
1

Paper BB-11

Know Thy Data: Techniques for Data Exploration
Charu Shankar, SAS® Canada

ABSTRACT

Get to know the #1 rule for data specialists: Know thy data. What are the common keys for joins? Are
there data type conflicts? How to locate changed variable names? How to reorder variables in the dataset
without physically typing in all the names but instead using metadata to perform this action. In this
session, you will learn to employ powerful PROC SQL’s dictionary tables to easily explore aspects of your
metadata.

SECTION 1: INTRODUCTION

Before 1900 the Pima Indians of Arizona were one of the world’s healthiest ethnic groups. Diabetes was
unheard of. Things exploded in the 1970s. At 38% and climbing in 2006, the Pima had the highest rate of
diabetes of any population in the world. They also had staggering rates of obesity (~70%) and
hypertension.

Investigators are interested in examining the occurrence of Type 2 diabetes in women of Pima Indian
heritage who are at least 21 years old.

Using interesting and compelling data of the Pima Indians, learn multiple data exploration techniques in
this session to get to know your data.

Display 1. The population of interest lives in Phoenix, Arizona

SECTION 2: PROC SQL DICTIONARY TABLES
Have you ever wished for more than what PROC CONTENTS can deliver on your metadata? Ever right
clicked on a SAS dataset in the SAS explorer window to check properties and wanted more? Have you
ever wanted to go behind the scenes and get information on all the titles, macros, datasets, etc.? Here is
a great way to get to know your data through powerful dictionary tables.

Know thy Data: Techniques for Data Exploration, continued

2

Dictionary tables contain a wealth of information about your SAS session. They are special read-only
PROC SQL tables or views. They are created upon SAS invocation, updated automatically by SAS and
are available throughout a SAS session. They provide information about SAS libraries, SAS data sets,
SAS system options, and external files that are associated with the current SAS session and much, much
more.

2.1 Examine dictionary tables

Where do we begin to look up this amazing information? Open up the SASHELP library to view
available dictionary tables:

Display 2. SASHELP views

Alternatively submit the following code to display all supported dictionary tables and views.

proc sql ;
select distinct memname, memlabel
from dictionary.dictionaries;
quit;

Display 3. Examine metadata

The following table describes available DICTIONARY tables and associated SASHELP views.

 SASHELP View Description

CATALOGS VCATALG Contains information about known SAS
catalogs.

CHECK_CONSTRAINTS VCHKCON Contains information about known check
constraints.

COLUMNS VCOLUMN Contains information about columns in
all known tables.

CONSTRAINT_COLUMN_USAGE VCNCOLU Contains information about columns
that are referred to by integrity
constraints.

CONSTRAINT_TABLE_USAGE VCNTABU Contains information about tables that
have integrity constraints defined on
them.

DATAITEMS VDATAIT Contains information about known
information map data items.

Know thy Data: Techniques for Data Exploration, continued

3

DESTINATIONS VDEST Contains information about known ODS
destinations.

DICTIONARIES VDCTNRY Contains information about all
DICTIONARY tables.

ENGINES VENGINE Contains information about SAS
engines.

EXTFILES VEXTFL Contains information about known
external files.

FILTERS VFILTER Contains information about known
information map filters.

FORMATS VFORMAT
VCFORMAT

Contains information about currently
accessible formats and informats.

FUNCTIONS VFUNC Contains information about currently
accessible functions.

GOPTIONS VGOPT
VALLOPT

Contains information about currently
defined graphics options (SAS/GRAPH
software). SASHELP.VALLOPT includes
SAS system options as well as graphics
options.

INDEXES VINDEX Contains information about known
indexes.

INFOMAPS VINFOMP Contains information about known
information maps.

LIBNAMES VLIBNAM Contains information about currently
defined SAS libraries.

MACROS VMACRO Contains information about currently
defined macro variables.

MEMBERS VMEMBER
VSACCES
VSCATLG
VSLIB
VSTABLE
VSTABVW
VSVIEW

Contains information about all objects
that are in currently defined SAS
libraries. SASHELP.VMEMBER contains
information for all member types; the
other SASHELP views are specific to
particular member types (such as
tables or views).

OPTIONS VOPTION
VALLOPT

Contains information about SAS system
options. SASHELP.VALLOPT includes
graphics options as well as SAS system
options.

REFERENTIAL_CONSTRAINTS VREFCON Contains information about referential
constraints.

REMEMBER VREMEMB Contains information about known
remembers.

STYLES VSTYLE Contains information about known ODS
styles.

TABLE_CONSTRAINTS VTABCON Contains information about integrity
constraints in all known tables.

TABLES VTABLE Contains information about known
tables.

TITLES VTITLE Contains information about currently

Know thy Data: Techniques for Data Exploration, continued

4

defined titles and footnotes.

VIEWS VVIEW Contains information about known data
views.

Display 4. Dictionary tables and associated SASHELP views

2.2 Investigate common columns for joins
Do you perform complex joins? And you don’t know where to begin since you haven’t got the
information on common columns for joining data? Let Dictionary tables come to your help.

We will turn to the COLUMNS dictionary table to find common columns

proc sql;

select name, memname, type, length
from dictionary.columns
where libname ='DIABETES'
group by name
having count(name) > 1
order by name;

quit;

Display 5. Code to examine all common columns in the DIABETES library

Display 6. Partial display SAS output -common columns in the DIABETES Library

Know thy Data: Techniques for Data Exploration, continued

5

2.3 Efficiency wise – SQL or other Procs?
Certainly dictionary tables can be accessed either through PROC SQL or SAS procedures/data step
code.

proc sql;
select libname, memname, name, type, length
from dictionary.columns
where libname ='DIABETES' and upcase(name) contains 'ID';

quit;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.45 seconds
 user cpu time 0.00 seconds
 system cpu time 0.06 seconds
 memory 5161.46k
 OS Memory 29176.00k
 Timestamp 03/24/2018 08:21:06 PM

 Display 7. PROC SQL to locate all ID columns in the DIABETES library

If you prefer to use proc print to locate all ID columns in the DIABETES library in your SAS session,
then take a look at the difference in resource usage.

proc print data=sashelp.vcolumn label noobs;
var libname memname name type length;
where libname ='DIABETES' and upcase(name) contains 'ID';
run;
NOTE: There were 6 observations read from the data set SASHELP.VCOLUMN.
 WHERE (libname='DIABETES') and UPCASE(name) contains 'ID';
NOTE: PROCEDURE PRINT used (Total process time):
 real time 2.71 seconds
 user cpu time 0.90 seconds
 system cpu time 1.35 seconds
 memory 6727.18k
 OS Memory 29688.00k

Timestamp 03/24/2018 08:23:37 PM

Display 8. Resource usage with PROC PRINT querying dictionary tables in SAS log

Here is why PROC PRINT uses more resources. While querying a DICTIONARY table, SAS
launches a discovery process. Depending on the DICTIONARY table being queried, this discovery
process can search libraries, open tables, and execute views. The PROC SQL step runs much faster
than other SAS procedures and the DATA step because the WHERE clause is processed before the
tables referenced by the SASHELP.VCOLUMN view are opened.

Therefore it’s more efficient to use PROC SQL instead of the DATA Step or SAS procedures to query
dictionary tables.

2.4 Reorder variables in dataset

Data workers frequently request a change in the physical order of variables. Here are their reasons:
1. Display PROC PRINT output in alphabetic variable order. Use a variable list shortcut without

explicitly having to type out variable names with the VAR statement.

Know thy Data: Techniques for Data Exploration, continued

6

2. Send SAS output to Excel to help the EXCEL user eliminate manual reordering.

Here’s what happens when you try to use a variable list shortcut. The log complains that variables are
out of order.

proc print data=diabetes.pima;
var dbp--id;
ERROR: Starting variable after ending variable in data set.
212 run;

Display 9. Log note when Variable list shortcut for PROC PRINT fails

How do you get variables in order without doing any manual sorting of names & then typing? Let’s
utilize a powerful synergy between proc sql and the macro language. We’ll store all the variables from
the DIABETES.PIMA dataset in alphabetical order into a macro called newname. This technique uses
the INTO clause to pass data values from the dataset into a macro.

proc contents data=diabetes.pima varnum;
run;

proc sql noprint;
select name into :newname separated by ","
from dictionary.columns
where libname ='DIABETES' and
upcase(memname) ='PIMA'
order by name;
quit;

Display 10. Code to put variables in alpha order using dictionary tables

Now read the alphabetically ordered variables just created into a dataset. Voila! No hardcoding
required and you have what you asked for – all variables are stored in alphabetical order.

proc sql;
create table ordered as
select &newname
from diabetes.Pima;
quit;

Display 11. Create table with variables in alpha order

Submit a PROC CONTENTS to verify the order.

proc contents data=ordered varnum;
run;

Display 12. Proc contents to verify variables are in alpha order

Variables in Creation Order

Variable Type Len

1 Age Num 8

2 BMI Num 8

3 Class Num 8

4 DBP Num 8

Know thy Data: Techniques for Data Exploration, continued

7

Variables in Creation Order

Variable Type Len

5 DiabetesPedigree Num 8

6 Insulin Num 8

7 PlasmaGluc Num 8

8 Pregnancies Num 8

9 Triceps Num 8

10 id Num 8

Display 13. Neat and tidy variables stored in alpha order, PROC CONTENTS output

2.5 Isolate variable type conflicts
How often have you been stumped with a variable type mismatch while trying to join tables on a
common key? Wouldn’t it be more effective to know your data before you start joining? This will help
eliminate any surprises and more importantly conserve time when you have an important deadline to
meet.

Gather information on type conflicts by the clever use of the Count function.

proc sql ;
select libname, memname, name, type, length
from dictionary.columns
where upcase(name) contains 'ID' and libname='DIABETES'
group by name
having count(distinct type) > 1
order by 1, 2
;
quit;

Display 14. Isolate variable conflicts using dictionary tables

Library Name Member Name Column Name Column Type Column Length

DIABETES PIMA id num 8

DIABETES PIMADEMOGRAPHICS id char 3

DIABETES PIMALEVELS id Num 8

Display 15. Dataset Compare shows type conflicts for the id column

2.6 Identify working folder and a cool SAS option

What if you want to identify the working folder and pass this information to a SAS program to run from
that location? You know you can easily lookup the working folder by going to lower right portion of
your interactive SAS session. But what if you want to store the path programmatically to use and
reuse. Additionally what if you are not working in Windows & don’t have access to an interactive SAS
session.

The "working folder", also known as the SASinitialFolder, is an important concept to know when
reading and saving data sets, formats, macros or programs read from external files, or other objects
written or read within the session. The location of this folder is the default path where SAS reads or
stores files when a specific drive and pathname isn't given. For example, if you do not provide a drive

Know thy Data: Techniques for Data Exploration, continued

8

and pathname within the statements such as LIBNAME, FILENAME, INFILE, %INCLUDE or other
statements that refer to external files or directories, SAS looks for these files in the working folder.

Let’s turn to the extfiles dictionary table to grab the path, store it in a macro variable and use it to call
a program stored in the working folder.

options symbolgen;
%macro CurrDir;
filename _temp '.';
%global Current;
proc sql ;

select xpath into :Current TRIMMED
from dictionary.extfiles
where fileref = '_TEMP';

quit;
filename _temp clear;
%put _user_;
%mend;

Display 16. Picking working directory folder using dictionary tables

Note: when you create macro variables via SQL it preserves leading and trailing blanks. If you were
to run a describe on the dictionary.extfiles table you would see that the XPATH column you are
querying is 1024 bytes in length thus all the trailing blanks, which is really at the heart of the problem.

This is why we used a cool new option in SAS 9.3. Specify TRIMMED on the "INTO" clause to avoid
having to post-process the macro variables with %let.

If running SAS 9.2 after QUIT add %LET CURRENT=&CURRENT which trims leading & trailing
blanks

Now use the macro to call the alloptions.sas program stored in the working directory.

%include "¤t\alloptions.sas”;
title "Notice no date which was the alloptions program being called
by the %include statement";
proc print data=diabetes.pima;
run;

Display 17. Confirming working directory stored in a macro works

Notice no date which was the alloptions program that was being called by the
%include statement
 Plasma Diabetes
Obs id Pregnancies Gluc DBP Triceps Insulin BMI Pedigree Age Class

1 1 6 148 72 35 0 33.6 0.627 50 1
2 2 1 85 66 29 0 26.6 0.351 31 0
3 3 8 183 64 0 0 23.3 0.672 32 1
4 4 1 89 66 23 94 28.1 0.167 21 0
5 5 0 137 40 35 168 43.1 2.288 33 1
6 6 5 116 74 0 0 25.6 0.201 30 0
7 7 3 78 50 32 88 31.0 0.248 26 1
8 8 10 115 0 0 0 35.3 0.134 29 0
9 9 2 197 70 45 543 30.5 0.158 53 1
10 10 8 125 96 0 0 0.0 0.232 54 1

Display 18. PROC PRINT output picks up the alloptions program which set the options to nodate

Know thy Data: Techniques for Data Exploration, continued

9

CONCLUSION
“Know Thy Data” has to be the most important rule – perhaps the only rule – for Data developers. Too
often, SAS users ask “We know we should ‘Know Our Data’ – but we don’t. Can SAS help?” The goal in
this presentation was to share the many ways in which PROC SQL can help to get to know your data.
Ensure data quality and readiness for analysis by embracing PROC SQL’s dictionary tables. So you can
satisfy the #1 programmer’s rule- Know thy data.

REFERENCES
Droogendyk, Harry. “QCYour SAS ® and RDBMS Data Using Dictionary Tables”. 18th Annual SouthEast
SAS Users Group (SESUG) Conference Savannah, GA, September 26 – 28, 2010.
http://analytics.ncsu.edu/sesug/2010/BB04.Droogendyk.pdf

Eberhardt, Peter & Brill, Irene. “How Do I Look it Up If I Cannot Spell It: An Introduction to SAS®
Dictionary Tables”. SAS® Users Group International SUGI 31 San Francisco Proceedings, March 26-29,
2006. http://www2.sas.com/proceedings/sugi31/259-31.pdf

Go, Imelda C. “Reordering Variables in a SAS® Data Set”. 10th Annual SouthEast SAS Users Group
(SESUG) Conference, Savannah, GA, September 22 – 24, 2002.
http://analytics.ncsu.edu/sesug/2002/PS12.pdf#navpanes=0

Lafler, Kirk. “Exploring DICTIONARY Tables and Views”. SAS® Users Group International SUGI 30,
Philadelphia, PA, April 10-13, 2005. http://www2.sas.com/proceedings/sugi30/070-30.pdf

Libeg, Linda. ”The SAS® Magical Dictionary Tour”. 19th Annual SouthEast SAS Users Group (SESUG)
Conference, Alexandria, VA, October 23–25, 2011. http://analytics.ncsu.edu/sesug/2011/BB09.Libeg.pdf

Website Support.sas.com. “How to view DICTIONARY tables”. Available at
http://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm#a002300185.htm

ACKNOWLEDGMENTS
Charu is grateful to Pharmasug for accepting her paper for presentation. She originally co-authored this
paper with Andy Kuligowski as an invited paper at SAS Global forum 2013. Charu has modified this paper
for Pharmasug and included up to date references. She appreciates her manager Stephen Keelan and
SAS Canada for the support and encouragement to share her SAS® and SQL knowledge. She is grateful
to her many wonderful customers and students whose ongoing questions provided the impetus to
research & share dictionary table techniques.

CONTACT INFORMATION
The author welcomes correspondence about this work. You can contact her at:

Charu Shankar
Senior Technical Training Specialist
SAS® Institute Inc.
280 King Street East
Toronto, ON M5A 1K7
Charu.Shankar@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://analytics.ncsu.edu/sesug/2010/BB04.Droogendyk.pdf
http://www2.sas.com/proceedings/sugi31/259-31.pdf
http://analytics.ncsu.edu/sesug/2002/PS12.pdf#navpanes=0
http://www2.sas.com/proceedings/sugi30/070-30.pdf
http://analytics.ncsu.edu/sesug/2011/BB09.Libeg.pdf
http://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm#a002300185.htm

	Abstract
	SECTION 1: Introduction
	SECTION 2: PROC SQL dictionary tables
	Conclusion
	References
	Acknowledgments
	Contact Information

