
1

PharmaSUG 2018 - Paper AD21

ADaM Define.xml v2.0 Validation – The Perl Way in SAS

Yuxin (Ellen) Jiang, Alkermes Inc.

ABSTRACT
In the latest version of the Study Data Technical Conformance Guide, the FDA indicated that
Define-XML version 2.0 is the preferred version of the Define-XML format, which serves as a
metadata guide to the data submitted for a clinical trial. There are various methods that can be
used to validate the define.xml, such as Pinnacle 21 Community and SAS® Clinical Standard
Toolkit. However, these tools do not cover all the checks for validating the contents of the
define file. Additional SAS based methods have been proposed which involve a step to get
define.xml contents using XMLMap software and some manipulation steps to transform the
define file into SAS datasets in a desired format. The paper discusses using Perl Regular
Expressions pattern matching functions to directly read the content from Define.xml to SAS
macros or SAS datasets without using XMLMap, and then performing validation checks in SAS.
By keeping all the programs in SAS, this approach can help streamline the validation process of
Define.xml.

INTRODUCTION
Define.xml is the metadata file sent along with every clinical study in each regulatory
submission, which specifies what datasets, variables, variable attributes, controlled terms, and
other metadata were used in each study. Beginning in 2018, Define-XMLv2.0 is recommended
by FDA as the standard for study data submissions. As shown below, it has well defined schema
in terms of constraints on the structure and content of each type of elements including:

- Table of Contents: Dataset, Description, Structure, Purpose, Keys, Location
- Data Definition Tables: Provides the variable level attributes and definitions for each

variable
- Controlled Terminology (Code List)
- Value Level Metadata (Value List)
- Computational Algorithms

Perl Regular Expressions (PRX) were added to SAS in Version 9. Based on the consistent schema
pattern in Define.xml v2.0, utilizing joined power of PRX and SAS data steps, we can identify
different types of metadata elements in Define.xml in compact solutions. The purpose of this
paper is to show the key steps used to identify and extract different types of metadata
elements via a set of PRX functions (eg. PRXPARSE, PRXMATCH, PRXPOSN) within SAS. Not
depending on external software such as XMLMap or Pinnacle 21 to read the Define.xml at the
initial steps, this approach keeps all the programs in SAS, which not only helps to streamline the
define.xml validation process, but also makes some validation possible beyond what external
software can provide.

2

Sample of Define.xml v2.0 structure:

READ DEFINE.XML CONTENT INTO SAS VARIABLE
The first step here is to read in define.xml into a single SAS variable “xmltext”.

data xml;
 infile ‘&path\define.xml' dlm='<' truncover

input xmltext $2000.;
run;

EXTRACTION KEY VARIABLE LIST
In Define.xml v2.0, the key variables are defined in the following syntax:

<ItemRef ItemOID="IT.ADSL.USUBJID" OrderNumber="2" Mandatory="Yes" KeySequence="1"/>

The following PRX functions lead SAS to extract the content in the hierarchical define.xml file into rows
and columns in the rectangular SAS datasets.

- The PRXPARSE functions were used to compile PRX to identify the Key Variable element
defined by patternID1 and patternID2:
patternID1 = prxparse('/IT.(AD\w\w+).(\w\w\w+)"/');
patternID2 = prxparse('/(KeySequence=\"\d)/');

3

/ The forward slashis the default Perl delimiters to define the PRX pattern
IT. The exact text string must be present at the specified position

(AD\w\w+) This is the first capture buffer. It would contain the text for the ADaM dataset name.
The metacharacter string “\w\w+” matches any word string with at least two characters (upper-
and lowercase letters, blank and underscore). The metacharacter plus sign means there should
be at least one such character. This buffer would capture “ADSL” from ItemOID="IT.ADSL"

. The exact character dot must be present at the specified position

(\w\w\w+) This is the second capture buffer. It would contain the text for the key variable name.
The metacharacter string “\w\w\w+” matches any word string with at least three more characters
(upper- and lowercase letters, blank and underscore). This buffer would capture “USUBJID” from
ItemOID="IT.ADSL.USUBJID"

KeySequence= The exact text string must be present at the specified position

\" The back slash before the double quote means it is a double quote symbol and not a
metacharacter.

\d Any single digit number, equivalent to [0-9].

- The PRXMATCH and PRXPOSN functions were used to locate the patterns and extract the XML
text into SAS tables. PRXMATCH is used to locate the position in a string, where a PRX match is
found. This function returns the first position in a string expression of the pattern described by the
regular expression PRXPARSE. PRXPOSN returns the value from each capture buffer from the
position in a string where each PRX match was found.

 if prxmatch(patternID1, xmltext) then do;
 call prxposn(patternID1, 1, position, length);
 dsn = substr(xmltext, position, length);
 call prxposn(patternID1, 2, position, length);
 var = substr(xmltext, position, length);
 end;
 if prxmatch(patternID2, xmltext) then do;
 call prxposn(patternID2, 1, position, length);
 keyord =input(substr(substr(xmltext, position, length), length), best.);
 end;

Output SAS dataset with extracted key information: Dataset name (dsn), Key variable name (var), and the
key variable order (keyord) was shown below. In the ADAE dataset, the key list would contain USUBJID,
AEDECOD, AETERM, ASTDT. This key list will be called into a macro %chkkey in a later section of this
paper to validate if the key list identified unique records in the dataset.

EXTRACT VARIABLE ATTRIBUTES

As shown in the sample Define.xml below, the block with multiple lines from <ItemDef ItemOID … > to </
ItemDef > always contains key data attributes including Variable Name, DataType, Length,
SignificantDigits, SASFieldName, Label, Origin, Comment, DisplayFormat.

4

Below is the code sample using similar PRX function combined with the SAS RETAIN step to extract data
attributes from Define.xml and retain attributes information which embedded in different lines of
Define.xml into SAS regular tables.

5

(.+) Captures any character string with different length into the buffer. The metacharacter “.” means “any
character” including space.

Output SAS dataset with variable attributes merged in one row for each variable including Dataset Name
(dsn), Variable name (dsn), Variable type (type, Variable length (length), Variable format (format) and
Variable label (label).

EXTRACT CODELIST
In the sample Define.xml below, Code list is defined by <CodeList OID=…> and </CodeList> block.

As shown in the coded example below, similar PRX functions and SAS RETAIN statements were used to
extract Codelist values for each dataset and variable.

- PRX PATTERN1 '/"CL.(.+)" Name=/' to capture the Code list name after the “CL.” such as
codelist “CMTGR1” from ADCM dataset or a global code list named as “DCSREAS”.

- PRX PATTERN2 '/CodedValue="(.+)" OrderNumber=\"(\d+)\"/'to parse CodedValue in any
character "(.+)" into first buffer, and parse numerical OrderNumber into the second buffer
captured by \"(\d+)\"/.

6

Output of dataset includes Codelist Name (clname), Codelist Value (cl) and Codelist Value order (clord).
This dataset can be very useful when comparing with the data frequency tables to validate the Codelist.

BUILD CHECKS USING EXTRACTED METADATA
Now that we have define.xml metadata (Key variable list, Variable attributes and Codelist) in SAS data
sets, we have the power of SAS to develop home grown validation checks. For example, a macro
%chkkey below was created to validate if the key variable list extracted from the “Extract Key Variable
List” section above can uniquely define each record for each submission dataset. FDA has previously
reported that most regulatory submissions have problems with duplicate records. They represent
potentially contradictory information and make it difficult to summarize results [4]. We were able to identify
the insufficient key list for these duplicate records that could have been missed if we had just relied on
Pinnacle 21. The name list of all datasets can be captured into a macro variable &dslist using PROC SQL
code below. The code sample from %chkkey macro is below.

proc sql noprint;
select distinct dsn into :dslist separated by '|'
from dsin;
quit;

7

SAS macro %chkkey validates whether the key list can identify the unique records in each dataset.

%chkkey;

CONCLUSION
As shown in this paper, the Perl Regular Expression in SAS can be a powerful tool for directly converting
metadata from Define.xml into SAS data set records. This approach eliminates the extra step to use
XMLmap or other external software in the Define.xml validation process and the following manual steps
for formatting the metadata dataset. By keeping all the code in SAS, this approach makes an automated
process possible from beginning to the end. Another advantage of this approach is that you have the
ability and flexibility to extract different parts of Define.xml selectively based upon your validation
needs, and build in-house Define.xml validation beyond what external software can provide.

8

We developed the code in SAS 9.4 for extracting metadata from ADaM define.xml version 2.0. The
approach and Perl Regular Expression Pattern matching technique presented in this paper should work
for SDTM prepared using version 2.0 as well.

ACKNOWLEDGMENTS
This author is very grateful to Gretchen Murphy and Sondra Smyrnios for their editing and review.

REFERENCES
[1] Ron Cody, Robert Wood , 2004. SUGI 29 Paper 265-29 “An Introduction to Perl Regular Expressions

in SAS® 9” Robert Wood Johnson Medical School, Piscataway, NJ.
http://www2.sas.com/proceedings/sugi29/265-29.pdf

[2] Richard Pless. 2004. SUGI 29 Paper 043-29 “An Introduction to Regular Expressions with Examples
from Clinical Data”, Ovation Research Group, Highland Park, IL
http://www2.sas.com/proceedings/sugi29/043-29.pdf

[3] SAS Perl Regular Expressions Tip Sheet
https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf

[4] Doi, Mary. 2016. “How Good is Your SDTM Data? Perspectives from JumpStart”. PhUSE CSS.
http://www.phusewiki.org/docs/CSS%202016%20Presentations/SDTM%20Mary%20Doi.pptx

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Yuxin (Ellen) Jiang
Principal Programmer, Clinical Operation
Alkermes, Inc.
850 Winter St., Waltham, MA
Email: Yuxin.jiang@Alkermes.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

	ABSTRACT
	INTRODUCTION
	READ DEFINE.XML CONTENT into SAS Variable
	EXTRACTION KEY VARIABLE LIST
	EXTRACT VARIABLE ATTRIBUTES
	EXTRACT CODELIST
	build CHECKs USING EXTRACTED METADATA
	CONCLUSION
	ACKNOWLEDGMENTS
	References
	Contact Information

