
1

PharmaSUG 2018 - Paper AD-24

Application Development Framework for R/Shiny
Ashok Gunuganti, Pfizer Inc

ABSTRACT

This paper presents a basic framework for developing R/Shiny applications to accomplish various tasks
as a better alternative than doing those tasks in SAS. The primary advantage of Apps developed in
R/shiny over base SAS is that the applications can be published to the Web. They are also more
dynamic, interactive, and are able to incorporate the versatile R packages into Shiny which makes them
very powerful. Since Shiny applications can be deployed to the Web, the end user can use them with zero
knowledge of R.

INTRODUCTION

Most statistical programmers work on daily basis with SAS datasets to perform tasks such as
creation/review of SDTM data, ADaM data, and TLFs using SAS. R can also perform most of these tasks
because it has great packages designed to work with SAS datasets. One of these packages is Shiny, a
tool that provides a framework to develop GUI applications. Shiny’s straightforward implementation of
UI/Server interface makes it an ideal tool to create applications that can produce great efficiency for the
repetitive tasks that a statistical programmer often encounters. The paper briefly introduces Shiny and
presents a step-by-step approach to create a first Shiny application. The general framework presented in
this paper can be extended to create robust and scalable Shiny applications. The focus of this paper is to
demonstrate the building of Shiny Apps rather than a detailed discussion of Shiny components and how
to deploy Apps on the Web

 SETTINGUP YOUR APPLICATION DEVELOPMENT ENVIRONMENT

First, download and install the latest versions of

 R

 RStudio

After R and RStudio are installed successfully, launch RStudio and install the packages listed in Error!
Reference source not found.. This is accomplished by typing install.Packages ("<package name>") at
the RStudio console.

R Package Purpose

Shiny Shiny is an open source R package that provides an elegant and powerful Web
framework for building Web applications using R. Shiny helps turn your analyses into
interactive Web applications without requiring HTML, CSS, or JavaScript

Tidyverse The tidyverse is a collection of R packages designed for data science. It includes the
following packages that are relevant to the current context

haven for importing SAS datasets

readxl for importing .xls and .xlsx sheets

ggplot2 for creating graphics, based on the grammar of graphics

dplyr for data manipulation

tidyr – set of functions that help to tidy your data

Application Development Framework for R/Shiny, continued

2

R Package Purpose

stringr – provides functions to work with strings

DT DT provides an R interface to the JavaScript library DataTables. R data objects
(matrices or data frames) can be displayed as tables on HTML pages,
and DataTables provide filtering, pagination, sorting, and many other features in the
tables.

Summarytools Provides tools to quickly and neatly summarize data

Plotly For creating interactive Web-based graphics

qwraps2 A collection of (wrapper) functions the creator found useful for quickly placing data
summaries and formatted regression results into '.Rnw' or '.Rmd' files

Table 1: R packages

SHINY APP TEMPLATE

A basic Shiny app program template is presented below:

ui <- fluidPage()
server <- function(input, output){}
shinyApp(ui = ui, server = server)

The program consists of three main components:

1. ui - nested R functions that assemble an HTML user interface for your app

2. server - a function with instructions on how to build and rebuild the R objects displayed in the ui

3. shinyApp - combines ui and server into a functioning app.

A BASIC EXTENDABLE SHINY UI LAYOUT

There are several types of layouts available to organize the UI. In this paper, I layer tabpanels on top of
each other that are contained in tabsetpanel. The user can navigate the tabpanels by clicking on the tabs
shown in figure below (TAB1, TAB2, and TAB3). Each tabpanel then can be setup independent of the
other tabs to perfrom specific tasks like create live summary tables, review of SAS datasets for data
quality and compliance, (raw, SDTM, ADaM etc) or create graphical patient profiles etc.

Figure 1: Basic UI

Application Development Framework for R/Shiny, continued

3

Following is the code to create the UI in figure 1, as you can see it is very simple and straightforward.

fluidPage(tabsetPanel(
tabPanel("TAB 1", mainPanel(uiOutput('Addtional UI Elements go here'))),
tabPanel("TAB 2", mainPanel(uiOutput('Addtional UI Elements go here'))),
tabPanel("TAB 3", mainPanel(uiOutput('Addtional UI Elements go here')))
)
)

LIVE SUMMARY CREATION APPLICATION.

Until now I have talked about the basic UI and have gone through the steps on how to set up your
development environment and install the packages you need. Next, you are going to use this setup to
create your first Shiny App. In this section, I will go over how to start adding UI elements to one of the
tabs and how to go about adding server code to dynamically interact with the UI. Figure 2 is the Live
summary creation App which dynamically creates the baseline summary of sex, race, and age at baseline
using any SAS datasets presented by the user. The only requirement is that the data to support
summary is in the SAS dataset.

Figure 2: Live Summary Tables

The App has 3 UI elements

1. fileInput - Enables the user to choose file from a directory.

2. selectInput – Two drop downs to pick the variables (treatment variable and by group variable).

3. A main panel area where the server sends the summary.

Application Development Framework for R/Shiny, continued

4

The flow chart in figure 3 illustrates how the inputs are passed to the server which then generates the
summary.

Figure 3: App Flow Chart and UI

Code for building UI

library(shiny)
tabPanel("Live Tables",
sidebarLayout(

sidebarPanel(

 fileInput('sfile2', 'Pick Dataset',
accept=c('text/csv',
'text/comma-separated-values,text/plain',
'.sas7bdat')),

selectInput("varlist2","Pick Treatment variable",choices=c(colnames(data()))),

 selectInput("varlist3","Pick By Group variable",choices=c(colnames(data())))

), # end sidebar panel

mainPanel(
uiOutput("datasum2")

)
)
) #tabpanel end

1

2

3

4

Application Development Framework for R/Shiny, continued

5

UI Code Explanation

[1] Creates the UI file input box which enables the user to select the input dataset.

[2] After the dataset is loaded, it is passed to the server to populate selectInput with a list of variables
from the dataset

[3] The second selectInput is also loaded with the variables from the dataset

[4] The variable selections from the input boxes are passed to the server where the summary table is
created and passed back to the main panel section of the Ui which displays the table.

Server code

our_summary1 <-
 list("Sex" =
 list("Female: n (%)" = ~ qwraps2::n_perc0(Sex == 'F'),
 "Male: n (%)" = ~ qwraps2::n_perc0(Sex == 'M')
),
 "Race" =
 list("White: n (%)" = ~ qwraps2::n_perc0(Race == 'WHITE'),
 "Black or african american: n (%)" = ~ qwraps2::n_perc0(Race == 'BLACK O
R AFRICAN AMERICAN'),
 "American indian or alaska native: n (%)" = ~ qwraps2::n_perc0(Race == '
BLACK OR AFRICAN AMERICAN')
),
 "Age at Baseline" =
 list("min" = ~ min(Age),
 "max" = ~ max(Age),
 "mean (sd)" = ~ qwraps2::mean_sd(Age))

)

data2 <- reactive({
file2 <- input$sfile2
if(is.null(file2)){return()} [1]
read_sas(file2$datapath)

})

observeEvent(input$sfile2,{
updateSelectInput(session,"varlist2",choices=c(colnames(data2())))
})

observeEvent(input$sfile2,{
updateSelectInput(session,"varlist3",choices=c(colnames(data2())))
})

observeEvent(input$varlist2,{
output$datasum2 <- renderUI(
{ if(is.null(data2())){return ()}
ds<- data2()
sumtabl <- summary_table(filter(ds,SAFFL == 'Y') %>% group_by(get(input$varlist2),get(
input$varlist3)) ,our_summary1)
sumtabl <- HTML(knit2html(text=capture.output(sumtabl), fragment.only=TRUE))
sumtabl})
})

1

2

3

4

5

Application Development Framework for R/Shiny, continued

6

Server Code Explanation

[1] Creates a template for the summary table that is sent to the UI - Function n_perc0 computes n and
percent, Min computes the minimum, Max computes the maximum and mean_sd function computes the
mean and standard deviations for the variables referenced. Display labels are created in this section as
well.

[2] Once the user picks a dataset, reactive functions are used to run the code to pick up the dataset, to
use the datapath associated with the file, and read in the SAS dataset.

[3] Update the varlist1 with variable names from the dataset selected after the dataset load event is
observed.

[4] Update the varlist2 with variable names from the dataset selected after the dataset load event is
observed.

[5] Creates summary table which is called by the UI main panel.

As the user picks different treatment variables and by groups, the output is updated dynamically.

EXTEND SETUP

Based on the setup so far, you can create additional tabs that house additional Apps. In the following
pages, a couple of such Apps are presented.

Simple Data Review Tool

Figure 4 shows the UI inputs of the app for quick review of data quality. Next the dataset selected by
the user is loaded, the pick variable selectInput is populated with the variables from the dataset, and 1 or
more check boxes appear with the distinct values of the variable chosen. Figure 5 shows the UI outputs
which consists of a data table and stats summary of the subset below it.
These are updated dynamically as user changes inputs in UI.

User interface – Inputs

Figure 4: Data Review - Inputs

Application Development Framework for R/Shiny, continued

7

User Interface – Outputs

Figure 5: Data review - Outputs

Application Development Framework for R/Shiny, continued

8

Graphical Patient Profile

Figure 6 shows the UI inputs of the app for generating a graphical safety profile for subjects in a study.
The user copies the location of the study SDTM data in the text box below. Safety SDTM datasets are
copied to the work area following that selectInput is populated with the subject Id’s from the DM domain.
As the user selects a specific subject, a safety profile is generated as shown in Figure 7. As the user
updates the subject selection the plots are updated dynamically.

User interface – Inputs

Figure 6: Patient profile – Inputs

User Interface – Outputs

Figure 7: Patient profile – Outputs

Application Development Framework for R/Shiny, continued

9

CONCLUSION

Using the framework presented in this paper as a starting point, you can quickly develop dynamic Web-
enabled applications that can be customized to a very high degree. The dynamic nature of the Shiny
Apps makes them very powerful. They can automate route tasks and provide great efficiency. For a SAS
programmer, Shiny Apps are similar to SAS macros, but they are much more dynamic whenever the user
provides the macro parameters interactively.

REFERENCES

https://shiny.rstudio.com/images/shiny-cheatsheet.pdf

https://cran.r-project.org/web/packages/qwraps2/vignettes/summary-statistics.html

https://stackoverflow.com/questions/tagged/shiny

ACKNOWLEDGMENTS

The author would like to thank Liping Zhang for her invaluable input.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ashok Gunuganti
Pfizer Inc.
Ashovardhan.gunuganti@pfizer.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies

