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ABSTRACT 

Data analysis, visualization and reporting of preclinical and clinical drug metabolism assays were 
automated with a SAS®-based application, AIR Binder (PharmaSUG 2017, MWSUG 2017). Data mining 
using SAS® in combination with Python was also explored for a specific dataset type in drug metabolism, 
the mass spectrometry data for metabolite identification and characterization. We developed an 
application, LEO, to generate solutions for relatively challenging metabolite characterization of peptides 
and antibody-drug conjugates, which was built on an algorithm to search accurate mass change using 
three main components: linearization for cleavage reactions, extension for conjugation reactions, and 
oxidation for oxidation-reduction reactions (SASGF 2018). We further extended applications of LEO to a 
wider chemical space, for metabolite identification of both small and non-small molecules. The scoring 
functions in LEO were optimized by integrating analysis of fragmentation patterns, applying searching and 
iteration algorithms on fragments, and generating comprehensive solutions for recognizing aligned 
metabolite and fragment patterns. In addition, fragmentation patterns of parent compound were integrated 
as an option to refine solutions. Overall, LEO facilitated the process of identifying and characterizing 
"difficult" metabolites in drug discovery and development. 

INTRODUCTION  

Data analysis in the area of drug metabolism is diverse, from simple enzyme kinetics fit with non-linear 
equations to complicated multi-compartment pharmacokinetics modeled by differential equations. We 
reported a SAS®-based application, AIR Binder, to automate data analysis and visualization on various 
assays in drug metabolism (PharmaSUG 2017, MWSUG 2017). The similarity of diverse datasets 
reported in AIR Binder was their quantitative nature, regardless of instruments and software programs 
that generated them. Mass spectrometry has been routinely used nowadays to generate data for 
quantitation purpose including datasets for in vitro ADME assays, pharmacokinetic analysis, and 
metabolite profiling. As long as they are quantitative data points, they can be easily imported into AIR 
Binder for automation using SAS® macros, for analysis with various linear, nonlinear and mixed models, 
and for visualization with powerful ODS graphics. However, the datasets from mass spectrometry for 
metabolite identification and characterization are different, which are mainly qualitative data such as mass 
and fragments used for pattern analysis and recognition. 
 
Molecular ions of metabolites from mass spectrometry are relatively simple to identify for small molecules, 
but may be complicated for peptides and antibody-drug conjugates. We reported a method in LEO to 
provide solutions for ranking most probable molecular ions by mechanisms (SASGF 2018). Accurate 
mass change after metabolism was predicted and searched by considering biotransformation 
mechanisms such as cleavage reactions (“Linearization”), conjugation reactions (“Extension”), and 
oxidation-reduction reactions (“Oxidation”). Once molecular ion solutions were generated, scoring 
functions were used to identify most probable combinations by comparing fragment patterns. For small 
molecules, fragment pattern analysis is straightforward in most cases that can be accomplished by 
chemical structure drawing programs manually. However, for non-small molecules and relatively complex 
small molecules, it is more time-consuming to manually match fragments. Especially, it is time-consuming 
to identify “difficult” metabolites. For current work, the algorithm used to collect solutions for molecular 
ions of metabolites is used similarly to find solutions for fragments. The patterns of both metabolites and 
fragments are analyzed and scored to rank solutions. The raw datasets for LEO include molecule ions 
and fragments of both parent compound and metabolites (Figure 1). A “smart” pattern analysis of these 
datasets are essential for fast and accurate metabolite identification and characterization.  
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Figure 1 Datasets for metabolite identification and characterization 
 

The process to generate three searching components of LEO including the compound-dependent “L” and 
database “E” and “O” (lists and dictionaries) in Python were described previously (SASGF 2018). For 
current process, two essential functions in LEO are stored in searching/iteration and scoring modules 
(Figure 2). Molecular ions of metabolites and associated top fragments by abundance are the input 
parameters for the searching/iteration module. The solution list for a metabolite is generated according to 
algorithms, together with solution lists for fragments. It is more flexible in the current version to define L, 
E, and O components based on the molecular structure of a molecule. All solution lists for fragments are 
pooled to generate an overall solution table, and then compared with the metabolite solution list using the 
“scoring module 1”, to rank solutions for metabolite identification and characterization. As an option, the 
“scoring module 2” is used to compare the fragmentation patterns of a parent compound and metabolites. 
Although fragment patterns of the parent compound and metabolites may not be consistent, which 
depend on mechanisms of biotransformation, still it provides useful information for characterizing majority 
of metabolites of a small molecule drug.  
 

 
 

Figure 2 Searching and scoring in LEO for metabolite identification and characterization  
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SEARCHING AND ITERATION IN LEO 

In vivo drug metabolism and biotransformation may involve multiple steps of reactions, which makes the 
searching and iteration process challenging for identification and characterization of a metabolite. 
Theoretically, unlimited steps of reactions can be searched with accurate mass change calculated in 
LEO, but the number of loops would be astronomical, as well as computing and data analysis time. The 
original purpose of developing LEO was to help experienced metabolite identification scientists find 
solutions faster and analyze mass spectrometry data more efficiently. Users can make decisions based 
on their understanding and expectation of specific metabolic pathways, a targeted searching approach. 
For example, if more conjugation reactions are involved, the scheme “a” as follows is a good starting 
point. On the other hand, if unknown mechanisms are expected, an offset of each atom type in the 
scheme “b“ is a better choice. Some compound contains special atoms such as a fluorine atom, and thus 
the scheme “c“ should capture fluorine-related reactions. 

a. leo_search = [linearization, extension1, extension2, extension3] 
b. leo_search = [linearization, extension1, extension2, carbon, hydrogen, oxygen] 
c. leo_search = [linearization, extension1, carbon, hydrogen, oxygen, fluorine] 

 
The function massLEO in Python as follows is designed to execute iterations for flexible input of 
parameters in LEO. Values derived from the list leo_dictx such as mass and mass strings are added to 
those of leo_dict. The ppm (parts per million) values are also calculated during each iteration. For 
example, strings from a previous list are read in directly with new strings added by looking up mass 
dictionaries in LEO. These string combinations are separated by vertical bars. Numbers and strings from 
a new iteration are added to the lists leo_str, leo_ppm, and leo_mass with the APPEND function. The 
string “LEO” is used to represent an empty component. 

 

def massLEO(leo_dict, leo_str, leo_ppm, leo_mass, leo_dictx): 
   for i in xrange(len(leo_dict)): 
       for j in xrange(len(leo_dictx)): 
    mass = leo_dict[i] + leo_dictx[j] 
    if mass != 0:  
         ppm = 1000000*(leo_mass-mass)/mass 
    else: 
         ppm = 0 
    mass_str = str(leo_str[i]) + " | " + str(massdict[leo_dictx[j]]) 
    leo_dict.append(mass) 
    leo_ppm.append(ppm) 
    leo_str.append(mass_str) 
 
mass_list = [0] 
mass_str = [''] 
mass_ppm = [0] 
for i in xrange(len(leo_search)): 
 massLEO(mass_list, mass_str, mass_ppm, ionmass, leo_search[i]) 
  
outfile = open("leo_" + str(ion) + "_" + iontype + ".txt", "w")  
for i in xrange (len(mass_list)):  
 if mass_list[i] > lower_ppm and mass_list[i]  < upper_ppm: 
  outfile.write(str(mass_list[i]) + "," + str(mass_ppm[i]) + ","  

+ str(mass_str[i]) + "\n") 

 
With the searching and iteration algorithm in LEO, duplicated solutions may be generated during each 
round of iteration. For example, if two “E” lists are selected, different order of “E1” and “E2” generate 
duplicated solutions (“a“ and “b“ as follows) due to shared conjugation reaction database in “E”. In 
addition, the empty components that are displayed with “LEO” may generate duplicated solutions (“c“-“e”). 
They can be removed by the SAS component of LEO for further data analysis, scoring and ranking. 

 

a. 201.6803,-2.83,L1 | Cysteine | Acetylation 
b. 201.6803,-2.83,L1 | Acetylation | Cysteine 
c. 201.6803,-2.83,L1 | Acetylation | Cysteine | LEO 
d. 201.6803,-2.83,L1 | Acetylation | Cysteine | LEO | LEO 
e. 201.6803,-2.83,L1 | Acetylation | Cysteine | LEO | LEO | LEO   
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DISPLAYING AND RANKING SOLUTIONS IN LEO 

The raw output data from Python are analyzed with the macro LEO in SAS® as follows. The solution 
combinations as separated by vertical bars are read in as a single long string, which is sorted first to 
remove duplicates using the NODUPKEY option with the SORT procedure. Each individual component of 
a solution is then stored in an array called leoarray. Duplicates are further removed by the IF statement 
that selects the rows with all searching component columns “filled” (including those with “LEO” empty 
strings). The list of components are sorted with a “bubble sort” algorithm (SASGF 2018), and duplicate 
solutions are removed. The initial score of each solution is calculated in favor of simplicity of combinations 
(less components). Top solutions are then selected for metabolites and fragments, followed by scoring 
and ranking. 

       %macro leo (infile=in, out=out, leo_group=in, top=in); 
 data &out.leo; 
    infile &infile dsd dlm=','; 
    input mass ppm leostr :$830.; 
    format ppm 4.2; 
 run; 
  
 proc sort data=&out.leo out=&out.leo_nodup nodupkey; by leostr; run; 
  
 data &out.leo_all (drop=i); 
    set &out.leo_nodup; 
    length leoarray1-leoarray&leo_group $83; 
    array leoarray(&leo_group) $; 
    do i=1 to dim(leoarray); 
         leoarray[i]=scan(leostr,i,'|'); 
    end; 
    if leoarray&leo_group ne ''; 
 run; 
  
 data &out.leo_allsorted (drop=i j leotemp); 
    set &out.leo_all; 
    array leo(&leo_group) leoarray1-leoarray&leo_group; 
    do i=1 to dim(leo); 
         do j=1 to &leo_group.-i; 
  if leo(j)>leo(j+1) then do; 
     leotemp=leo(j); 
     leo(j)=leo(j+1); 
     leo(j+1)=leotemp; 
  end; 
         end; 
    end; 
 run; 
  
 proc sort data=&out.leo_allsorted out=&out.leo_unique nodupkey;  
  by leoarray1-leoarray&leo_group;  
 run; 
  
 data &out.leo_rank (drop=leoscore1-leoscore&leo_group mass leostr i); 
    set &out.leo_unique; 
    array leo_prescore(&leo_group) leoarray1-leoarray&leo_group; 
    array leoscore(&leo_group) leoscore1-leoscore&leo_group; 
    score=0; 
    do i=1 to dim(leo_prescore);  
  if strip(leo_prescore(i)) eq "LEO" then leoscore(i)=0;  
  else leoscore(i)=1; 
  score=score+leoscore(i); 
    end; 
    leo_solution=tranwrd(leostr,'LEO',''); 
    leo_solution=tranwrd(leo_solution,'| ',''); 
 run; 
  
 proc sort data=&out.leo_rank; by score; run;  
 data &out (keep=ppm leo_solution); set &out.leo_rank(obs=&top); run; 
 proc print data=&out; run; 
       %mend;  



Metabolite Identification and Characterization by Mining Mass Spectrometry Data with SAS® and Python, continued  

5 

CONCLUSION 

LEO is an application we developed to facilitate metabolite identification and characterization process in 
drug discovery and development. It demonstrated significantly enhanced productivity to find solutions for 
"difficult" metabolites and "difficult" molecules. SAS® in combination with Python provided convenience to 
write searching and iteration algorithms for pattern analysis of mass spectrometry data. 
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