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ABSTRACT 

The possibilities of comparing results of independent program validation utilising SAS, R and Python 

were explored. This was achieved utilising the SASPy package (that provides Python APIs to the SAS 

system), the commonly used data science packages native to Python (NumPY, SciPY, pandas, 

Matplotlib, statsmodels, etc.), and Rpy2 (that enables users to call R from Python).  

 

INTRODUCTION 

In the clinical research industry, program validation is an important quality control (QC) process. For 

work products that may be less complicated or important, it could be reasonable for a programmer to 

be the main person programming, while a second programmer will perform the QC. For independent 

program validations, at least two programmers are assigned to independently develop their programs 

based on the same set of specifications and the outputs must match to be considered as validated. 

Although it is alright for the two programmers to use the same programming language while 

independently developing programs, it is also possible to perform independent coding using different 

programming languages. The method discussed in this paper will hopefully provide initial ideas in 

performing independent code validation using different programming environments. 

Recent trends in data science has allowed data scientists / analysts to utilize open-source methods to 

achieve analysis goals. Python, a general use programming language is rising in popularity relative to 

R and SAS. As statisticians and programmers attempt to decide in the wide variety of choices available 

for statistical software (SAS / R), Integrated Development Environment (IDEs) and statistical packages, 

new packages and techniques have emerged from the need to allow communication between each 

software. This would prove beneficial for our objective to achieve independent program validations in 

multiple statistical software. 

 

METHODS 

To perform the independent program validation using different statistical software, you would require 

installation of the following listed below:  

R-3.x (the latest stable version as of writing is R-3.4.3 for Windows, 6 Dec 2017) 

SAS 9.4 or higher (released July 2013) (this is a requirement for SASPy to work) 

Anaconda distribution (latest release, as of the publishing of this paper, is version 5.1, 15 Feb 2018) 

(provides IDEs: Jupyter Notebook, Spyder; and packages: NumPY, SciPY, pandas, Matplotlib) 

Install the Python packages statsmodels (this package is typically used to perform statistical analysis 

native to Python), Rpy2 (to perform statistical analysis in R), SASPy (to perform statistical analysis in 

SAS). Although detailed documentation and help on how to install the packages can be found on their 

respective github sites, an example specific to SASPy will be shown in the next section.  
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As Python is a general use programming language, Python will be used to call R or SAS functions 

before returning the results to Python as data frames for comparison. It is also possible to try to call R 

or Python from SAS using IML, or call Python from R using the rPython package. As the scope of this 

paper only covers calling R or SAS using Python, other possibilities will be explored in the future. Using 

the Spyder IDE included in Anaconda for Python code development, you can utilise a convenient GUI 

for developing code. However, if you need to compare results between graphical plots, Spyder’s iPython 

terminal is unable to display the SAS plots generated via SASPy and it is suggested to utilise Jupyter 

Notebook instead. 

 

INSTALLING AND CONFIGURING SASPY 

The easiest way to install SASPy is via pip.[1] On Windows, start up the system shell (cmd.exe), navigate 

to the location where the Anaconda distribution is installed (using the ‘cd’ command to navigate folders), 

and when you have reached the folder where pip.exe exists, key in the following command: 

pip install saspy 

 

Once installed, there are plenty of methods for connecting to SAS, but if you have SAS installed on 

your local machine, then the easiest would be to use the following configurations to your sascfg.py 

file: 

SAS_config_names=['winlocal'] 

winlocal = {'java'      : 'java', 

            'encoding'  : 'windows-1252', 

            'classpath' : cpW 

            } 

 

You may also need to update the paths needed for all the jar files as suggested by the SASPy 

documentation. For example, the paths for the jar files on my Windows were installed in the following: 

# Windows client class path 

cpW  =  "C:\\Program 

Files\\SAS94\\SASDeploymentManager\\9.4\\products\\deploywiz__94360__prt_

_xx__sp0__1\\deploywiz\\sas.svc.connection.jar" 

cpW += ";C:\\Program 

Files\\SAS94\\SASDeploymentManager\\9.4\\products\\deploywiz__94360__prt_

_xx__sp0__1\\deploywiz\\log4j.jar" 

cpW += ";C:\\Program 

Files\\SAS94\\SASDeploymentManager\\9.4\\products\\deploywiz__94360__prt_

_xx__sp0__1\\deploywiz\\sas.security.sspi.jar" 

cpW += ";C:\\Program 

Files\\SAS94\\SASDeploymentManager\\9.4\\products\\deploywiz__94360__prt_

_xx__sp0__1\\deploywiz\\sas.core.jar" 

cpW += "; 
C:\\Users\\xxxx\\AppData\\Local\\Continuum\\Anaconda3\\Lib\\site-

packages\\saspy\\java\\saspyiom.jar" 

 

TESTING OUT SASPY ON PYTHON 

The next step would be to test it out to see whether Python connects to SAS on your local machine. 

In [1]: import saspy 

sas = saspy.SASsession(cfgname='winlocal') 

Out[1]: SAS Connection established. Subprocess id is 7076 

You have managed to successfully connect to SAS using SASPy and have full functionalities of both 

SAS and Python. 
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INSTALLING AND CONFIGURING RPY2 

Performing a similar task as SASPy earlier, install and configure Rpy2[2] by launching the system shell 

(cmd.exe), navigating to pip and entering the following command: 

pip install rpy2 

 

 

TESTING OUT RPY2 ON PYTHON 

If the installation of Rpy2 is successful, you can proceed to test Rpy2. You should have the following 

results printed (or perhaps any version you have installed). 

In [2]: import rpy2 

print(rpy2.__version__) 

Out[2]: 2.8.6 

 

 

RESULTS 

Once you have managed to get both SASPy and Rpy2 running, you can start work on this ‘multilingual’ 

project. Figure 1 shows the overall view on how results will be compared using the different software. 

It is suggested to import datasets created from 

a single source for all your analyses. 

Troubleshooting code can be troublesome if the 

analysis is based on data from different sources 

and more time would be spent debugging code, 

if the data wrangling steps are not the same. In 

this example, Analysis Data Model (ADaM) 

datasets commonly used in the pharmaceutical 

industry were used. ADaM is a CDISC 

compliant data standard used in the clinical 

research industry for regulatory submissions. A 

dummy dataset ADVS that contains information 

about the subjects’ Vital Signs was used.  

 

 
Figure 1. Overall view of independent program 

validation using Python. 

 

Performing the initial set-ups required for Pandas and importing the ADaM dataset, you can import from 

a variety of data sources (common file types SAS7BDAT, CSV, TXT are available). 

In [3]: import pandas as pd 

advs_txt = pd.read_table("C://Users//xxxx//studyXYZ//advs.txt") 

advs_csv = pd.read_csv("C://Users//xxxx//studyXYZ//advs.csv") 

advs_sas = pd.read_sas("C://Users//xxxx//studyXYZ//advs.sas7bdat") 

 

You can inspect that the data was read-in correctly as a dataframe. 

In [4]: advs_sas.head() 

Out[4]: 

     STUDYID                 USUBJID    BASETYPE      APHASE  NOMWEEK  \ 

0  b'12345A'  b'12345A-AB1001-S1008'  b'PHASE A'  b'PHASE A'      0.0    

1  b'12345A'  b'12345A-AB1001-S1008'  b'PHASE A'  b'PHASE A'     -2.0    

2  b'12345A'  b'12345A-AB1001-S1008'  b'PHASE A'  b'PHASE A'      NaN    

3  b'12345A'  b'12345A-AB1001-S1008'  b'PHASE A'  b'PHASE A'      NaN    

4  b'12345A'  b'12345A-AB1001-S1008'  b'PHASE A'  b'PHASE A'      NaN    

 

      SVDT   ADY  AWTARGET     AVISIT AVISITN FUFL  VSSEQ  AVAL 
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0  26986.0   0.0       NaN   b'BASE1'     2.0  NaN   15.0   5.0 

1  26973.0 -13.0       NaN  b'SCREEN'     1.0  NaN    9.0   4.0 

2  26992.0   6.0       NaN   b'VIS03'     3.0  NaN   21.0   3.0 

3  26998.0  12.0       NaN   b'VIS04'     4.0  NaN   27.0   5.0 

4  27007.0  21.0       NaN   b'VIS05'     5.0  NaN   33.0   5.0 

 

[5 rows x 38 columns] 

The data requires some additional steps here; you need to decode some strings with byte encoding to 

UTF-8.[3] 

In [5]: 

advs_sas['STUDYID'] = advs_sas['STUDYID'].str.decode('utf-8') 

advs_sas['USUBJID'] = advs_sas['USUBJID'].str.decode('utf-8') 

advs_sas['BASETYPE'] = advs_sas['BASETYPE'].str.decode('utf-8') 

advs_sas['PARAMCD'] = advs_sas['PARAMCD'].str.decode('utf-8') 

advs_sas['APHASE'] = advs_sas['APHASE'].str.decode('utf-8') 

advs_sas['AVISIT'] = advs_sas['AVISIT'].str.decode('utf-8') 

advs_sas.head() 

Out[5]: 

  STUDYID              USUBJID BASETYPE   APHASE  NOMWEEK    NOMWEEKC  \ 

0  12345A  12345A-AB1001-S1008  PHASE A  PHASE A      0.0   b'Week 0'    

1  12345A  12345A-AB1001-S1008  PHASE A  PHASE A     -2.0  b'Week -2'    

2  12345A  12345A-AB1001-S1008  PHASE A  PHASE A      NaN         NaN    

3  12345A  12345A-AB1001-S1008  PHASE A  PHASE A      NaN         NaN    

4  12345A  12345A-AB1001-S1008  PHASE A  PHASE A      NaN         NaN    

 

 

    ADY  AWTARGET  AVISIT AVISITN FUFL  VSSEQ AVAL   

0   0.0       NaN   BASE1     2.0  NaN   15.0  5.0   

1 -13.0       NaN  SCREEN     1.0  NaN    9.0  4.0   

2   6.0       NaN   VIS03     3.0  NaN   21.0  3.0   

3  12.0       NaN   VIS04     4.0  NaN   27.0  5.0   

4  21.0       NaN   VIS05     5.0  NaN   33.0  5.0   

 

[5 rows x 38 columns] 

 

A few variables in the dataframe has NaN (not a number) values. As these variables were not used for 

any analysis, they were dropped. You would also need to convert the dataframe to a SAS dataset within 

SASPy, and to do so via the DF2SD (dataframe to SAS dataset) functionality. Dropping the columns 

also ensures DF2SD works correctly, as DF2SD is unable to detect the proper format to create the SAS 

dataset if a variable is completely NaN. You can also print the SAS log to check that the SAS dataset 

has been created successfully. 

In [6]: 

advs_sas2a = advs_sas.drop(['CRIT1', 'CRIT1FL', 'FUFL'], axis=1) 

advs_sas2b = sas.df2sd(advs_sas2a, 'advs', 'WORK') 

print(sas.saslog()) 

 

CREATING SUMMARY TABLES 

In this example, the variable CHG can be summarised based on the following conditions: where 

BASETYPE=”PHASE A” and AVISIT not in (“EARLY1”, “EARLY2”) and using the following keys 

PARAMCD, AVISITN and AVISIT. 
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SASPy : SAS code wrapped in Python 

In [7]: 

c1 = sas.submit(""" 

proc sort data=advs; 

    by paramcd avisitn avisit; 

run; 

proc means data=advs n mean min max; 

    where basetype="PHASE A" and avisit not in ("EARLY1", "EARLY2"); 

    by paramcd avisitn avisit; 

    var chg; 

    ods output summary=sum1; 

run; 

""") 

 

print(sas.saslog()) 

There are many procedures that can be used to create summary tables using SAS, one of the most 

straightforward would be to utilize Proc Means. You can print the SAS log to ensure all the datasets 

were generated correctly without errors or warnings. The next step would be to convert the SAS dataset 

‘sum1’ generated by the Proc Means back to a Python dataframe. You can do this using SD2DF (SAS 

dataset to dataframe). 

In [8]: 

advs_sas2out = sas.sd2df('sum1', 'work') 

Inspecting the new dataframe (shown below), you may notice there is a trailing space found in the 

PARAMCD and AVISIT variables, which causes issues for comparison later. 

Out[8]: 

  PARAMCD  AVISITN   AVISIT  CHG_N  CHG_Mean  CHG_Min  CHG_Max 

0    OPR         1  SCREEN      39  0.205128      -15       14 

1    OPR         2   BASE1      40  0.000000        0        0 

2    OPR         3   VIS03      40  1.150000      -16       10 

3    OPR         4   VIS04      40 -0.225000      -21       11 

4    OPR         5   VIS05      35  2.800000       -8       32 

By removing the trailing space, the dataframe generated via SASPy is complete. 

In [9]: 

advs_sas2out['PARAMCD'] = advs_sas2out['PARAMCD'].str.strip() 

advs_sas2out['AVISIT'] = advs_sas2out['AVISIT'].str.strip() 

advs_sas2out 

Out[9]: 

  PARAMCD  AVISITN  AVISIT  CHG_N  CHG_Mean  CHG_Min  CHG_Max 

0     OPR        1  SCREEN     39  0.205128      -15       14 

1     OPR        2   BASE1     40  0.000000        0        0 

2     OPR        3   VIS03     40  1.150000      -16       10 

3     OPR        4   VIS04     40 -0.225000      -21       11 

4     OPR        5   VIS05     35  2.800000       -8       32 

 

Rpy2 : R code wrapped in Python 

To run R packages within Python, you can import the following packages with the source data. 

In [10]: 

import rpy2.rinterface as rinterface 

import rpy2.robjects as robjects 

from rpy2.robjects.packages import importr 

rinterface.initr() 

 

base = importr('base') 
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sas7bdat = importr('sas7bdat') 

robjects.r('advs_r <- 

read.sas7bdat("C://Users//xxxx//studyXYZ//advs.sas7bdat")') 

For the creation of summary tables in R, you utilize the PLYR and DPLYR packages, typically used in 

R. DPLYR is called after PLYR as some functionality is needed from DPLYR. 

In [11]: 

plyr = importr('plyr') 

dplyr = importr('dplyr') 

robjects.r('advs_r1 <- select(filter(advs_r, (advs_r$BASETYPE == "PHASE 

A") & !(advs_r$AVISIT == "EARLY1" | advs_r$AVISIT == "EARLY2")), 

c(1:38))') 

robjects.r('advs_r2 <- ddply(advs_r1, c("advs_r1$PARAMCD", 

"advs_r1$AVISITN", "advs_r1$AVISIT"), summarise, N = sum(!is.na(CHG)), 

mean = mean(CHG, na.rm=TRUE), min = min(CHG, na.rm=TRUE), max = max(CHG, 

na.rm=TRUE))') 

print(robjects.r('advs_r2')) 

By inspecting the R dataframe created, you can see that the column labels would need to be updated. 

Out[11]: 

  advs_r1$PARAMCD  advs_r1$AVISITN advs_r1$AVISIT   N      mean   min   

max 

1             OPR              1.0         SCREEN  39  0.205128 -15.0  

14.0 

2             OPR              2.0          BASE1  40  0.000000   0.0   

0.0 

3             OPR              3.0          VIS03  40  1.150000 -16.0  

10.0 

4             OPR              4.0          VIS04  40 -0.225000 -21.0  

11.0 

5             OPR              5.0          VIS05  35  2.800000  -8.0  

32.0 

You can convert the R dataframe back to a Python dataframe using the Pandas2RI functionality. 

Furthermore, you would need to reset the index of the dataframe after updating the column labels. The 

index needs to be reset as indices of dataframes in R start from 1, while indices of Python dataframes 

start from 0.  

In [12]: 

from rpy2.robjects import r, pandas2ri 

pandas2ri.activate() 

 

r.data('advs_r2') 

r['advs_r2'].head() 

advs_rout = r['advs_r2'] 

advs_rout1 = advs_rout 

advs_rout1.columns = ['PARAMCD', 'AVISITN', 'AVISIT', 'CHG_N', 

'CHG_Mean', 'CHG_Min', 'CHG_Max'] 

advs_rout1 = advs_rout.reset_index() 

advs_rout2 = advs_rout1.drop(['index'], axis=1) 

advs_rout2 

You can check that the ADVS_ROUT2 dataframe is as intended, through visual inspection. 

Out[12]:  

  PARAMCD  AVISITN  AVISIT  CHG_N  CHG_Mean  CHG_Min  CHG_Max 

0     OPR      1.0  SCREEN     39  0.205128    -15.0     14.0 

1     OPR      2.0   BASE1     40  0.000000      0.0      0.0 

2     OPR      3.0   VIS03     40  1.150000    -16.0     10.0 

3     OPR      4.0   VIS04     40 -0.225000    -21.0     11.0 

4     OPR      5.0   VIS05     35  2.800000     -8.0     32.0 
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Summary tables using Pandas (Python) 

To create summary tables via Python, you utilize the Pandas package. Using the ADVS_SAS dataframe 

imported earlier, ADVS_PY5 dataframe was generated using the GROUPBY and AGG functions. 

In [13]: 

advs_py = advs_sas 

advs_py.head() 

 

advs_py1 = advs_py[advs_py['BASETYPE'] =="PHASE A"] 

advs_py2 = advs_py1[advs_py1['AVISIT'] !="EARLY1"] 

advs_py3 = advs_py2[advs_py2['AVISIT'] !="EARLY2"] 

 

advs_py4 = advs_py3.groupby(["PARAMCD", "AVISITN", "AVISIT"]).agg({"CHG": 

['count', 'mean', 'min', 'max']}) 

advs_py5 = advs_py4 

Checking the ADVS_PY5 dataframe, you can see that the column labels are not the same as the 

ADVS_SAS2OUT and ADVS_ROUT2 dataframes. 

In [14]: advs_py5 

Out[14]:  

                         CHG                       

                       count      mean   min   max 

PARAMCD AVISITN AVISIT                             

OPR     1.0     SCREEN    39  0.205128 -15.0  14.0 

        2.0     BASE1     40  0.000000   0.0   0.0 

        3.0     VIS03     40  1.150000 -16.0  10.0 

        4.0     VIS04     40 -0.225000 -21.0  11.0 

        5.0     VIS05     35  2.800000  -8.0  32.0 

Hence, you need to update the column labels. 

In [15]:  

advs_py5.columns = ['CHG_N', 'CHG_Mean', 'CHG_Min', 'CHG_Max'] 

advs_py5 

Out[15]:  

                        CHG_N  CHG_Mean  CHG_Min  CHG_Max 

PARAMCD AVISITN AVISIT                                    

OPR     1.0     SCREEN     39  0.205128    -15.0     14.0 

        2.0     BASE1      40  0.000000      0.0      0.0 

        3.0     VIS03      40  1.150000    -16.0     10.0 

        4.0     VIS04      40 -0.225000    -21.0     11.0 

        5.0     VIS05      35  2.800000     -8.0     32.0 

Inspecting the shape of the dataframe, you can also see that 5x4 is a result of the GROUPBY and AGG 

functions applied earlier, and you would like to have 5x7 instead, to match the ADVS_SAS2OUT and 

ADVS_ROUT2 dataframes. 

In [16]: advs_py5.shape 

Out[16]: (5, 4) 

 

In [17]: advs_sas2out.shape 

Out[17]: (5, 7) 

 

In [18]: advs_rout2.shape 

Out[18]: (5, 7) 

 

You perform the same function to reset the index of the dataframe. Subsequently, you can check that 

the shape is now at 5x7. 
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In [19]: advs_py6 = advs_py5.reset_index() 

advs_py6.shape 

Out[19]: (5, 7) 

 

In [20]: advs_py6 

Out[20]:  

  PARAMCD  AVISITN  AVISIT  CHG_N  CHG_Mean  CHG_Min  CHG_Max 

0     OPR      1.0  SCREEN     39  0.205128    -15.0     14.0 

1     OPR      2.0   BASE1     40  0.000000      0.0      0.0 

2     OPR      3.0   VIS03     40  1.150000    -16.0     10.0 

3     OPR      4.0   VIS04     40 -0.225000    -21.0     11.0 

4     OPR      5.0   VIS05     35  2.800000     -8.0     32.0 

 

COMPARING TABLE OUTPUT RESULTS 

If there are only a few outputs to compare results, it could be more efficient to do a manual check. 

However, it is suggested to perform comparisons programmatically, because it reduces the possibilities 

of human error while checking.[4] This allows checking to be done across outputs with a lot of values. If 

you have a lot of summary tables to compare (perhaps in the hundreds or even thousands), it would 

not be feasible to attempt manual checks as you would need either more resources or time.  

Experienced SAS programmers can opt to convert all the dataframes to SAS datasets, and perform 

their comparison using Proc Compare. If you would like to compare the dataframes using Python, there 

are a few pointers to take note. There could be minor differences with regards to floating point values 

when summarized via different environments (R, SAS, Python). While checking for differences, the 

values could be the same visually, but programmatically, the Booleans performing the comparison could 

possibly give a True (that there are differences) result instead of being False (no differences). 

In [21]: (advs_py6 != advs_rout2).any(1) 

Out[21]:  

0    False 

1    False 

2    False 

3    False 

4    False 

dtype: bool 

Using the simplistic approach above, you can compare the dataframe generated via Pandas vs Rpy2, 

and that there were no differences for all records. 

In [22]: (advs_py6 != 

advs_sas2out).any(1) 

Out[22]:  

0     True 

1    False 

2    False 

3    False 

4    False 

dtype: bool 

In [23]: (advs_rout2 != 

advs_sas2out).any(1) 

Out[23]:  

0     True 

1    False 

2    False 

3    False 

4    False 

dtype: bool 

Comparing the dataframe generated via Pandas vs SASPy however, there were differences detected 

for one record. And this also happens when you compare the dataframe generated via Rpy2 vs SASPy. 

In [24]:  

ne_stacked = (advs_py6 != advs_sas2out).stack() 

changed = ne_stacked[ne_stacked] 

changed.index.names = ['id', 'col'] 

difference_locations = np.where(advs_py6 != advs_sas2out) 

changed_from = advs_py6.values[difference_locations] 

changed_to = advs_sas2out.values[difference_locations] 
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diff02 = pd.DataFrame({'from': changed_from, 'to': changed_to}, 

index=changed.index) 

diff02 

 

Out[24]:  

                 from        to 

id col                          

0  CHG_Mean  0.205128  0.205128 

Further investigation of the differences between the 2 dataframes was not helpful. Visually, the 2 

dataframes looked like they matched exactly. 

In [25]:  

advs_py6['CHG_Mean']._data 

Out[25]:  

SingleBlockManager 

Items: RangeIndex(start=0, stop=5, step=1) 

FloatBlock: 5 dtype: float64 

 

In [26]:  

advs_sas2out['CHG_Mean']._data 

Out[26]:  

SingleBlockManager 

Items: RangeIndex(start=0, stop=5, step=1) 

FloatBlock: 5 dtype: float64 

Checking the floating types did not reveal much information. 

As CHG_Mean is the column that keeps tripping up the comparisons, you would need to find out why 

this is happening and to what degree the differences could be. For this record, the value started to be 

different at the 14th decimal. 

In [27]:(advs_py6[0:1] != advs_sas3out[0:1]).any(1) 

Out[27]:  

2    True 

dtype: bool 

 

In [28]:(advs_py6["CHG_Mean"][0:1] != 

advs_sas3out["CHG_Mean"][0:1]).any() 

Out[28]: True 

 

In [29]:y=12 

(advs_py6["CHG_Mean"][0:1].round(y) != 

advs_sas3out["CHG_Mean"][0:1].round(y)).any() 

Out[29]: False 

 

In [30]:y=13 

(advs_py6["CHG_Mean"][0:1].round(y) != 

advs_sas3out["CHG_Mean"][0:1].round(y)).any() 

Out[30]: False 

 

In [31]:y=14 

(advs_py6["CHG_Mean"][0:1].round(y) != 

advs_sas3out["CHG_Mean"][0:1].round(y)).any() 

Out[31]: True 

Incorporating the ability to test if two data frames matched to a certain decimal place, slight 

modifications were made to the code, and introduced as a function definition. Running the following 

function in the next page, you can compare two data frames, while handling the possibility that some 

values could be different at certain decimal places, due to the inherent nature of floating values.  
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In [32]: def compareDF(df1, df2, y): 

    ne_stk = (df1.round(y) != df2.round(y)).stack() 

    changed = ne_stk[ne_stk] 

    if changed.shape==(0,): 

        print ("no differences found") 

    else: 

        changed.index.names = ['variable', 'value'] 

        diff_locate = np.where(df1.round(y) != df2.round(y)) 

        changed_from = df1.values[diff_locate] 

        changed_to = df2.values[diff_locate] 

        diff = pd.DataFrame({'from': changed_from, 'to': changed_to}, 

index=changed.index) 

        return diff 

 

In [33]: compareDF(advs_py6, advs_sas3out, 12) 

no differences found 

 

In [34]: compareDF(advs_py6, advs_sas3out, 13) 

no differences found 

 

In [35]: compareDF(advs_py6, advs_sas3out, 14) 

Out[35]:  

                       from        to 

variable value                        

0        CHG_Mean  0.205128  0.205128 

 

COMPARING GRAPHICAL PLOT RESULTS

It may not be a trivial task to compare results 

from graphical plots, especially if there were 

overlapping data points and lines. The method 

suggested for comparing plots would be to 

output the final values used for plotting, into a 

data set. And then you can perform the same 

function defined above for comparison between 

two data frames. If you want to do an eyeball 

check on the graphs itself, you can create plots 

using the Matplotlib, Bokeh or Seaborn libraries 

on Python. If you want to create SAS plots, the 

Spyder IDE would not suffice and you would 

have to utilize Jupyter Notebook instead.  

 

Figure 2.  Location of Jupyter Notebook

Jupyter Notebook should have been installed together with Spyder while installing the Anaconda 

distribution. It can be found by navigating from the Start Menu as shown in Figure 2. In the following 

example plots generated from the following packages SAS: Proc Sgplot, Python: Seaborn, R: lattice 

will be compared. 

You would need to perform all the steps in loading the data needed into Jupyter, just as what had been 

done using Spyder earlier. Using Proc Sgplot, you can wrap your SAS code as a Python object, and 

output the result using the command that prints the LST into HTML. 

In [1]: import pandas as pd 

import numpy as np 

from IPython.display import HTML 

import saspy 

sas = saspy.SASsession(cfgname='winlocal') 

advs_sas = pd.read_sas("C://Users//xxxx//studyXYZ//advs.sas7bdat") 

advs_sas['STUDYID'] = advs_sas['STUDYID'].str.decode('utf-8') 

advs_sas['USUBJID'] = advs_sas['USUBJID'].str.decode('utf-8') 

advs_sas['BASETYPE'] = advs_sas['BASETYPE'].str.decode('utf-8') 
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advs_sas['PARAMCD'] = advs_sas['PARAMCD'].str.decode('utf-8') 

advs_sas['APHASE'] = advs_sas['APHASE'].str.decode('utf-8') 

advs_sas['AVISIT'] = advs_sas['AVISIT'].str.decode('utf-8') 

advs_sas2a = advs_sas.drop(['CRIT1', 'CRIT1FL', 'FUFL'], axis=1) 

advs_sas2b = sas.df2sd(advs_sas2a, 'advs', 'WORK') 

 

In [2]: c = sas.submit(""" 

proc sgplot data=work.advs; 

  scatter x=avisitn y=chg; 

run; 

""") 

HTML(c['LST']) 

Repeat the creation of the plot once more using Python. In this example, simple code from the 

Seaborn package was utilized to create the scatter plot.  

In [3]: import seaborn as sns 

sns.regplot(x=advs_sas2a["AVISITN"], y=advs_sas2a["CHG"]) 

sns.plt.show() 

And finally, re-create the scatter plot for Rpy2, using the lattice package. 

In [4]: import rpy2 

import rpy2.rinterface as rinterface 

import rpy2.robjects as robjects 

from rpy2.robjects.packages import importr 

from rpy2.robjects import Formula 

from rpy2.robjects.vectors import IntVector, FloatVector 

from rpy2.robjects.lib import grid 

 

In [5]: rinterface.initr() 

base = importr('base') 

sas7bdat = importr('sas7bdat') 

rprint = robjects.globalenv.get("print") 

stats = importr('stats') 

grdevices = importr('grDevices') 

lattice = importr('lattice') 

 

In [6]: robjects.r('advs_r <- 

read.sas7bdat("C://Users//xxxx//studyXYZ//advs.sas7bdat")') 

robjects.r('advs_r2 <- advs_r[advs_r$BASETYPE == "PHASE A",]') 

robjects.r('advs_r3 <- advs_r2[advs_r2$AVISIT != "EARLY1",]') 

r4 = robjects.r('advs_r4 <- advs_r3[advs_r3$AVISIT != "EARLY2",]') 

xyplot = lattice.xyplot 

 

formula = Formula('CHG ~ AVISITN') 

formula.getenvironment()['AVISITN'] = r4.rx2('AVISITN') 

formula.getenvironment()['CHG'] = r4.rx2('CHG') 

 

p = lattice.xyplot(formula) 

rprint(p) 

 

By visual inspection of the three plots shown in the next page, you can compare and check that they 

match. If the task of plot creation and QC was split amongst two or more people using different 

programming languages, the SASPy and Rpy2 packages would prove useful for joining the codes back 

into a single file. It is possible to perform comparisons between other statistical packages, for example 

linear regression outputs (SAS: Proc GLM, Python: Statsmodels[5], R: lm). If the outputs can be 

standardized into a dataframe, then it is possible to perform comparisons using the function defined in 

the section above. 
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Figure 3. Plot using Proc SGplot (SASPy) 

 
Figure 4. Plot using Seaborn (Python) 

 
Figure 5. Plot using lattice (Rpy2) 

 

 

PERSPECTIVE 

It is thus possible to piece together code written by people from different job functions. A programmer 

could perform the necessary data manipulation (or SDTM/ADaM dataset creation) using SAS, a 

biostatistician analyses the datasets using packages from R, and a data visualisation analyst could 

create plots using Python, from end to end, all in a single program file without breaking the trail. Perhaps 

you had some data manipulation done using SAS but would like to utilize some machine learning 

techniques from Python’s sk-learn package or R’s xgboost package. Or you had a colleague that 

created some code using R, and you should continue where he left off using Python, to connect to the 

next part of the work process. Or your colleague is more comfortable using R while you are with SAS. 

Or the other way around.  

We are no longer bound by the different programming languages. The possibilities of mixing and 

matching are truly endless. 

 

CONCLUSION 

This paper has suggested a method for independent program validations utilising the 3 programming 

languages SAS, R and Python within a single Python program. By converting outputs to dataframes, 

the function introduced in this paper allows users to perform comparisons at decimal places of their own 

choice. Validation continues to be an important aspect of statistical programming and as such, 

performing the validation accurately and efficiently will be beneficial to any organisation. 
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