PharmaSUG 2018 - Paper AD-14

Automatically Configure SDTM Specifications Using SAS® and VBA
Xingxing Wu, Eli Lilly and Company, Indianapolis, IN

ABSTRACT

SDTM is becoming the standard for pharmaceutical companies to submit data to FDA. The SDTM
specifications are the foundation to create SDTM domains. Usually a standard study specification
template (SST) is available and the study team needs to configure it to meet the specific requirements of
the study. Currently, the SDTM specifications are configured manually. This paper proposes an automatic
and efficient approach to configure certain parts of SDTM specifications using SAS and Visual Basic for
Applications (VBA) while maintaining the original specification formats or converting the formats to the
desired ones. This approach can also be directly applied to other areas to dynamically update the excel
files and satisfy the format requirements.

INTRODUCTION

SDTM provides a standard way to format and organize data. It is becoming one of the required standard
to submit data to FDA because of its capability to improve the regulatory review and approval process. It
is widely used in pharmaceutical companies. Writing SDTM specifications is the first step of SDTM
development. To standardize the SDTM specifications, the company would usually provide a standard
study specification template in excel file. The study team will then need to configure this template based
on the specific requirements of the study. Usually, the configuration is implemented manually, even
though, technically, certain parts of the specifications can be configured by SAS programs, such as the
maximum variable lengths and the variable origins (Case Report Form (CRF) pages). The reason is that it
is not easy to use SAS programs to maintain the formats of the original specification excel file. For
example, to easy the configuration, the study specification template usually uses different colors to divide
the excel sheets into different parts, such as using dark blue for non-configurable parts, and using light
color for configurable parts. If we use SAS programs to directly update the contents of the specification
excel file, all the original excel file formats, such as colors, fonts, will be lost. This might not be acceptable
in certain situations.To address this issue, one possible solution is to use SAS Dynamic Data Exchange
(DDE) to control excel. However, we can not run DDE programs submitted from SAS Enterprise Guide on
SAS Grid. In order to use SAS programs to help the configuration of the SDTM specifications, another
option is to use SAS programs to create a separate excel file without format requirement instead of
directly updating the original SDTM specifications. For example, we can use SAS programs to calculate
the maximum variable lengths in each domain, and find the related CRF pages of the CRF variables. All
these results will be exported into separate excel files which will then be combined together with original
SDTM specifications to generate the Define.xml submitted to FDA. The drawback of this approach is the
potential inconsistence between Define.xml, XPT files, SAS datasets, and SDTM specifications. In order
to overcome the issues of these approaches, this paper proposes an automatic and efficient approach to
directly configure certain parts of the SDTM specifications using SAS and VBA while maintaining the
original specification formats or even converting the formats to the required ones. The configured SDTM
specifications can then be used to generate SDTM domains and Define.xml. This approach is not limited
by the SAS running environment and has the advantage of maintaining the consistence between SDTM
specifications, SAS datasets, XPT files, and Define.xml. Although this approach is developed to configure
SDTM specifications, it can also be directly applied to other areas to automatically update the contents of
the excel files based on the dynamically generated information while satisfying the format requirements.
This paper will first briefly introduce the SDTM specifications, and then use two examples to demonstrate
how to use SAS programs to generate the required information that will be used to configure the SDTM
specifications. Finally, this paper will discuss how to use VBA to update the SDTM specifications based
on the SAS-generated information.

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

SDTM SPECIFICATIONS

SDTM specification configuration is the first and very important step in the SDTM development. The
SDTM domains will be created based on the algorithms defined in the SDTM specifications. The
attributes of the variables in SDTM domains are also defined in the SDTM specifications. It will also be
used as one of the inputs to create Define.xml submitted to FDA. In order to standardize SDTM
specifications, the company will usually provide the standard study specification template. The study
team just needs to configure this template based on study specific requirements. The following is an
example of the SDTM specification template which might be different between companies:

6 il] 0

1 DATMSET . (VARIABLE . [BUSINESS_ALGDRITHM v (STUDY_SPECIFIC_ALGORITHM v [SUBMISSION_COMMENT + |ORIGIN « |LABEL v |SASIENGTH + (DATATVPE

P

PUIlSTEGUID Tom IV SUBECT where SUBECT D= npu> SUBECTI. Ffaen[sudyldentier i e
ll SITENNEMONICfrom INF ST UPDATE where T ECID=
INF SUBLECTSITEGUID.Set o COMS 1401 STE I
(SOYID_UNQ_STOY 10,1 whese COMS_JASC STE INVINVID=
N STE_UPDATESITEMNEMONC.

Figure 1. SDTM Study Specification Template

In the example above, the blue parts are non-configurable. The study team just needs to configure the
white parts, such as “STUDY SPECIFIC ALGORITHM”, “ORIGIN”, and “SASLENGTH".

Another important usage of SDTM specifications is to automatically assign the attributes to the related
variables in SDTM domains.

For this purpose, we can first convert the specification excel files into SAS datasets. This can be done
using PROC IMPORT, or use XLSX engine:

libname specs xlsx <'physical-path and filename.xlsx'>

With this, the SAS datasets related to excel sheets (domains) in the specification file can be directly
accessed using specs.domain, such as specs.dm and sepcs.ae.

After this, we can use SAS program to assign the attributes to variables based on SDTM specifications.

The following is the main part of the implementation:

/*create the length variable*/
data domain meta;
set specs.domain;
if datatype in ("text" "date" "datetime") then wvarlth=
compress (variable) | |" $"| |compress (put (saslength, best.)) | |".";
else varlth=compress (variable) ||" "||compress (put (saslength, best.))[[|".";
run;

/*create macro variables of keep variables, length variables and labels */
proc sqgl noprint;

select variable into: keepvars separated by " " from domain meta;

select varlth into: varslen separated by " " from domain meta;

select compress (variable) ||'=""||strip(label) ||'"' into: labels
separated by " " from domain meta;

quit;

/*assign attributes to the variables and only keep required variables */

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

data domain;
format &varslen.;
retain &keepvars.;
set domain in;
keep &keepvars.;
label &labels.;
run;

Another approach is to first create empty shells related to SDTM domains, and then set the shells and the
related SAS datasets together. The shells will only have the required variables with assigned attributes,
but have no record. The shells are also created based on the SDTM specification meta datasets
generated before.

AUTOMATICALLY GENERATE CONFIGURATION INFORMATION USING SAS

Currently, the whole SDTM specifications are configured manually. From previous section, we know,
technically, some parts of the specification template can be configured by SAS programs, such as
maximum variable length (SASLENGTH) column, and ORIGIN column. We will use two examples to
demonstrate how to use SAS programs to automatically generate the required information that will be
used to configure SDTM specifications.

CALCULATE MAXIMUM VARIABLE LENGTHS USING SAS

We can use the following SAS code to calculate the actual maximum variable lengths for a given domain:

data domain;
set sdtm.domain;
array chars character ;
length variable $32;
do over chars;

variable = vname (chars);
length = length (chars);
output;
end;
run;
proc sql;

create table domain maxlen as

select variable, max(length) as maxlen
from domain

group by variable

quit;

The created SAS dataset domain maxlen will contain the actual maximum lengths of the variables in
the domains. This information can then be used to configure the SDTM specifications.

OBTAIN VARIABLE ORIGINS USING SAS

In the SDTM specification template, the ORIGIN column will have the values of “CRF Page xx” if the
variable is from CRF. We can use SAS programs to extract the exact CRF page numbers from the SDTM
annotated CRF file. Figure 2 is an example of the SDTM annotated CRF file. The “AE = Adverse Events”
indicates the SDTM domain name, and AEGRPID and AETERM are the variable names in the AE
domain. In fact, all these annotations are added to the related CRF pages as comments, and thus they
can be extracted to an adobe acrobat forms document (.fdf) as shown in Figure 3. It is more important

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

that the “.fdf” file can be open as a text file and can then be converted to a SAS dataset as shown in
Figure 4. From Figure 3 and 4, we can notice that the domain and variable names are displayed as
“/Contents(domain name = domain description)/” and “/Contents(variable name)/”. The page number will
be displayed as “/Page xx/”.

Annotated Study Book Page 1 of 67

AE = Adverse Events

Adverse Events (AE) - Repeating Form
AE Group ID Adverse Event Adverse Event Details

1

Adverse Event Term

nditions must be recorded on the Medical

Record all adverse events that start, change in severity o sness, or are related to study procedures after informed consent is obtained. Pre-existing
H CRF. Do NOT record the primary study conditi
1. | AE Group ID

[AE Group 10] L | |AEGRPID

2. | What is the adverse event term?

i v |

AE Group AE Start |Ongoing? Severity Serious Relationship to Study Action Taken with Study Relationship to Non-Study Drug Outcome
ID Number Date Treatment Treatment Treatment
3.
v
Figure 2. Annotated CRF

%FDF-1.2
3aa1d
10 obj
<</FDF<</Bnnots(2 0O R 3 0R40RS50R60RTJT0ORBORS9ORIODORIIORI20RI1I30RI40R1I50R160R17T0R180RI90R200R 21 0 R220R 23 0 R
endobj
2 0 obj

<</C[0.749023 1.0 1.0]/Contents(AE = Adverse Events)/CreationDate(D:20160310111522-05'00")/DA(0 0 0 rg /Arial 12 Tf)/DS(font: Arial 12.0pt; text-align:left; col:
1;font-family:Arial; font-stretch:normal™s<p dir="ltr"s <span style="text-align:justify;font-weight:bold;font-style:italic

endobj

3 0 obj

<</C[0.749023 1.0 1.0]/Contents (REGRPID)/CreationDate (D:20160310114054-05'00")/DA(0 0 0 rg /Arial,BoldItalic 10 Tf)/DS(font: italic bold Arial 10.0pt; text-align
c;font-family:Arial;font-stretch:normal"><p dir="1tr">REGRPID</p></body>)/Rect[294.432 652.574 343.6%9 707.053]/Subj (Text Box)/Subtype/FreeText/T(C013460)/Type/kA

endobj

4 0 obj

<</C[0.749023 1.0 1.0]/Contents (RETERM) /CreationDate (D:20160310153242-05'00")/DA(0 0 0 rg /Arial,BoldItalic 10 Tf)/DS(font: italic bold Arial 10.0pt; text-align:
c;font-family:Arial; font-stretch:normal"><p dir="1tr">AETERM</p></body>)/Rect[282.097 665.355 333.71% 684.600]/subj (Text Box)/Subtype/FreeText/T (C013460)/Type/An:

endobj

Figure 3. Adobe Acrobat Forms Document (.fdf)

(&) Program | [Z] Log i3 Output Damz]|
AA -
& | §i Filter and Sort & Query Builder " Where | Data - Describe ~ Graph - Analyze - | Export - Send To - |

4 = .
[FOF-12 |

1
2 Lo

3 100bj

4 <</FDF<</Annots[20R30R40R50RE0R7O0RB0RI0R100RTIOR 120R 130R140R150R160R170R180R 190 R200R210R220R230R240R250R260R270R260R230R300RI10R320R330R 4 0RISORIEORITORIBOR 30,
5

&

7

endabi
200k

<<lC[0 743023 1 ureamnate(nzmsommﬂszz—ns‘unyn.:(n 00 rg /Avial 12 TADS{font Arial 12.0pt: text-alignef: color#3F3F00)/F 4M(D-20160323112536-0400)NM(FTd64c6T- 1768-45bb-2036-0d236a57449) Page. 1IRC{<xm ve
IHont-family-Avial font-streicherormst=<pdiT="FS <ispan>AE = Adverse Events<ispan><ip></body>)/Rect(52.0159 764 522 185,623 781 782)/SubjText Box)/Subtype/FreeTextT(CO1

endobj

10 300bj
§F <</C[0.748023 1.0 1.6)/Contents{AEGRPID)/CreationDate(D:20160310114054-0500)/DA(D 0 O rg /Arial Boldlalic 10 TfyDS{font: italic bold Arial 10.0pt; text-align:center; color#FF0000 J/F 4/M(D 201EDBT71D!”DBde‘DD')“NM(BdBthBdrM35514:53141'79&88511333
12 cifont-family:Arial font-stretch:normal ><p dir="ttr">AEGRPID</p></body>)/Rect[204.432 €92.574 343.699 707.053)/Subj(Text Bax)/Subtype/FreeTextT(CO13460) Type/Annots>

13| endobj
14 400k

15 | <<iCD743023 1.0 1 m fionDate(D O500)DA(0 0 0 rg JAsial Bolditalic 10 TAIDS(fort: italic bold Arial 10.0pt text-aligncenter: color:#FFO000)/F 4HM(D 20150325112559-D4‘DD]EI~1M(4142450e1BeB-dMD—E?BW-hSEMdDdI&E
16| contfamilyvislfort eSS dir-"i™>AETERM-Io><bocy) Reci2E2 037 655,355 333718 684 E05)SubiText Eox)SublypeFreeTex/ TICOI460) Typedbarcs>

17 endobi

Figure 4. SAS Dataset of Adobe Acrobat Forms Document

The following is the SAS program to extract the CRF pages from the annotated CRF file:

filename acrf "physical-path and filename of annotated CRF file";

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

/*domain list*/

%let domain:%str ("CO" "DM" "SE" "SV" "CM" "EC" |'EX|' |'PR|' |'XP|' |'AE|' |’CE|’ |’DS|’
"DV" "MH" "HO" "DA" "DD" "EG" " IE" "IS" "LB" |'MB|' |'MI " |'MO|' |'MS " " PC" |’PP|’
"PE" "QS" "RP" "RS " "SC" "SS" "TU" "TR" "VS " "FA" "SR") ;

/*read contents of annotated CRF*/
data acrf;

length conts $ 32767;

infile acrf lrecl=32767;

input;

conts= infile ;

if index (conts, 'Contents (') or index(conts, '/Page');
run;

/*use regular expression to extract the domain names, variable names, page
numbers, and background color*/
data acrfl;
retain rel re2 re3;
length variable domain pageno tmpvar colvar $50;
set acrf;
if N =1 then do;
rel = prxparse ("/(Contents\ () ((\w|\dl=] ["[,INLINTIN\)+) (\))/1i");
re2 = prxparse ("/ (\/Page +) (\d+)/i");
re3 = prxparse ("/"\<\<\/(C\[.+\])\/Contents/1i");
end;
if prxmatch(rel,conts) then do;
variable = prxposn(rel, 2, conts);
end;
if prxmatch(re2,conts) then do;
pageno = prxposn(re2, 2, conts);

end;
if prxmatch(re3,conts) then do;
colflg=1;
colvar = prxposn(re3, 1, conts);
end;
variable=compbl (tranwrd (variable, '\r', ''));
if index(variable, "=") then do;
tmpvar=strip (scan(variable, 1, "="));

if index (tmpvar, ')<length (tmpvar) and index (upcase (tmpvar), "WHEN")
then tmpvar=scan (tmpvar, 1, ' ');

else if index(tmpvar, ' ')<length (tmpvar) then tmpvar=scan (tmpvar, -1, '
") ;

if tmpvar in (&domain) then domain=tmpvar;

else variable=tmpvar;

end;

if upcase(variable)="'[NOT SUBMITTED]' or index (upcase(variable), 'SUPP') or
index (upcase (variable), 'RELREC') or index (upcase (variable), 'NOTE') or
variable='"'"' then delete;

keep domain variable pageno colvar;
run;

proc sort data=acrfl out=acrf2 nodupkey;
by pageno colvar domain variable;
run;

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

/*obtain domain name*/
data domain;

set acrf2;

where domain ne '';
run;

proc sort data=domain; by pageno colvar; run;

/*apply domain to related variables based on page and background color*/
data acrf3 (drop=domain o) ;

merge acrf2 (in=a rename=(domain=domain o) where=(domain o='")) domain
(in=b keep=pageno colvar domain) ;

by pageno colvar;

if a;
run;

proc sort data=acrf3; by colvar pageno; run;

/*handle the case when a domain has variables in more than one page */
data acrf4;

retain domain;

set acrf3 (rename=(domain=domain o)) ;

by colvar pageno;

if domain o ne '' then domain=domain o;
keep domain variable pageno;
run;

/*handle the case with two or more variables separated by "/" */
data acrf5;

length varl var2 $50;

set acrf4;

if index (variable, '/')=0 then output;
else do;

varl=variable;

i=1;

var2=scan (varl, i, '/');
do while (var2 ne ' ');
variable=var2;

output;
i=1i+1;
var2=scan (varl, i, '/');
end;
end;
run;

proc sort data=acrf5; by domain variable pageno; run;

/*combine page numbers together if variables appear on more than one page*/
data acrfé6;

length pages $200;

retain pages cnt;

set acrfb;

by domain variable pageno;

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

if first.variable then do; pages=pageno; cnt=1l; end;
else do; pages=catx(' ', pages, pageno); cnt=cnt+l; end;

if last.variable;

if cnt=1 then pages=catx(' ', 'CRF Page', pages);
else pages=catx(' ', 'CRF Pages', pages):;
keep domain variable pages;

run;

Figure 5 is an example of the extracted CRF pages of the variables in the SDTM domains.

< | #i Filter and Sort &5 Query Builder ¥
_{3} domain gf‘:} wvarnable gﬁ} pages

1 |AE AEGRPID CRF Page 1
28 AF AETERM CRF Page 1
3 CM CMCAT CRF Pages 4568

Figure 5. CRF Pages of Variables in SDTM Domains

The code above uses regular regressions to extract the domain names, variable names, background
colors, and related page numbers. The background colors can be used to handle the case when there are
more than one domains in a page. The domain names and related variables will be matched if they have
the same background colors. The code above can also handle the case when the variables in a domain
spread over more than one pages. In order to demonstrate the main idea of this approach, the code
above is a simplified version of the implementation, the uses can add more details into the code to fit their
needs.

After the configuration information is automatically generated by SAS programs, we can then use it to
configure the related parts of SDTM specifications by merging them together. The following is an example
of SAS program to update the maximum variable lengths of the SDTM specifications:

libname specs xlsx <'physical-path and filename.xlsx'>

data specs.domain;
merge specs.domain (in=a) domain maxlen (in=b);
by variable;
if a;
if b then saslength= maxlen;
run;

Even though the pre-defined contents of SASLENGTH column in the SDTM specification template can
been updated by the actual maximum variable lengths which are automatically generated by SAS
programs, we can also notice that the formats of the original specification template are also changed. In
order to overcome this issue, we will propose a new approach to configure SDTM specifications in the
next section.

B { f G H | I 0 p
1 DATASETVARIABLE BUSINESS ALGORITHM STUDY_SPECIFIC_ALGORITHM SUBMISSION_COMMENT ORIGIN LABEL SASLENGTH DATATYPE
2 0M STUDVID Pull SITEGUID from INF_SUBJECT where SUBJECT D= CRFPagexx Studyldentifier 12 text

Figure 6. SDTM Specification Configured by SAS Only

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

UPDATE SDTM SPECIFICATIONS USING SAS AND VBA

From previous section, it is obvious that the format of Figure 6 is quite different from that of Figure 1. In
some cases, the change of the formats might not be acceptable. This paper will propose a new approach
to automatically configure the specification template while maintaining the original formats or even
converting the formats to the required ones. This approach is implemented using SAS and VBA.

CREATE CONFIGURATION EXCEL FILE USING SAS

The first step of this approach is to use SAS to generate the excel file that contains the information that
will be used to configure SDTM specifications. For example, if we want to replace SASLENGTH and
ORIGIN columns with the actual maximum variable lengths and actual CRF page numbers in each
domain, we can use the SAS code mentioned before to automatically obtain these values and store them
to related SAS datasets. For the convenience of implementation, we can also name these datasets with
their related domain names. After this step, we can then use the following code to export these datasets
to related sheets in a excel file:

libname specs xlsx "physical-path and filename of SDTM specification";

/*get the names of all domains from the TABLES tab of the specification and
put in a macro variable*/
proc sql noprint;

select dataset into: domains separated by " " from specs.tables;
quit;

libname specs clear;

libname update xlsx "physical-path and filename of configuration info file";

$macro loop () ;

/*get the name of each domain from the macro variable domains*/
%let cnt=1;

%$let db=%sysfunc(scan(&domains, &cnt, %str()));

$put db=&db;

$do Swhile (&db ne);
/*output spec update information &db dataset into sheet &db*/
%if %sysfunc(exist (&db)) %$then %do;
data update.é&db;
set &db;
run;
%end;

$let cnt=%eval (&cnt+l);

%let db=%sysfunc(scan (&domains, &cnt, S$str()));
%end;

$mend loop;
%loop;

libname update clear;

In the code above, all the domain names are obtained from the TABLES tab of the SDTM specification. A

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

macro variable is created to hold all these domain names. A macro function is used to extract each
domain name from this macro variable, and check the existence of the related SAS configuration dataset.
If the dataset is found, it will then be exported to the related sheet in the configuration excel file. In
addition, the configuration excel file will be created if it does not exist before. Otherwise, the contents of
this configuration excel file will be updated accordingly.

CONFIGURE SDTM SPECIFICATIONS USING VBA

The second part of this approach is to use VAB to configure the SDTM specifications based on the
information contained in the configuration excel file generated before. The contents of the SDTM
specifications will be updated while the original formats can be maintained or be converted to other
required formats.

Create the User Interface of SDTM Specification Configuration

For the convenience of usage, a user interface of this configuration tool is constructed within Microsoft
Excel. The user interface consists of 3 input text boxes and 3 buttons as shown in Figure 7. The user can
input the file path and name of the SDTM specification into “primary excel file” input box, or click “browse”
button next to it to locate the SDTM specification. Similarly, the user can use “secondary excel file” input
box to input or browse the excel file containing the configuration information generated by SAS before.
The user can also use this interface to select the columns in the SDTM specification to be configured.
The default column name is set to SASLENGTH. The user can input other column name, or choose more
than one columns to be configured, such as SASLENGTH ORIGIN. In addition, the use can leave it blank
or input “ALL” to choose all the columns in the SDTM specification. After all these inputs, the user can
then click the “configure” button to start the SDTM specification configuration.

SDTM Specification Configuration Tool &

Flease select the primary excel file

‘ browse

Flease select the secondary excel file

browse

| I

Flease input the column names to be updated

SASLENGTH

configure

Figure 7. SDTM Specification Configuration User Interface 1

When the configuration is done, the Figure 8 window will be displayed. The user can decide whether to
continue or stop the configuration.

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

Microsoft Excel ﬁ

The file has been updated, do you want to
update other files (yes/no) Cancel

Figure 8. SDTM Specification Configuration User Interface 2

Select Excel Files

As mentioned before, the user can directly input the excel file path and name into the input text box. Also,
the use can click the “browse” button to locate the excel files. The following is the VBA code that will be
executed after the “browse” button is clicked:

Private Sub CommandButton Click()
Application.DisplayAlerts = False
Dim strFileToOpen2 As String

Dim wkpathnm As String
Dim wkbook As Workbook

'open file browse window
strFileToOpen2 = Application.GetOpenFilename

(Title:="Please choose a file to open", _
FileFilter:="Excel Files *.xls* (*.xls*),")

If strFileToOpen2 = "" Or strFileToOpen2 = "False" Then
MsgBox "No file selected.", vbExclamation, "Sorry!"
Exit Sub

Else

UserForml.TextBox2.Value = strFileToOpen?

'check whether the excel file is already open
k=20
For Each wkbook In Workbooks
wkpathnm = wkbook.Path & "\" & wkbook.Name
If wkpathnm = strFileToOpen2 Then
k=1
Exit For
End If
Next

'open the selected excel file
If k = 0 Then Workbooks.Open Filename:=strFileToOpen2

End If
End Sub

In the code above, the function Application.GetOpenFilename will pop up a window for the user to
browse and select a file. The file filter will limit the file extensions to xIs or xlIsx. If the user does not select

10

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

any file, such as clicking “Cancel’, it will pop up a window to indicate “No file selected”. After the excel file
is located, it will then check whether the selected excel file is already open or not. If not, the selected

exce

Configure SDTM Specifications

The main part of the implementation is to configure the selected SDTM specification based on the

[file will be open.

information stored in the configuration excel file. After clicking the “configure” button, the following VBA
code will be executed to configure the SDTM specification automatically:

Private Sub Configure Click()

Appl

'ini
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

Dim
Dim
Dim
Dim
Dim

bl
b2

'get

For Each wkbook In Workbooks

a
I

E

E
Next

up

ication.DisplayAlerts

tialization

wkbook As Workbook
wksheetl As Worksheet
wksheet2 As Worksheet
varselect ()

vartemp () As String
varp ()

saslenp ()

vars ()

saslens ()

saslencolp As Single
saslencols As Single
varcolp As Single
varcols As Single
Rownum As Long

colnum As Long
Rownuml As Long
colnuml As Long

aa As String
bl As String
b2 As String
prim As String
seco As String

UserForml.TextBoxl.Value
UserForml.TextBox2.Value

the primary and secondary workbook names

a = wkbook.Name

f bl Like "*" & aa Then

prim = aa

lseIf b2 Like "*" & aa Then
seco = aa

nd If

datefl = 0

'loop through each work sheet of the primary file
For Each wksheetl In Workbooks (prim) .Sheets
Rownum = wksheetl.UsedRange.Rows.Count

colnum = wksheetl.UsedRange.Columns.Count

'get the columns to be configured
If UserForml.TextBox3.Value = ""

Or UCase (UserForml.TextBox3.Value)

varselect = Application.WorksheetFunction.Transpose(

11

="ALL"

Then

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

Application.WorksheetFunction.Transpose (wksheetl.Range (wksheetl.Cells (1,
wksheetl.Cells (1, colnum))))

Else
vartemp () = Split (UCase (UserForml.TextBox3.Value))
ReDim varselect (1l To UBound(vartemp) + 1)
For 1 = 0 To UBound(vartemp)
varselect (i + 1) = vartemp (i)
Next
End If

'loop through each configuration column
For Each varnm In varselect
If varnm <> "" And UCase (varnm) <> "VARIABLE" Then

updatelfl = 0
updatellfl = 0
updatel2fl 0

'check whether primary file has the configuration column

For i = 1 To colnum

If UCase (wksheetl.Cells(l, 1) .Value) = UCase (varnm) Then
updatellfl = 1
saslencolp = i

End If

If UCase (wksheetl.Cells(l, i) .Value) = "VARIABLE" Then
updatel2fl =1
varcolp = 1

End If

If updatellfl = 1 And updatel2fl = 1 Then
updatelfl =1

Exit For
End If
Next
If updatelfl = 1 Then
update2fl = 0

'check whether secondary file has the required sheet (domain)
For Each wksheet?2 In Workbooks (seco) .Sheets
update3fl = 0

If UCase (wksheet2.Name) = UCase (wksheetl.Name) Then
update3fl =1
End If

'check whether secondary file has the required column
If update3fl = 1 Then
Rownuml = wksheet2.UsedRange.Rows.Count
colnuml = wksheet2.UsedRange.Columns.Count
update2lfl = 0
update?22fl = 0
For i = 1 To colnuml
If UCase (wksheet2.Cells (1, 1i).Value) = UCase(varnm) Then
update2lfl =1
saslencols = i
End If
If UCase (wksheet2.Cells (1, i) .Value)
update22fl = 1
varcols = 1
End If
If update2l1fl = 1 And update22fl = 1 Then
update2fl =1
Exit For

"VARIABLE" Then

12

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

End If
Next
'get the values of matched cells
If update2fl = 1 Then
varp =
Application.WorksheetFunction.Transpose (wksheetl.Range (wksheetl.Cells (1, varcolp),
wksheetl.Cells (Rownum, varcolp)))
saslenp =
Application.WorksheetFunction.Transpose (wksheetl.Range (wksheetl.Cells (1, saslencolp),
wksheetl.Cells (Rownum, saslencolp)))
vars =
Application.WorksheetFunction.Transpose (wksheet2.Range (wksheet2.Cells (1, varcols),
wksheet2.Cells (Rownuml, varcols)))
saslens =
Application.WorksheetFunction.Transpose (wksheet2.Range (wksheet2.Cells (1, saslencols),
wksheet2.Cells (Rownuml, saslencols)))
'update the cell value with required format
For il = 2 To UBound(varp)

For 12 = 2 To UBound(vars)
If UCase(varp(il)) = UCase(vars(i2)) Then
If saslenp(il) <> saslens(i2) Then
wksheetl.Cells (il, saslencolp).Value = saslens(i2)

wksheetl.Cells (il, saslencolp) .Font.Color =
RGB (255, 0, 0)
updatefl =1

End If
Exit For
End If
Next
Next

End If ' update2fl
End If 'update3fl
Next 'wksheet?2
End If 'updatelfl
End If 'check varnm
Next 'varselect
Next 'wksheetl

'save the primary file if updated
If updatefl = 1 Then Workbooks (prim) .Save

Workbooks (prim) .Close
Workbooks (seco) .Close

'check whether continue or stop the configuration
dd = InputBox ("The file has been updated, do you want to update other files
(yes/no) ™)

If UCase(dd) = "YES" Or UCase(dd) = "Y" Then
Unload UserForml
UserForml.Show
Else
Unload UserForml
End If
End Sub

The code above will identify the configuration columns based on the user input. It will then go through
each sheet (domain) in the SDTM specification to check whether the sheet contains the designated
configuration column. If yes, it will then check whether the secondary excel file also contains the same
sheet (domain) name. If the answer is yes, it will continue to check whether the secondary sheet also

13

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

contains the designated column. If all these are satisfied, then the code will start to perform the
configuration. During this step, it will first try to match the cells between the primary and secondary excel
files based on the “key” columns, such as “VARIABLE” column. When the cells are matched, it will first
check whether the values of the matched cells are the same. If the values are different, the cell value of
the primary excel file will be updated by that of the secondary excel file. In order to locate the updates
quickly, the updated parts can be displayed by certain colors, such as red color. This process will
continue until all selected configuration columns in all sheets of the designated SDTM specification have
been updated.

Figure 9 is the configured SDTM specifications. We can notice that the SASLENGTH of STUDYID has
been changed from 11 to 12 (in red). In addition, the code above will only update the selected parts of file,
and thus, the original values and formats of the rest parts of the SDTM specification will be maintained.

DATASET VARIABLE BUSINESS_ALGORITHM STUDY_SPECIFIC_ALGORITHM SUBMISSION_COMMENT ORIGIN |LABEL SASLENGTH |DATATYPE

DM STUDYID pull SITEGUID from INF_SUBJECT where SUBJECT 1D=<input>SUBJECT . Pull CRF Page wx (Studyldentifier 2 ftext
SITEMNEMONIC from INF_SITE_UPDATE where CT_RECID =INF SUBJECT.SITEGUID.
Set to CDMS_IASCI_SITE INV. USDYID_UNQ_STDY ID_TT where
CDMS_IASCI_SITE_INV.INVID= INF SITE_UPDATE SITEMNEMONIC.

Figure 9. SDTM Specification Configured by SAS and VBA

CONCLUSION

This paper proposes an automatic and efficient approach to configure SDTM specifications using SAS
and VBA. The SAS programs are used to automatically generate the configuration information, and the
VBA programs are used to configure the SDTM specifications based on the configuration information
generate by SAS programs. This approach can not only improve the efficiency of SDTM specification
configuration, it can also maintain the original formats of the SDTM specifications or update the formats to
the required ones. In addition, this approach is not limited by the SAS running environment. The user-
friendly interface makes it straightforward to apply this tool. Although this approach is developed initially
for the configuration of SDTM specifications, it can also be directly applied to other areas to dynamically
update the excel files with additional format requirements.

REFERENCES

Alexander, M., Kusleika, D. 2016. Excel 2016 Power Programming with VBA Advanced multiplicity
adjustment methods in clinical trials. Indianapolis, IN : John Wiley & Sons, Inc.

FDA. 2017. “Study Data Technical Conformance Guide v4.0.” Accessed November 2, 2017.
https://www.fda.gov.

CDISC. 2013. “Study Data Tabulation Model Implementation Guide (SDTMIG) v3.2.” Accessed
November 2, 2017. https://www.cdisc.org.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Xingxing Wu
Eli Lilly and Company
wu_xingxing@lilly.com

14

https://www.fda.gov/

Automatically Configure SDTM Specifications Using SAS® and VBA, continued

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

15

