 observationsxviii”.

• Dodlapati, Karidi, and Vanam (2010) discuss various warnings and notes common in SAS logs as well as the

benefit of identifying these automatically in log files; however, the discussion is purely theoretical and not

accompanied by code so it is omitted from Table 1xix.

• Salman Ali (2010) demonstrates how Perl regular expressions can be used to parse log files in search of the

expression “Transfer Complete” to indicate successful FTP transferxx. If the phrase does not appear in the log,

stakeholders are emailed an alert and failed processes are resubmitted automatically. This rare example

highlights log parsing that drives dynamic processing rather than simply producing exception reports that must

be subsequently examined by stakeholders.

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

4

• Ronald Palanca (2011) demonstrates the MPR_CHECKLOG macro that parses a log file for keywords and

phrases such as “warning”, “error”, or “invalid data” and prints an exception report to the interactive SAS

windowxxi.

• Vaessen, Pannemans, Quesada, and Vyverman (2011) demonstrate a log parser that searches a log for the

keywords “note”, “warning”, and “error” after which the results are color-coded and posted within a web

portalxxii.

• Matthew Psioda (2012) demonstrates a short program that parses logs for “warning” or error” and prints results

to the logxxiii.

• Christopher Schacherer (2012) demonstrates a log parsing process that searches for “error” within a SAS log

and, if discovered, alerts stakeholders via emailxxiv.

• Qiling Shi (2012) demonstrates a program that searches for “note”, “warning”, or “error” within SAS log files

and displays the results with the SUMMARY procedurexxv.

• Jack Hamilton (2012) demonstrates automatic log parsing through regular expressions that identify keywords

and phrases such as “warning”, “error”, and “stopped processing this step”, after which the results are printed

to a reportxxvi.

• Yogesh Pande (2012) demonstrates a macro LOG_CHECK that scans a directory for all log files, parses the

files for keywords or phrases, and displays results in a color-coded reportxxvii.

• Chris Swenson (2012) showcases a highly customizable CHECKLOG macro that searches log files for a list

of keywords, saves the results in an exception data set, and optionally emails a summary report to

stakeholdersxxviii.

• Brit Miner (2013) demonstrates his self-proclaimed “fully endowed” solution that parses log files for warnings

or runtime errors and which can terminate the program if prerequisite processes failxxix. The solution optionally

can automatically email results to stakeholders, thus facilitating dynamic responses to issues that are

encountered.

• Emmy Pahmer (2014) demonstrates a solution that parses a log file for warnings, runtime errors, and specific

notes, after which the results are saved and printed to a reportxxx.

• Mohan and Vijayarangan (2014) demonstrate parsing log files to detect notes, warnings, and runtime errors

that are encounteredxxxi. They produce sophisticated log analysis and visualization, including Excel pivot tables

and graphs that convey exceptions encountered by type and frequency.

• Rasheed and Vijayarangan (2014) demonstrate a SAS program that runs asynchronously (i.e., concurrently)

and analyzes log files while they are still being createdxxxii. The CHASETHELOG macro can send an email to

stakeholders as warnings or runtime errors are detected—that is, before program termination—and can even

terminate the offending program via the KILL statement, thus demonstrating a rare example of dynamic

processing facilitated by near-real time log analysis.

• RIchann “Pretty in Pink” Watson (2017) demonstrates the macro CHECKLOGS that scans a folder for log files

that match a parameterized naming convention, after which the log files are parsed for warning and error

termsxxxiii. This dynamic solution is highly customizable and enables specific log files to be isolated and parsed

independently or in cohorts through the parameterized macro invocation.

Table 1 further differentiates the previous texts by highlighting features observed across seven functional

characteristics, including:

• Multi - Multiple log files can be analyzed through a single invocation of the log parsing macro or program.

Most commonly, a file search is performed on a folder (and/or its subfolders) after which the files are iteratively

parsed. In other cases, individual log files are concatenated but retain sufficient information to identify their

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

5

respective SAS programs. One of the principal benefits of multi-log solutions is the ability to press a button,

analyze limitless logs, and often create a comprehensive report that identifies all log exceptions appearing

within a folder or across a SAS environment.

• Words - These solutions flexibly enable users to modify log search terms without modification to the code

itself. Single-word terms must be included or modified either through dynamic macro parameters or by

modifying external text files that contain the keywords. Thus, solutions that parse log files only through if-then-

else or other hardcoded conditional logic statements are not included.

• Phrases - These solutions flexibly enable users to modify log search terms by adding single words or phrases

without modification to the code itself. This characteristic differs from the previous “Words” characteristic

because these solutions can parse phrases (having spaces). Similar to the “Words” characteristic, these

solutions also must utilize search terms that are modified either through dynamic macro parameters or external

text files. Thus, solutions that parse log files for words (or phrases) through if-then-else or other hardcoded

conditional logic statements are not included.

• Data Set - A data set is produced that includes warnings, runtime errors, or other issues identified in the log

file, usually as the penultimate step before an exception report is generated. In a few examples, however, no

data set is created and log file exceptions are printed directly to the log or an interactive SAS window.

• Report - These examples produce an exception report, typically with the REPORT or PRINT procedures.

• Email - These solutions automatically generate an email alert to one or more stakeholders when certain

warning or error conditions are discovered in a log file.

• Asynch - Rasheed and Vijayarangan (2014) stand alone in this category as the only authors to provide an

inventive approach in which log files are incrementally queried even as they are still being created. As soon

as a warning, runtime error, or other offensive event is detected, the log parser—running from a separate SAS

session and continuously interrogating the expanding log file—can terminate the program producing the log.

This asynchronous automation ensures that subsequent, derivative code can be intelligently skipped rather

than becoming embroiled in cascading failures.

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

6

Author
Multi Words Phrases Data Set Report Email Asynch

Haworth (1997) yes yes

Li and Troxell (2001) yes yes

Smoak (2002)

Foley (2004) yes

Hope (2004) yes

Fahmy (2004) yes Yes yes yes yes

Augustine (2006) yes yes yes

Lee (2007) yes

Stojanovic (2008) yes yes

Humphreys (2008) yes yes yes

Fang and Gorrell (2009)

Baid (2009) yes yes yes

Ali (2010) yes yes yes

Palanca (2011) yes yes

Vaessen, Pannemans,

Quesada, and Vyverman

(2011)

 yes yes

Psioda (2012) yes

Schacherer (2012) yes yes

Shi (2012) yes yes

Hamilton (2012) yes yes yes

Pande (2012) yes yes yes

Swenson (2012) yes Yes yes yes yes

Minor (2013) yes yes

Pahmer (2014) yes yes

Mohan and Vijayarangan

(2014)
yes yes yes

Rasheed and

Vijayarangan (2014)
 yes yes yes yes

Watson (2017) yes yes yes

Table 1. Differentiating Functionality among SAS Automated Log Parsing Literature

AUTOMATED LOG ANALYSIS TO SUPPORT PERFORMANCE ANALYSIS

As demonstrated in the previous section, the majority of automated log parsing solutions alert users to warnings,

runtime errors, and other exceptions detected in SAS logs. A less common yet arguably more appropriate use of

automated log parsing analyzes software performance metrics saved to log files. The FULLSTIMER SAS system option

elicits maximum verbosity of system resource utilization although the specific FULLSTIMER metrics generated will vary

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

7

by OSxxxiv. For example, page faults or page reclaims might be displayed in FULLSTIMER metrics within a UNIX—but

not a Windows—environment. SAS documentation introduces the FULLSTIMER option and demonstrates how its

metrics can be used to evaluate and improve software performancexxxv. SAS documentation also demonstrates the

graphical analysis of FULLSTIMER metrics with nmon and perfmon freeware toolsxxxvi.

Whereas log parsing solutions that validate program success (and detect its failure) are numerous and represent an

array of methods and functionality, far less diversity exists among log parsing solutions that assess program

performance. Performance metrics are few and finite and in all examples are saved to a SAS data set or to macro

variables for subsequent analysis. Thus, the log parsing solution demonstrated herein (PINCHLOG) does not differ

substantively from past literature in the way that performance metrics are generated or retrieved but only in the context

in which these metrics are analyzed to drive dynamic program flow. The following literature review includes only

examples in which performance metrics are extracted from log files. For example, texts that demonstrate timing SAS

processes by subtracting program start time from completion time are not included, whereas examples that time

processes through analysis of log file real time or CPU time metrics are included.

In chronological order, white papers that demonstrate automated analysis of SAS logs to support system resource

utilization and performance evaluation include:

• Robert Patten (2003) demonstrates the ALGTEST macro that compares performance metrics of competing

versions of code, for example, to demonstrate which of several strategies is most efficientxxxvii. The solution

incrementally captures real time and CPU time metrics and saves these to a data set for further analysis.

• Michael Raithel (2005) authored the most publicized and comprehensive performance analysis tool, the

LOGPARSE macroxxxviii. Prominently featured on the SAS Support website, this portable solution parses

FULLSTIMER metrics and saves them to a data set for further analysis. Ronald Fehd (2006) later makes

subtle improvements to the LOGPARSE macro in his textxxxix.

• Middela and Bhamidipati (2008) introduce the COMPARE macro that analyzes performance metrics and is

intended to summarize and aggregate metrics between two competing versions of SAS codexl.

• LeRoy Bessler (2010) demonstrates software that measures system resource utilization and emails

stakeholders if CPU usage crosses an established thresholdxli. This added context is important, as it

demonstrates how dynamic processing can be driven by performance metric evaluation.

• Steven First (2012) demonstrates use of the SCAPROC procedure to analyze performance metrics saved to

a log filexlii. SCAPROC is not further discussed in this text but is described in the Base SAS 9.4 Procedures

Guidexliii.

• Lingqun Liu (2016) demonstrates automated log analysis using a two-step parsing process that extracts real

time and CPU time from log filesxliv.

PINCHLOG INVOCATION AND EXCEPTION HANDLING

PINCHLOG is unextraordinary in its ability to extract and save performance metrics; in fact, it is more limited than some

of the referenced solutions because it is intended to be run only after a single procedure or DATA step. The contextual

implementation of PINCHLOG is unique, however, in its aim to facilitate dynamic performance evaluation during

software execution. PINCHLOG parses FULLSTIMER performance metrics immediately after a DATA step or

procedure has completed, after which the program can appropriately respond. PINCHLOG is derived from the

READFULLSTIMER macro found in the author’s text but also optionally creates a metrics data set for later analysisxlv.

To run the examples in this text, the following &PATH assignment must be modified to reflect the folder where the

programs within this text will be saved:

%let path=D:\sas\pinchlog; * location must be modified;

Thereafter, the programs in Appendices A and B (pinchlog.sas and makedata.sas) should be saved in the &PATH

folder. The LIB library is defined and the PINCHLOG and MAKEDATA macros are initialized with the following code:

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

8

libname lib "&path";

%include "&path\pinchlog.sas";

%include "&path\makedata.sas";

The MAKEDATA macro creates a sample, randomized data set that is ideal for performance testing, load testing, stress

testing, or repeated measures testing. The sample data set can contain a parameterized number of character and/or

numeric fields (incremented as char1, char2, num1, num2, etc.) that vary in length based on parameterized input.

Because not only the number of observations but also the number of unique observations is a critical predictive

performance indicator in many procedures such as SORT or FREQ, not only the number of observations but also the

number of unique values can be specified. Within this text, MAKEDATA is repeatedly used to efficiently create simulated

data for analysis. The MAKEDATA macro definition follows:

%macro makedata(dsn= /* data set name in LIB.DSN or DSN format */,

 obs= /* number of observations */,

 obsuni= /* number of unique observations */,

 charvar=1 /* number of character variables */,

 charlen=10 /* length of character variables */,

 numvar=0 /* number of numeric variables */,

 numlen=0 /* length of numeric variables (3 to 8) */);

The PINCHLOG macro definition follows:

%macro pinchlog(logfile= /* file path, name, and extension of log analyzed */,

 dsnmetrics= /* optional metrics data set in LIB.DSN or DSN format */,

 othervars= /* optional tokenized list of user-defined variables */);

PINCHLOG includes the following parameters:

• LOGFILE (Required) – the file path, file name, and file extension of the log file being parsed.

• DSNMETRICS (Optional) – the data set name of the metrics data set that is optionally modified or, if it does

not already exist, automatically created. If no data set is specified, the OTHERVARS parameter is ignored.

• OTHERVARS – this parameter includes a tokenized list of custom variables that can be additionally saved to

the metrics data set. For example, specifying the following partial code will create two user-defined variables

Obs and Procedure and their respective LENGTH, FORMAT, and LABEL statements. Note that dynamic

values can be injected (as in the case of &OBS) by including macro variables:

othervars=(var=obs, val=&obs, len=8, form=8., lab=Observation Count /

 var=procedure, val=incremental sort, len=$20, form=$20., lab=Procedure)

The VAR, VAL, and LEN sub-parameters are required when the OTHERVARS parameter is specified while

the FORM and LAB sub-parameters are optional. The entire OTHERVARS parameter must be enclosed within

parentheses, with commas separating all sub-parameters and a slash (/) separating each user-defined

variable that is specified. The FORM sub-parameter requires a period just as in the FORMAT statement.

Quotation marks are not needed in the LAB or VAL sub-parameters, even if the VAL sub-parameter represents

a character variable. Parentheses, slashes, and commas cannot be used in the LAB sub-parameter and,

because the PINCHLOG macro does not include exception handling to validate the OTHERVARS parameter,

the specified format must be followed precisely to avoid unhandled exceptions.

The following sample code directs the log to the &LOGFILE text file, executes the SORT procedure, and subsequently

invokes PINCHLOG to parse the log file. Note that the metrics data set is not created in this example:

options fullstimer;

* create bogus data set;

data somedata;

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

9

 length char1 $5;

 char='x';

run;

%let logfile=&path\log.txt;

proc printto log="&logfile" new;

run;

proc freq data=somedata;

 tables char1;

run;

proc printto; * optional;

run;

%pinchlog(logfile=&logfile);

%put REALTIME / MEMORY: &realtime / &memory;

Invoking PINCHLOG parses the log file, extracts performance metrics, and initializes these into numerous global macro

variables described in the following section. The second PRINTTO procedure is optional and does not affect

PINCHLOG; however, the log should be redirected somewhere or else it will continue to grow unnecessarily in the

&LOGFILE log file until it is overwritten. If a subsequent PINCHLOG invocation followed the first, a corresponding

PRINTTO procedure would also be required but could again specify &LOGFILE, thus overwriting and recycling the

same log file repetitively. In this initial example, the FULLSTIMER Realtime and Memory statistics are printed to the

log while in later examples FULLSTIMER metrics are be analyzed to drive program flow.

One disadvantage of recycling log files is that they cannot be archived for auditing purposes; a failure could occur, be

written to a temporary log file, be overwritten by a subsequent PINCHLOG invocation, and effectively vanish within

seconds without evidence of the failure. To ensure that exceptions do not go undetected, PINCHLOG includes basic

log validation that detects warnings and runtime errors and records these in the PINCHLOGRC (PINCHLOG return

code) global macro variable. This exception handling is demonstrated in the following example, which iteratively sorts

an incrementally larger data set but which terminates if the SORT procedure fails or exceeds two seconds:

%macro incremental_sort(dsn= /* data set name in LIB.DSN format */,

 dsnout= /* sorted data set name in LIB.DSN format */,

 dsnmetrics= /* data set name for metrics table */,

 minobs= /* minimum number of observations */,

 maxobs= /* maximum number of observations */,

 addobs= /* number of observations to add each iteration */,

 charlen= /* length of character field created */,

 logfile= /* temporary log file analyzed by PINCHLOG */);

%local i;

%do i=&minobs %to &maxobs %by &addobs;

 %put NOW SORTING: &i;

 %makedata(dsn=&dsn, obs=&i, obsuni=&i, charvar=1, charlen=&charlen);

 proc printto log="&logfile" new;

 run;

 %let syscc=0;

 proc sort data=&dsn out=&dsnout;

 by char1;

 run;

 proc printto;

 run;

 %pinchlog(logfile=&logfile, dsnmetrics=&dsnmetrics,

 othervars=(var=obs, val=&i, len=8, form=8., lab=Observation Count /

 var=charlen, val=&charlen, len=8, form=8., lab=Character Length));

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

10

 %if &syscc^=0 %then %do;

 %put INCREMENTAL_SORT Failure;

 %return;

 %end;

 %if &pinchlogRC^=0 or &pinchlogchildRC^=0 %then %do;

 %put PINCHLOG Failure;

 %return;

 %end;

 %if %sysevalf(&realtime>2) %then %do; * arbitrary threshold;

 %put Time Limit Exceeded;

 %return;

 %end;

 %end;

%mend;

%incremental_sort(dsn=test, dsnout=testsorted, dsnmetrics=metrics,

 minobs=1000000, maxobs=100000000, addobs=1000000, charlen=10,

 logfile=&path\sortlog.txt);

In this example, the INCREMENTAL_SORT macro iteratively creates and sorts 100 data sets that range from one

million to 100 million observations, and simulates the type of load and stress testing that might be required before

deploying the SORT procedure in production ETL software. The global macro variable &REALTIME is created by

PINCHLOG, represents the elapsed time during SORT execution, and is used to ensure that the program is stopped if

a single SORT exceeds two seconds—i.e., defined arbitrarily as a performance failure. Functional failures are also

detected via &SYSCC. Because &SYSCC is initialized to 0 immediately before the SORT procedure, this ensures that

any warning or runtime error found during subsequent evaluation of &SYSCC could have occurred only during the

current iteration that is executing. Upon examination of the Metrics data set, the OBS field will include the number of

observations created during that iteration. Additionally, if the macro terminates prematurely because the SORT time

threshold is exceeded, the Realtime metric in the Metrics data set will demonstrate this arbitrary exception.

The &PINCHLOGRC macro variable detects warnings or runtime errors that can occur during execution of PINCHLOG,

for example, if a log file is specified that does not exist. The &PINCHLOGCHILDRC is not utilized here but detects

warnings or runtime errors detected by PINCHLOG rather than caused by PINCHLOG. Thus, if the SORT procedure

had failed, this exception would not only be directly detectable through &SYSCC but also indirectly detectable through

&PINCHLOGCHILDRC because “error” would be discovered in the log file. The &PINCHLOGCHILDRC return code is

useful when PINCHLOG is reading a log file that the parent process did not produce, in which case neither &SYSCC

nor &SYSERR would be able to detect the failure directly. Both &PINCHLOGRC and &PINCHLOGHILDRC are set to

0 when no warning or runtime error is detected.

In load and stress testing, rather than terminating a loop, macro, or program when a warning or runtime error is detected,

the exception could instead be captured in the metrics data set as a user-defined variable specified with the

OTHERVARS parameter. This method is demonstrated in the final example in this text and ensures that the functional

failure is salient during subsequent analysis of the metrics data set. This type of analysis is a critical component of

stress testing in which the primary objective is to push software until functional or performance failure.

PINCHLOG METRICS AND MACRO VARIABLES

Table 2 demonstrates the FULLSTIMER metrics analyzed by PINCHLOG and includes the OS in which the metric can

be observed, the SAS global macro variable into which the metric is initialized (also the variable optionally created in

the metrics data set), and the unit of measurement.

Log Text OS Macro Variable /

Data Set Variable

Units

real time Win, UNIX realtime seconds

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

11

user cpu time Win, UNIX usercputime seconds

system cpu time Win, UNIX systemcputime seconds

cpu time Win, UNIX cputime seconds

memory Win, UNIX memory MB

os memory Win, UNIX osmemory MB

step count Win, UNIX stepcount steps

switch count WIN, UNIX switchcount switches

page faults UNIX pagefaults faults

page reclaims UNIX pagereclaims reclaims

voluntary context switches UNIX volcontextswitches switches

involuntary context switches UNIX involcontextswitches switches

block input operations UNIX blockinops operations

block output operations UNIX blockoutops operations

Table 2. FULLSTIMER Performance Metrics as Parsed by PINCHLOG

To reiterate, PINCHLOG differs from most automated log solutions because its intent is to capture performance metrics

rather than identify functional failure. Secondarily, it differs because the performance metrics are intended to be

analyzed immediately after completion or termination of a procedure or DATA step. The following example illustrates

stress testing that might be used to capture parallel processing performance metrics. By incrementing the number of

parallel processes, the optimal range of concurrent processes can be established—i.e., the upper and lower limits for

the optimal number of processes to run concurrently. The following program should be saved as Child_sort.sas in the

&PATH folder:

%let path=D:\sas\pinchlog;

libname lib "&path";

options fullstimer;

proc sort data=lib.somedata out=lib.somedatasorted&sysparm;

 by char1;

run;

Note that because the child program will be run from a separate SAS session, it must stand alone and include all library

definitions, macro variable initializations, system options, %INCLUDE statements, and other information that is session-

specific. This highlights the reliability, integrity, and efficiency gained when static and/or frequently used system

information is defined automatically within AUTOEXEC.sas and configuration files. The following program, which

iteratively spawns Child_sort.sas, should be saved as Stresstesting.sas in the &PATH folder:

libname lib "&path";

%include "&path\pinchlog.sas";

%include "&path\makedata.sas";

%macro stresstesting(dsn=lib.somedata,

 dsnout=lib.somedatasorted,

 dsnmetrics= /* metrics data set name in LIB.DSN or DSN format */,

 minprocesses= /* minimum number of processes */,

 maxprocesses= /* maximum number of processes */);

%local i j ratio childerr maxcputime maxrealtime;

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

12

%do i=&minprocesses %to &maxprocesses;

 %let childerr=0;

 %makedata(dsn=lib.somedata, obs=10000000, obsuni=10000,

 charvar=1, charlen=10);

 %do j=1 %to &i;

 systask command """%sysget(SASROOT)\sas.exe"" -noterminal -nosplash

 -sysin ""&path\child_sort.sas""

 -log ""&path\child_sort&j..txt"" -sysparm ""&j"""

 taskname=task&j status=rc&j;

 %end;

 waitfor _all_

 %do j=1 %to &i;

 task&j

 %end;;

 * check for SYSTASK failure in child processes (1=warning, 2=error);

 %do j=1 %to &i;

 %if &&&rc&j=1 or &&&rc&j=2 %then %let childerr=&&&rc&j;

 %end;

 %let maxcputime=0;

 %let maxusertime=0;

 %do j=1 %to &i;

 %pinchlog(logfile=&path\child_sort&j..txt, dsnmetrics=&dsnmetrics,

 othervars=(var=processes, val=&i, len=8, form=8., lab=Processes /

 var=childerr, val=&childerr, len=8, form=8,. lab=Child Error Code));

 %if %sysevalf(&usercputime>&maxcputime)

 %then %let maxcputime=&usercputime;

 %if %sysevalf(&realtime>&maxrealtime)

 %then %let maxrealtime=&realtime;

 %end;

 %put PROCESSES: &i MAXREAL: &maxrealtime REAL/PROCESSES:

 %sysevalf(&maxrealtime/&i);

 %if %sysevalf((&maxcputime/&maxrealtime)<.5) %then %do;

 %put Too many processes--SORT has been terminated;

 %return;

 %end;

 %end;

%put ALL DONE!;

%mend;

%stresstesting(dsnmetrics=lib.metrics_sort, minprocesses=1, maxprocesses=24);

The STRESSTESTING macro spawns from between one and 24 parallel processes with the asynchronous SYSTASK

statement. It aims to determine when the incremental addition of parallel processes begins to reduce performance. In

this example, relative efficiency is operationalized as the ratio of User CPU Time to Realtime (&USERCPUTIME to

&REALTIME), given that this ratio will decrease as more concurrent processes are running on the system and

consuming resources. Thus, on the first iteration, only one SAS session (and batch process) is spawned so only one

set of metrics is generated and recorded in the metrics data set. On the second iteration, however, two SAS sessions

are spawned, two sets of metrics are generated and saved, but only the highest User CPU Time and Realtime are

initialized as &MAXCPUTIME and &MAXREALTIME, respectively, to calculate the ratio.

When the SAS system is running single-threaded processes efficiently, the ratio of User CPU time to Realtime will be

very close to but slightly less than 1.0. However, because multithreaded processes (like SORT) do more at once, the

ratio of User CPU Time to Realtime should exceed 1.0. This ratio can be compared under different conditions (e.g.,

altering the number of parallel processes running) or over time (e.g., when repeated measures analysis is performed).

A SAS system taxed with concurrent processes—including SAS programs as well as unrelated processes such as the

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

13

infamous virus detection software—will produce lower performance ratios. Table 3 demonstrates abridged metrics

generated in the LIB.Metrics_sort data set.

Real Time User CPU Time System CPU

Time

Memory in MB OS Memory in

MB

Processes

2.53 4.07 0.18 623.24 624.66 1

2.98 4.87 0.34 623.24 624.66 2

3.01 4.82 0.20 623.24 624.66 2

3.75 5.20 0.28 623.24 624.66 3

3.65 5.28 0.35 623.24 624.66 3

3.67 5.40 0.20 623.24 624.66 3

Table 3. Sample Metrics from Stress Test of Parallel SORT Procedures: First Three Iterations

In this example, the performance ratio of the first iteration is 1.61 (or 4.07 seconds / 2.53 seconds), the second 1.62

(or 4.87 seconds / 3.01 seconds), and the third 1.44 (or 5.4 seconds / 3.75 seconds). However, by the 15th iteration

(when 15 SORT procedures are simultaneously running), the ratio had dropped to 0.49 (or 8.25 seconds / 16.89

seconds) so the loop was halted (per the arbitrary 0.5 threshold) with a user-defined error message. In other words, if

software needed to sort 15 data sets in series, it would take approximately 37.95 seconds (or 2.53 seconds x 15);

however, by sorting 15 data sets concurrently, all data sets sort in only 16.89 seconds at a tremendous time savings.

However, if the %RETURN statement is removed so that STRESSTESTING completes 24 iterations despite crossing

the 0.5 ratio threshold, the relative inefficiency of processing by the final iteration is clearly visible. By the 24th iteration,

the ratio of User CPU Time to Realtime had dropped to 0.33 (or 8.43 seconds / 25.91 seconds). Thus, 24 data sets can

be sorted in series in approximately 60.72 seconds (or 2.53 seconds x 24) while the same data sets can be sorted in

parallel in 25.91 seconds. This is not to say that each of the 24 data sets took 25 seconds, only that the slowest process

to complete took 25 seconds. Thus, a dependent process waiting on all SORT procedure to complete would need to

wait until the slowest SORT had completed.

To determine when the optimal number of processes is reached (which maximizes SORT performance by decreasing

runtime) the ratio of maximum Realtime to the number of concurrent processes can be evaluated over time. Figure 1

demonstrates that by the time five or six processes are running concurrently, the system has reached maximum

throughput at which point additional processes do not improve performance. Additional concurrent processes may,

however, deplete system resources (e.g., memory) so one proven strategy is to utilize performance testing to ensure

that the number of parallel processes does not exceed the point at which performance is optimized.

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

14

Figure 1. Average Time To Complete SORT Procedure While Incrementing Parallel Processes

While parallel processing is often a sure-fire way to improve performance, it must be done responsibly to ensure that

the optimal number of processes is selected. Too many processes running concurrently will cause performance

degradation or software to grind to a halt with CPU or memory failure. Stress testing should be an essential quality

assurance step during software testing to ensure the optimal number of processes is selected. Hardware and

infrastructure variability across SAS environments dictate that load testing and stress testing must be performed in an

environment that most closely facsimiles that in which the software will be deployed for production. PINCHLOG can be

implemented to optimize software as it runs (such as by dynamically modifying the number of parallel processes

invoked) and to monitor system resource utilization to prevent functional or performance failure.

USING PINCHLOG FOR REPEATED MEASURES PERFORMANCE ANALYSIS

Although demonstrating ad hoc rather than dynamic analysis, PINCHLOG can be implemented to facilitate repeated

measures performance analysis. Because runtime and resource utilization can fluctuate wildly based on environmental

conditions (e.g., memory availability or the number of concurrent processes running on a system), assessing

performance metrics multiple times can produce more accurate results that depict not only “typical” performance but

also performance outliers and measures of performance variability.

For example, to gain a more accurate representation of the performance of the SORT procedure in a specific SAS

environment, the following code iterates through ten successive sorts and utilizes PINCHLOG to capture FULLSTIMER

metrics:

%macro repeatedmeasures(dsn= /* data set name in LIB.DSN or DSN format */,

 dsnout= /* output data set name in LIB.DSN or DSN format */,

 logfile= /* path, file name, and extension of log to be analyzed */,

 dsnmetrics= /* metrics data set in LIB.DSN or DSN format */,

 iterations= /* number of iterations to run */,

 obs= /* number of observations */,

 obsuni= /* approximate number of unique observations */,

 charlen= /* length of character variable being FREQqed */);

%local i;

%do i=1 %to &iterations;

 %let syscc=0;

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 S
e

co
n

d
s

to
 C

o
m

p
le

te
 A

ll
SO

R
Ts

Number of Concurrent Processes

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

15

 %put ITERATION: &i;

 %makedata(dsn=&dsn, obs=&obs, obsuni=&obsuni, charvar=1, charlen=&charlen);

 proc printto log="&logfile" new;

 run;

 proc freq data=&dsn noprint;

 tables char1 / out=&dsnout;

 run;

 proc printto;

 run;

 %pinchlog(logfile=&logfile, dsnmetrics=&dsnmetrics);

 %end;

%put ALL DONE!;

%mend;

%repeatedmeasures(dsn=lib.freqdata, dsnout=lib.freqout,

 dsnmetrics=lib.freqmetrics, logfile=&path\freqlog.txt,

 iterations=10, obs=1000000, obsuni=1000, charlen=16);

Easy-peasy and a performance metrics data set is created automatically that can be used for post hoc analysis, for

example, to determine a more accurate mean and median for FREQ Realtime. However, a more dynamic example

might additionally include an analysis of the Metrics data set after each iteration to assess the variability of performance

metrics and halt the loop when some threshold was achieved, for example, if it was determined that a representative

data sample had been generated.

USING PINCHLOG FOR COMPARATIVE PROCESS PERFORMANCE ANALYSIS

A final use case for PINCHLOG involves comparing system performance of competing processes, for example,

comparing sort performance of the SORT procedure and SQL procedure. Repeated measures analysis has also been

implemented to provide some assurance that accurate metrics are produced. The following macro iteratively runs the

SORT procedure and SQL procedure to sort a sample data set:

%macro sortvssql (dsn= /* data set name in LIB.DSN or DSN format */,

 dsnout= /* output data set name in LIB.DSN or DSN format */,

 logfile= /* path, file name, and extension of log to be analyzed */,

 dsnmetrics= /* metrics data set in LIB.DSN or DSN format */,

 iterations= /* number of iterations to run */,

 obs= /* number of observations */,

 obsuni= /* approximate number of unique observations */,

 charlen= /* length of character variable being FREQqed */);

%local i filesize cpucount memsize;

* convert to GB;

%let memsize=%sysevalf(%sysfunc(getoption(xmrlmem))/(1024*1024*1024));

%let cpucount=%sysfunc(getoption(cpucount));

* LIB required so PROC SQL can obtain filesize;

%if %scan(&dsn,1,.)=0 %then %let dsn=WORK.&dsn;

%if %scan(&dsnout,1,.)=0 %then %let dsnout=WORK.&dsnout;

%do i=1 %to &iterations;

 %makedata(dsn=&dsn, obs=&obs, obsuni=&obsuni, charvar=1, charlen=&charlen);

 proc sql noprint;

 select filesize format=15.

 into :filesize

 from dictionary.tables

 where libname="%scan(%upcase(&dsn),1,.)" and

 memname="%scan(%upcase(&dsn),2,.)";

 quit;

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

16

 %let filesize=%sysevalf(&filesize/(1024*1024)); * convert to MB;

* PROC SORT;

 %let syscc=0;

 proc printto log="&logfile" new;

 run;

 proc sort data=&dsn out=&dsnout;

 by char1;

 run;

 proc printto;

 run;

 %pinchlog(logfile=&logfile, dsnmetrics=&dsnmetrics,

 othervars=(var=procedure, val=PROC SORT, len=$20, form=$20.,

 label=Test Procedure /

 var=err, val=&syscc, len=8, form=8., lab=SYSCC error code /

 var=obs, val=&obs, len=8, form=comma15., lab=Obs /

 var=obsuni, val=&obsuni, len=8, form=comma15., lab=Unique Obs /

 var=charlen, val=&charlen, len=8, form=8., lab=Character Length /

 var=filesize, val=&filesize, len=8, form=comma15.2, lab=Size in MB /

 var=cpucount, val=&cpucount, len=8, form=8., lab=CPUCOUNT /

 var=memsize, val=&memsize, len=8, form=8.2, lab=MEMSIZE in GB));

 %if &pinchlogRC^=0 or &pinchlogchildRC^=0 %then %do;

 %put Something smells funny...;

 %return;

 %end;

* PROC SQL sort;

 %let syscc=0;

 proc printto log="&logfile" new;

 run;

 proc sql noprint;

 create table &dsnout AS

 select * from &dsn

 order by char1;

 quit;

 proc printto;

 run;

 %pinchlog(logfile=&logfile, dsnmetrics=&dsnmetrics,

 othervars=(var=procedure, val=PROC SQL SORT, len=$20, form=$20.,

 label=Test Procedure /

 var=err, val=&syscc, len=8, form=8., lab=SYSCC error code /

 var=obs, val=&obs, len=8, form=comma15., lab=Obs /

 var=obsuni, val=&obsuni, len=8, form=comma15., lab=Unique Obs /

 var=charlen, val=&charlen, len=8, form=8., lab=Character Length /

 var=filesize, val=&filesize, len=8, form=comma15.2, lab=Size in MB /

 var=cpucount, val=&cpucount, len=8, form=8., lab=CPUCOUNT /

 var=memsize, val=&memsize, len=8, form=8.2, lab=MEMSIZE in GB));

 %if &pinchlogRC^=0 or &pinchlogchildRC^=0 %then %do;

 %put Something smells funny...;

 %return;

 %end;

 %end;

%put ALL DONE!;

%mend;

%sortvssql(dsn=lib.somedata, dsnout=lib.somedatasorted,

 dsnmetrics=lib.sortmetrics, logfile=&path\logtemp.txt,

 iterations=20, obs=10000000, obsuni=100000, charlen=16);

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

17

The macro invocation produces a data set with 40 observations, alternating between PROC SORT and PROC SQL

SORT metrics. Additional system parameters CPUCOUNT and XMRLMEM have been captured with the

GETOPTIONS function and initialized into respectively named variables within the metrics data set. This allows the

software execution conditions to be understood (and replicated) more readily. Moreover, file size is saved into the

Filesize variable for use in regression testing (not shown) that might demonstrate the impact of file size on CPU Time,

Realtime, or other performance metrics.

Table 1 demonstrates sample output from the UNIVARIATE procedure and the clear performance advantage of using

the SQL procedure over the SORT procedure for this specific example only—that is, with this data set, on this system,

and under these conditions. Thus, while load and stress testing methods and programs can and should often be shared

among environments to promote more consistent and comparable metrics, the results will differ from one system and

circumstance to the next.

Figure 2. Relative Performance (Realtime) of SORT Procedure to SQL Procedure

To more broadly compare the performance of SORT and SQL, the impact of other characteristics such as observation

count must be analyzed. The flexibility of PINCHLOG (and the SQLVSSORT macro in which it was implemented in this

example) ensures the extensible solution can be utilized for subsequent performance testing. For example, with only a

few more lines of code, this final macro 1) compares performance of the SORT and SQL procedures, 2) assesses

performance variability of each method through repeated measures analysis, and 3) increments the number of

observations sorted from ten million to 100 million to show the influence of observation count:

%macro test();

%local cnt;

%do cnt=10000000 %to 100000000 %by 10000000;

 %sortvssql(dsn=lib.somedata, dsnout=lib.somedatasorted,

 dsnmetrics=lib.sortmetrics_incremental, logfile=&path\logtemp.txt,

 iterations=20, obs=&cnt, obsuni=100000, charlen=16);

 %end;

%mend;

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

18

%test;

While the results are not demonstrated, this example conceptually illustrates how SAS practitioners can utilize

PINCHLOG to facilitate univariate and multivariate influence on system and process performance. In a separate text,

the author illustrates multiple factors that influence SORT procedure performance, including number of observations,

number of unique observations, pre-sort order of observations, file completeness, file compression, number of BY

variables, type of BY variables, length of BY variables, file size, available memory, SORTSIZE system option, available

CPUs, and SAS interface (e.g., SAS Display Manager vs. SAS University Edition) on which the SORT is performedxlvi.

Thus, PINCHLOG can provide the heavy lifting to capture and aggregate performance metrics for later analysis while

near-real time analysis of PINCHLOG performance metrics can simultaneously ensure that stress testing does not

enter an unhealthy state by consuming too many system resources. In a separate text, the author demonstrates ad hoc

use of PINCHLOG to collect FULLSTIMER performance metrics to facilitate comparison between and regression

testing of the FREQ procedure and a faster alternative, the FREQFAST macroxlvii.

CONCLUSION

This text introduced the PINCHLOG macro that extracts performance metrics from SAS log files for both immediate

analysis and aggregation within a performance metrics data set. By pinching off a SAS log after process completion,

subsequent processes can respond dynamically to improve performance and to detect and prevent unhealthy system

resource utilization. Moreover, PINCHLOG can be implemented with ease to facilitate post hoc performance analysis

such as comparative process testing, load testing, stress testing, and repeated measures analysis.

REFERENCES

i Troy Martin Hughes. Why Aren’t Exception Handling Routines Routine? Toward Reliably Robust Code through
Increased Quality Standards in Base SAS. Midwest SAS Users Group (MWSUG) 2014. Retrieved from
https://www.mwsug.org/proceedings/2014/BB/MWSUG-2014-BB17.pdf.

ii Troy Martin Hughes. Ushering SAS® Emergency Medicine into the 21st Century: Toward Exception Handling
Objectives, Actions, Outcomes, and Comms. Midwest SAS Users Group (MWSUG) 2015. Retrieved from
https://www.mwsug.org/proceedings/2015/PH/MWSUG-2015-PH-08.pdf.

iii SAS Log Error Checking Tool. SAS Support. SAS Institute, Inc. Cary, NC. Retrieved from
http://support.sas.com/kb/44/852.html.

iv Derek Morgan. DISTRESS and PATCH: SCL to Support Remote Applications. SAS Users Group International
(SUGI) 2002. Retrieved from http://www2.sas.com/proceedings/sugi27/p035-27.pdf.

v Mary F. O. Rosenbloom and Kirk Paul Lafler. Best Practices: Put More Errors and Warnings in My Log, Please!
SAS Global Forum 2013. Retrieved from http://support.sas.com/resources/papers/proceedings13/350-2013.pdf.

vi Lauren Haworth. Reports Based on SAS Output: Taking Advantage of PROC PRINTTO, Data Steps and PROC
GPRINT. SAS Users Group International (SUGI) 1997. Retrieved from
http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER43.PDF.

vii Tianshu Li and John K. Troxell. A Macro To Report Problematic SAS Log Messages in a Production Environment.
Northeast SAS Users Group (NESUG) 2001. Retrieved from
http://www.lexjansen.com/nesug/nesug01/cc/cc4008.pdf.

viii Carey G. Smoak. A Utility Program for Checking SAS Log Files. SAS Users Group International (SUGI) 2002.
Retrieved from http://www2.sas.com/proceedings/sugi27/p096-27.pdf.

ix Malachy J. Foley. Cutting the SAS® LOG Down to Size. Southeast SAS Users Group (SESUG) 2004. Retrieved
from http://analytics.ncsu.edu/sesug/2004/SY05-Foley.pdf.

x MaryAnne D. Hope. The Automatic Detection of Problems in the SAS Log. Western Users of SAS Software (WUSS)
2004. Retrieved from http://www.lexjansen.com/wuss/2004/coders_corner/c_cc_the_automatic_detection.pdf.

https://www.mwsug.org/proceedings/2014/BB/MWSUG-2014-BB17.pdf
https://www.mwsug.org/proceedings/2015/PH/MWSUG-2015-PH-08.pdf
http://support.sas.com/kb/44/852.html
http://www2.sas.com/proceedings/sugi27/p035-27.pdf
http://support.sas.com/resources/papers/proceedings13/350-2013.pdf
http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER43.PDF
http://www.lexjansen.com/nesug/nesug01/cc/cc4008.pdf
http://www2.sas.com/proceedings/sugi27/p096-27.pdf
http://analytics.ncsu.edu/sesug/2004/SY05-Foley.pdf
http://www.lexjansen.com/wuss/2004/coders_corner/c_cc_the_automatic_detection.pdf

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

19

xi Adel Fahmy. Program Validation: Logging the Log. Northeast SAS Users Group (2004). Retrieved from
http://www.lexjansen.com/nesug/nesug04/ap/ap09.pdf.

xii Adel Fahmy. Logging the Log Magic: Pulling the Rabbit out of the Hat. PharmaSUG 2010. Retrieved from
http://www.lexjansen.com/pharmasug/2010/TT/TT08.pdf.

xiii Aaron Augustine. You’ve Got E-Mail: Automatic Log Checking Via E-Mail Notification. SAS Users Group
International (SUGI) 2006. Retrieved from http://www2.sas.com/proceedings/sugi31/128-31.pdf.

xiv Kevin Lee. How to QC Your Own Programs. Northeast SAS Users Group (NESUG) 2007. Retrieved from
http://www.lexjansen.com/nesug/nesug07/ap/ap12.pdf.

xv Milorad Stojanovic. SAS Log Summarizer - Finding What’s Most Important in the SAS Log. Southeast SAS Users
Group (SESUG) 2008. Retrieved from http://analytics.ncsu.edu/sesug/2008/CC-037.pdf.

xvi Suzanne Humphreys. %LOGCHECK: A Convenient Tool for Checking Multiple Log Files. PharmaSUG 2008.
Retrieved from http://www.lexjansen.com/pharmasug/2008/cc/CC02.pdf.

xvii Zhengyi Fang and Paul Gorrell. A Utility Program for Quickly Identifying Log Error or Warning Messages.
Northeast SAS Users Group (NESUG) 2009. Retrieved from http://www.lexjansen.com/nesug/nesug09/cc/CC15.pdf.

xviii Amit Baid. Catch the Bad Guys!!! A Utility Program To Check SAS Log Files. PharmaSUG 2009. Retrieved from
http://www.lexjansen.com/pharmasug/2009/po/PO25.pdf.

xix Sridhar R Dodlapati, Kiran Kumar Karidi, and Mahipal R Vanam. Log Checking: What To Check and Why?
Northeast SAS Users Group (NESUG) 2010. Retrieved from http://www.lexjansen.com/nesug/nesug10/cc/cc08.pdf.

xx Salman Ali. Pragmatic Approach To Resubmit Failed Jobs in Production Environment. SAS Global Forum 2010.
Retrieved from http://support.sas.com/resources/papers/proceedings10/006-2010.pdf.

xxi Ronald R. Palanca. You’ve Got ERROR. SAS Global Forum 2011. Retrieved from
http://support.sas.com/resources/papers/proceedings11/068-2011.pdf.

xxii Ralf Vaessen, Danny Pannemans, Juan Quesada Koen Vyverman. In Control of Your Data Warehouse Processes
with the Help of SAS Stored Processes and the SAS Information Delivery Portal. SAS Global Forum 2011. Retrieved
from http://support.sas.com/resources/papers/proceedings11/375-2011.pdf.

xxiii Matthew Psioda. Using Windows Batch Files to Sequentially Execute Sets of SAS Programs Efficiently. Southeast
SAS Users Group (SESUG) 2012. Retrieved from http://analytics.ncsu.edu/sesug/2012/PO-08.pdf.

xxiv Christopher W. Schacherer. SAS Data Management Techniques: Cleaning and Transforming Data for Delivery of
Analytic Datasets. Midwest SAS Users Group (MWSUG) 2012. Retrieved from
https://www.mwsug.org/proceedings/2012/DM/MWSUG-2012-DM06.pdf.

xxv Qiling Shi. Check and Summarize SASLog Files. Midwest SAS Users Group (MWSUG) 2012. Retrieved from
https://www.mwsug.org/proceedings/2012/S1/MWSUG-2012-S101.pdf.

xxvi Jack Hamilton. What Do You Mean, Not Everyone Is Like Me: Writing Programs for Others To Run. SAS Global
Forum 2012. Retrieved from http://support.sas.com/resources/papers/proceedings12/229-2012.pdf.

xxvii Yogesh Pande. Log Checks Made Easy. SAS Global Forum 2012. Retrieved from
http://support.sas.com/resources/papers/proceedings12/042-2012.pdf.

xxviii Chris Swenson. An Advanced, Multi-Featured Macro Program for Reviewing Logs. SAS Global Forum 2012.
Retrieved from http://support.sas.com/resources/papers/proceedings12/098-2012.pdf.

xxix Brit Miner. Using SAS Driver Programs To Automate Workflows and Respond to the Unexpected. PharmaSUG
2013. Retrieved from https://www.pharmasug.org/proceedings/2013/CC/PharmaSUG-2013-CC34.pdf.

xxx Emmy Pahmer. Making the Log a Forethought Rather Than an Afterthought. SAS Global Forum 2014. Retrieved
from http://support.sas.com/resources/papers/proceedings14/1556-2014.pdf.

http://www.lexjansen.com/nesug/nesug04/ap/ap09.pdf
http://www.lexjansen.com/pharmasug/2010/TT/TT08.pdf
http://www2.sas.com/proceedings/sugi31/128-31.pdf
http://www.lexjansen.com/nesug/nesug07/ap/ap12.pdf.
http://analytics.ncsu.edu/sesug/2008/CC-037.pdf
http://www.lexjansen.com/pharmasug/2008/cc/CC02.pdf
http://www.lexjansen.com/nesug/nesug09/cc/CC15.pdf
http://www.lexjansen.com/pharmasug/2009/po/PO25.pdf
http://www.lexjansen.com/nesug/nesug10/cc/cc08.pdf
http://support.sas.com/resources/papers/proceedings10/006-2010.pdf
http://support.sas.com/resources/papers/proceedings11/068-2011.pdf
http://support.sas.com/resources/papers/proceedings11/375-2011.pdf
http://analytics.ncsu.edu/sesug/2012/PO-08.pdf
https://www.mwsug.org/proceedings/2012/DM/MWSUG-2012-DM06.pdf
https://www.mwsug.org/proceedings/2012/S1/MWSUG-2012-S101.pdf
http://support.sas.com/resources/papers/proceedings12/229-2012.pdf
http://support.sas.com/resources/papers/proceedings12/042-2012.pdf
http://support.sas.com/resources/papers/proceedings12/098-2012.pdf
https://www.pharmasug.org/proceedings/2013/CC/PharmaSUG-2013-CC34.pdf
http://support.sas.com/resources/papers/proceedings14/1556-2014.pdf

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

20

xxxi Palanisamy Mohan and Amarnath Vijayarangan. Automated Log Analyzer Dashboard. PharmaSUG China 2014.
Retrieved from http://www.lexjansen.com/pharmasug-cn/2014/CC/PharmaSUG-China-2014-CC08.pdf.

xxxii Harun Rasheed and Amarnath Vijayarangan. Chasing the Log File While Running the SAS Program. SAS Global
Forum 2014. Retrieved from http://support.sas.com/resources/papers/proceedings14/1762-2014.pdf.

xxxiii Richann Watson. Check Please: An Automated Approach to Log Checking. SAS Global Forum 2017. Retrieved
from http://support.sas.com/resources/papers/proceedings17/1173-2017.pdf.

xxxiv FULLSTIMER SAS Option. Scalability and Performance. SAS Institute. Retrieved from
http://support.sas.com/rnd/scalability/tools/fullstim/.

xxxv Michael Williams. Troubleshoot Your Performance Issues: SAS Technical Support Shows You How. SAS Global
Forum 2009. Retrieved from http://support.sas.com/resources/papers/proceedings09/333-2009.pdf.

xxxvi Tony Brown. SAS Performance Monitoring - A Deeper Discussion. SAS Institute, Inc. SAS Global Forum 2008.
Retrieved from http://www2.sas.com/proceedings/forum2008/387-2008.pdf.

xxxvii Robert Patten. Run Time Comparison Macro. SAS Users Group International (SUGI) 2003. Retrieved from
http://www2.sas.com/proceedings/sugi28/113-28.pdf.

xxxviii Michael A. Raithel. Programmatically Measure SAS Application Performance on Any Computer Platform with the
New LOGPARSE SAS Macro. SAS Users Group International (SUGI) 2005. Retrieved from
http://www2.sas.com/proceedings/sugi30/219-30.pdf.

xxxix Ronald J. Fehd. Modifying The LogParse PassInfo Macro To Provide a Link between Product Usage in Rtrace
Log and Time Used in Job Log. Southeast SAS Users Group (SESUG) 2006. Retrieved from
http://analytics.ncsu.edu/sesug/2006/AP14_06.PDF.

xl Sreekanth Reddy Middela and Venkata Sekhar Bhamidipati. Benchmark Macro %COMPARE. Northeast SAS
Users Group (NESUG) 2008. Retrieved from http://www.lexjansen.com/nesug/nesug08/cc/cc17.pdf.

xli LeRoy Bessler. More Ways to Use SAS to Manage, Monitor, and Control SAS or the SAS BI Server: Tools for the
SAS User, Server Administrator, or Manager. SAS Global Forum 2010. Retrieved from
http://support.sas.com/resources/papers/proceedings10/279-2010.pdf.

xlii Steven First. The SAS Log: A Wealth of Data and Job Flow Information. SAS Global Forum 2012. Retrieved from
http://support.sas.com/resources/papers/proceedings12/237-2012.pdf.

xliii SCAPROC Procedure. Base SAS 9.4 Procedures Guide, Seventh Edition. SAS Institute, Inc. Cary, NC. Retrieved
from
http://support.sas.com/documentation/cdl/en/proc/70377/HTML/default/viewer.htm#n05aazp6jtoup0n1qjee3h7jto24.ht
m.

xliv Lingqun Liu. SAS Advanced Programming with Efficiency in Mind: A Real Case Study. Midwest SAS Users Group
(MWSUG) 2016. Retrieved from https://www.mwsug.org/proceedings/2016/BB/MWSUG-2016-BB18.pdf.

xlv Troy Martin Hughes. SAS Data Analytic Development: Dimensions of Software Quality. John Wiley and Sons, Inc.
Hoboken, NJ. 2016.

xlvi Troy Martin Hughes. Sorting a Bajillion Records: Conquering Scalability in a Big Data World. Southeast SAS Users
Group (SESUG) 2015. Retrieved from http://support.sas.com/resources/papers/proceedings16/11888-2016.pdf.

xlvi Troy Martin Hughes. From FREQing Slow to FREQing Fast: Facilitating a Four-Times-Faster FREQ with Divide-

and-Conquer Parallel Processing. Southeast SAS Users Group (SESUG) 2017.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

 Name: Troy Martin Hughes
 E-mail: troymartinhughes@gmail.com

http://www.lexjansen.com/pharmasug-cn/2014/CC/PharmaSUG-China-2014-CC08.pdf
http://support.sas.com/resources/papers/proceedings14/1762-2014.pdf
http://support.sas.com/resources/papers/proceedings17/1173-2017.pdf
http://support.sas.com/rnd/scalability/tools/fullstim/
http://support.sas.com/resources/papers/proceedings09/333-2009.pdf
http://www2.sas.com/proceedings/forum2008/387-2008.pdf
http://www2.sas.com/proceedings/sugi28/113-28.pdf
http://www2.sas.com/proceedings/sugi30/219-30.pdf
http://analytics.ncsu.edu/sesug/2006/AP14_06.PDF
http://www.lexjansen.com/nesug/nesug08/cc/cc17.pdf
http://support.sas.com/resources/papers/proceedings10/279-2010.pdf
http://support.sas.com/resources/papers/proceedings12/237-2012.pdf
http://support.sas.com/documentation/cdl/en/proc/70377/HTML/default/viewer.htm%23n05aazp6jtoup0n1qjee3h7jto24.htm
http://support.sas.com/documentation/cdl/en/proc/70377/HTML/default/viewer.htm%23n05aazp6jtoup0n1qjee3h7jto24.htm
https://www.mwsug.org/proceedings/2016/BB/MWSUG-2016-BB18.pdf
http://support.sas.com/resources/papers/proceedings16/11888-2016.pdf

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

21

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

22

APPENDIX A. PINCHLOG MACRO

%macro pinchlog(logfile= /* path, file name, and extension */,

 dsnmetrics= /* optional metrics data set in LIB.DSN or DSN format */,

 othervars= /* optional tokenized list of user-defined variables */);

* all times converted from HH:MM:SS.ss to SSSS.xx format;

%let syscc=0;

%global pinchlogRC pinchlogchildRC realtime usercputime systemcputime

 memory osmemory stepcount switchcount pagefaults pagereclaims

 volcontextswitches involcontextswitches blockinops blockoutops;

%let pinchlogRC=99;

%let pinchlogchildRC=0;

%let realtime=.;

%let usercputime=.;

%let systemcputime=.;

%let memory=.;

%let osmemory=.;

%let stepcount=.;

%let switchcount=.;

%let pagefaults=.;

%let pagereclaims=.;

%let volcontextswitches=.;

%let involcontextswitches=.;

%let blockinops=.;

%let blockoutops=.;

data _null_;

 length tab $500;

 infile "&logfile" truncover;

 input tab $500.;

 if strip(tab)=:'WARNING' or strip(tab)=:'ERROR' then do;

 call symput('pinchlogchildRC','4');

 return;

 end;

 if _n_>=7 then do; * skips the metrics produced by PRINTTO itself;

 if lowcase(substr(tab,1,9))='real time' then do;

 if count(scan(substr(tab,10),1,' '),':')=0 then

 call symput('realtime',scan(substr(tab,10),1,' '));

 else if count(scan(substr(tab,10),1,' '),':')=1 then

 call symput('realtime',put(((input(strip(scan(substr(tab,10),

 1,':')),8.0) * 60) +

 input(strip(scan(substr(tab,10),2,':')),8.2)),8.2));

 else if count(scan(substr(tab,10),1,' '),':')=2 then

 call symput('realtime',put(((input(strip(scan(substr(tab,10),

 1,':')),8.0) * 3600) +

 (input(strip(scan(substr(tab,10),2,':')),8.0) * 60) +

 input(strip(scan(substr(tab,10),3,':')),8.2)),8.2));

 end;

 else if lowcase(substr(tab,1,13))='user cpu time' then do;

 if count(scan(substr(tab,14),1,' '),':')=0 then

 call symput('usercputime',scan(substr(tab,14),1,' '));

 else if count(scan(substr(tab,14),1,' '),':')=1 then

 call symput('usercputime',put(((input(strip(scan(substr(tab,14),

 1,':')),8.0) * 60) +

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

23

 input(strip(scan(substr(tab,14),2,':')),8.2)),8.2));

 else if count(scan(substr(tab,14),1,' '),':')=2 then

 call symput('usercputime',put(((input(strip(scan(substr(tab,14),

 1,':')),8.0) * 3600) +

 (input(strip(scan(substr(tab,14), 2,':')),8.0) * 60) +

 input(strip(scan(substr(tab,14),3,':')),8.2)),8.2));

 end;

 else if lowcase(substr(tab,1,15))='system cpu time' then do;

 if count(scan(substr(tab,16),1,' '),':')=0 then

 call symput('systemcputime',scan(substr(tab,16),1,' '));

 else if count(scan(substr(tab,16),1,' '),':')=1 then

 call symput('systemcputime',put(((input(strip(scan(substr(tab,16),

 1,':')),8.0) * 60) +

 input(strip(scan(substr(tab,16),2,':')),8.2)),8.2));

 else if count(scan(substr(tab,16),1,' '),':')=2 then

 call symput('systemcputime',put(((input(strip(scan(substr(tab,16),

 1,':')),8.0) * 3600) +

 (input(strip(scan(substr(tab,16),2,':')),8.0) * 60) +

 input(strip(scan(substr(tab,16),3,':')),8.2)),8.2));

 end;

 * convert KB to MB;

 else if lowcase(substr(tab,1,6))='memory' then

 call symput('memory',put(input(scan(substr(tab,7),1,'

 k'),8.3)/1024,8.3));

 else if lowcase(substr(tab,1,9))='os memory' then

 call symput('osmemory',put(input(scan(substr(tab,10),1,'

 k'),8.3)/1024,8.3));

 else if lowcase(substr(tab,1,10))='step count' then do;

 call symput('stepcount',scan(substr(tab,11),1,' '));

 call symput('switchcount',scan(substr(tab,11),4,' '));

 end;

 else if lowcase(substr(tab,1,11))='page faults' then

 call symput('pagefaults',scan(substr(tab,12),1,' '));

 else if lowcase(substr(tab,1,13))='page reclaims' then

 call symput('pagereclaims',scan(substr(tab,14),1,' '));

 else if lowcase(substr(tab,1,26))='voluntary context switches' then

 call symput('volcontextswitches',scan(substr(tab,27), 1,' '));

 else if lowcase(substr(tab,1,28))='involuntary context switches' then

 call symput('involcontextswitches',scan(substr(tab,29),1,' '));

 else if lowcase(substr(tab,1,24))='block input operations' then

 call symput('blockinops',scan(substr(tab,25),1,' '));

 else if lowcase(substr(tab,1,25))='block output operations' then

 call symput('blockoutops',scan(substr(tab,26),1,' '));

 end;

run;

* optionally initialize user-defined variables;

* at least VAR, VAL, and FORM sub-parameters are required for each variable;

%if %length(othervars)>0 %then %do;

 %local otherval otherlen otherform otherlab var val len form lab i j;

 %let otherval=;

 %let otherlen=;

 %let otherform=;

 %let otherlab=;

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

24

 %let othervars=%sysfunc(compress(%bquote(&othervars),

 %nrstr(%))%nrstr(%(),));

 %let i=1;

 %do %while(%length(%scan(%bquote(&othervars),&i,/))>1);

 %let var=;

 %let val=;

 %let len=;

 %let form=;

 %let lab=;

 %let varstring=%scan(%bquote(&othervars),&i,/);

 %let j=1;

 %do %while(%length(%scan(%bquote(&varstring),&j,%str(,)))>1);

 %let valstring=%scan(%bquote(&varstring),&j,%str(,));

 %if %lowcase(%scan(&valstring,1,=))=var

 %then %let var=%lowcase(%scan(&valstring,2,=));

 %if %lowcase(%scan(&valstring,1,=))=val

 %then %let val=%lowcase(%scan(&valstring,2,=));

 %if %lowcase(%scan(&valstring,1,=))=len

 %then %let len=%lowcase(%scan(&valstring,2,=));

 %if %lowcase(%scan(&valstring,1,=))=form

 %then %let form=%lowcase(%scan(&valstring,2,=));

 %if %lowcase(%scan(&valstring,1,=))=lab

 %then %let lab=%scan(&valstring,2,=);

 %let j=%eval(&j+1);

 %end;

 %if %length(&var)>0 and %length(&len)>0 and %length(&val)>0 %then %do;

 %let otherlen=&otherlen &var &len;

 %if %substr(&len,1,1)=$ %then

 %let otherval=&otherval &var="&val"%str(;);

 %else %let otherval=&otherval &var=&val%str(;);

 %if %length(&form)>0 %then %let otherform=&otherform &var &form;

 %if %length(&lab)>0 %then %let otherlab=&otherlab &var="&lab";

 %end;

 %let i=%eval(&i+1);

 %end;

 %end;

* optionally create/modify metrics data set;

%if %length(&dsnmetrics)>0 %then %do;

 %if %sysfunc(exist(&dsnmetrics))=0 %then %do;

 data &dsnmetrics;

 length realtime 8 usercputime 8 systemcputime 8 memory 8 osmemory 8

 stepcount 8 switchcount 8 pagefaults 8 pagereclaims 8

 volcontextswitches 8 involcontextswitches 8 blockinops 8;

 format realtime 8.2 usercputime 8.2 systemcputime 8.2 memory 8.3

 osmemory 8.3 stepcount 8. switchcount 8. pagefaults 8.

 pagereclaims 8. volcontextswitches 8. involcontextswitches 8.

 blockinops 8.;

 label realtime='Real Time' usercputime='User CPU Time'

 systemcputime='System CPU Time' memory='Memory in MB'

 osmemory='OS Memory in MB' stepcount='Step Count'

 switchcount='Switch Count' pagefaults='Page Faults'

 pagereclaims='Page Reclaims' volcontextswitches=

 'Voluntary Context Switches' involcontextswitches=

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

25

 'Involuntary Context Switches' blockinops='Block Input Operations'

 blockoutops='Block Output Operations';

 %if %length(&otherval)>0 %then %do;

 length &otherlen;;

 %if %length(&otherform)>0 %then %do;

 format &otherform;;

 %end;

 %if %length(&otherlab)>0 %then %do;

 label &otherlab;;

 %end;

 %end;

 if not missing(realtime);

 run;

 %end;

 data pinchtemp;

 if 0 then set &dsnmetrics;

 realtime=&realtime;

 usercputime=&usercputime;

 systemcputime=&systemcputime;

 memory=&memory;

 osmemory=&osmemory;

 stepcount=&stepcount;

 switchcount=&switchcount;

 pagefaults=&pagefaults;

 pagereclaims=&pagereclaims;

 volcontextswitches=&volcontextswitches;

 involcontextswitches=&involcontextswitches;

 blockinops=&blockinops;

 %if %length(&otherval)>0 %then %do;

 &otherval;

 %end;

 output;

 run;

 proc append base=&dsnmetrics data=pinchtemp;

 run;

 %end;

%let pinchlogRC=&syscc;

%mend;

Pinching Off Your SAS® Log: Adapting from Loquacious to Laconic Logs To Facilitate Near-Real Time Log Parsing, Performance

Analysis, and Dynamic, Data-Driven Design and Optimization, continued

26

APPENDIX B. MAKEDATA MACRO
* creates a customizeable, random data set;

%macro makedata(dsn= /* data set name in LIB.DSN format */,

 obs= /* number of observations */,

 obsuni= /* number of unique observations */,

 charvar=1 /* number of character variables */,

 charlen=10 /* length of character variables */,

 numvar=0 /* number of numeric variables */,

 numlen=0 /* length of numeric variables (3 to 8) */);

%let syscc=0;

%global makedataRC;

%let makedataRC=99;

%local i j maxnum;

* maxnum represents the highest number that can be saved;

%if %length(&numvar)>0 %then %do;

 %let maxnum=%sysevalf(32*(256**(&numlen-2)));

 %end;

%else %let numvar=0;

data &dsn (drop=obs obs2 i);

 length rando 8 i 8 obs 8 obs2 8

 %if %eval(&charvar>0) %then %do i=1 %to &charvar;

 char&i $&charlen

 %end;

 %if %eval(&numvar>0) %then %do i=1 %to &numvar;

 num&i &numlen

 %end;

 %str(;);

 %let j=%eval(&obsuni-%sysfunc(mod(&obs,&obsuni)));

 do obs=1 to &obsuni;

 %if %eval(&charvar>0) %then %do i=1 %to &charvar;

 char&i='';

 do i=1 to &charlen;

 char&i=cats(char&i,byte(int(rand('uniform')*10)+65)); *A to J;

 end;

 %end;

 %if %eval(&numvar>0) %then %do i=1 %to &numvar;

 num&i=int(rand('uniform')*&maxnum);

 %end;

 do obs2=1 to ifn(obs<=&j,%sysfunc(floor(%sysevalf(&obs/&obsuni))),

 %sysevalf(%sysfunc(floor(%sysevalf(&obs/&obsuni)))+1));

 rando=rand('uniform');

 output;

 end;

 end;

run;

* ensures data are not only random but also in random order;

proc sort data=&dsn out=&dsn (drop=rando);

 by rando;

run;

%let makedataRC=&syscc;

%mend;

