
1

PharmaSUG 2018 - Paper BB-21

Creating a Data Shell or an Initial Data Set with the DS2 Procedure

Matthew Wiedel, SyneosTM Health

ABSTRACT

 When one creates a standardized database, each dataset has a specific title, structure, and
collection of variables. They are most likely created from one or more raw datasets. Variables within
each dataset will most likely have specific lengths, formats, and labels. As studies become more
complex, the requirements placed upon the information become more nuanced and complicated. So far,
the data step and the SQL procedure are quite sufficient. However, there may come a time when a
different approach to data creation will be needed.

 The DS2 procedure is a completely different way to work with a SAS dataset than that of the
good ol’ data step. Object oriented programming is a different way of thinking, with its threads, methods,
packages, declaration statements… It also provides an extended array of formatting options. Proc DS2’s
declare statement is akin to the data step’s attribute statement as it assigns formats and labels to
variables. This is an exercise to demonstrate a way to grab information from a spreadsheet, place it into
a dataset using two different avenues and compare the two as they relate to the platform used and the
resulting data shell.

INTRODUCTION

 Eventually the entire world will become a giant data lake. SAS programmers will need to learn to
swim and no better way to dip one’s toe into the murky water than with the DS2 procedure. It’s a data
step that looks like a procedure which uses threads, packages and methods (see OOP). Along with
other procedures such as FEDSQL, the relatively new SAS data step, Proc DS2, is here to address the
need to voyage into the cloud and handle future big data projects.

 Up ahead is a suggested model using OOP to create a dataset. Technically, it would be
considered a thread rather than a program. It has 4 parts: importing specifications and macro variable
creation, thread setup (initial data input), package authoring (variable definition), and data creation
(thread and package declaration).

 Databases typically have specifications which tell the programmers and data users how the data
sets were created. Variable names, formats, lengths, labels, instructions, and general information can
usually be found in these documents. If placed in an excel file, a Proc Import can grab variable specific
information per dataset and thus used to create a data shell or an initial dataset with all the correct
formatting. One could use a data step that implements an attribute function to create a data shell/ initial
dataset or accomplish the same thing with the DS2 procedure using its interesting techniques.

BRIEF DS2 PROCEDURE DESCRIPTIONS

 Declare statements are to Proc DS2 as attribute statements are to data steps. Both assign
formats, lengths, and labels to a variable. However, the data step has only two data types, character and
numeric, while the DS2 data procedure allows for a myriad of various data types such as binary, varchar,
smallint…. The capability to work across relational databases is a major reason for DS2’s greater
versatility.

 Methods are like macros, a small, reusable collection of code that can receive parameter values.
The hermeneutics of methods are a bit different than those of a macro, however. It’s considered an
object which connects and works in concert with other methods to build the data. In this example, the
methods will return a values.

Creating a Data Shell or an Initial Data Set with the DS2 Procedure, continued

2

 A package is a collection of methods and can be used universally among all other programs if
output into a package library. Just as with the use of a program that contains a catelog of macro
programs, the package can be used to have various methods called upon to perform particular jobs.

 One either writes a program or a thread. Threads are used as parallel programs and create
efficiencies when querying data. It can process multiple rows of data concurrently and then pass the
resulting data to the main data program. When the data sets are large and the need to process it at a
reasonable clip, these threads come in handy.

DATA SPECIFICATION AND MACRO VARIABLES

This exercise is really a suggested framework of dataset creation using only DS2, SQL, and

embedded FEDSQL code. As a move from data step use, the hope is to implement the advantages

afforded the data scientist by the DS2 procedure, in particular, the reusability of packages which can

create permanent objects for all standardized databases. Threaded programs would also create better

allocations of memory and make programs run faster.

 Initially, the specification should have formatting and labelling information for each variable in a

particular dataset. This information can then be imported and put into a macro variables using SQL, and

in turn, employed for the creation of either a data shell or an initial dataset. The intention is that all the

preliminary metadata can rest in one place, inside the dataset requirement, and only be updated there for

the entire database.

 Below would be an example of the meat of an ADSL specification to be used for our purposes of

dataset creation:

DOMAIN VARIABLE LABEL TYPE DEFINITION FORMAT

ADSL STUDYID Study Identifier CHAR(12) DM.STUDYID $12.

ADSL USUBJID Unique Subject Identifier CHAR(22) DM.USUBJID $22.

ADSL SUBJID Subject Identifier for the Study CHAR(6) DM.SUBJID $6.

ADSL SITEID Study Site Identifier CHAR(4) DM.SITEID $4.

ADSL AGE Age DOUBLE DM.AGE 8.

ADSL AGEU Age Units CHAR(8) DM.AGEU $8.

ADSL SEX Sex CHAR(6) DM.SEX $6.

ADSL RACE Race CHAR(100) DM.RACE $100.

ADSL ARM Description of Planned Arm CHAR(200) DM.RACE $200.

ADSL TRT01P Planned Treatment for Period 1 CHAR(4) Dependent on DM.ARM $4.

These are the required variables in an ADSL dataset. A SAS dataset is created using the import
procedure:

%macro begin(dset);
PROC IMPORT OUT= work.&dset

DATAFILE= "C:ADAM_REQUIREMENT.xlsx" DBMS=xlsx REPLACE;

 SHEET="&dset";

 GETNAMES=YES;

RUN;

 For this program, the TYPE column is a DS2 specific value. It really is a type (length) and is

placed as the first item in a declare statement. Although this example implements two types: Character

Creating a Data Shell or an Initial Data Set with the DS2 Procedure, continued

3

and Double, there are a many others including integer, binary, float, and so on. This is one of the things

that sets it apart from the data step which only considers two data types: numeric and character.

 At this point, a small addition is made to the imported data set and macro variables created. A

DS2 procedure can be used to create a format variable (formt):

proc ds2;

data &dset._dclr (overwrite=YES);

/*overwrite=YES is necessary to replace the older version*/

declare char(15) formt;

method run();

set {select *,

 case

when format = ' ' then ' '

/*format needs to be in single quotes to compile*/ else 'format

'||trim(left(format))

 end as formt

 from &dset where variable ^= ' '};** functions ne and ~= do not work here;

end;

enddata;

run;

quit;/* Resulting dataset will not show up in SAS Enterprise Guide Output Data Tab*/

 There are 4 system methods: init() - Initialization, run() - Running, term()-Termination and
setparms() – Set Parameters. Here, the run method is used to grab the imported data using an
embedded FEDSQL query. Everything is then wrapped up with an enddata, run, and quit statement.
The re-running of a regular data step will replace a previous work data set automatically. However, for
the DS2 procedure, it is necessary to include the ‘overwrite=YES’ option in the data statement in order to
replace previous output dataset. The other annotation describes different ‘unexpected’ results or
conditions one finds when running the DS2 procedure.

 From this new dataset, an SQL procedure can be implemented to count the number of variables
read from the specification; hence, create macro variables for the variable types, names, labels, and
formats :

proc sql;

select count(*) into : cnt from &dset._dclr;

quit;

%let cnt=&cnt;

proc sql;

select variable into :var1-:var&cnt from &dset._dclr;

select label into :lab1-:lab&cnt from &dset._dclr;

select formt into :format1-:format&cnt from &dset._dclr;

select type into :type1-:type&cnt from &dset._dclr;

quit;

%do j=1 %to &cnt;

%let var&j=&&var&j;

%let lab&j=&&lab&j;

%let format&j=&&format&j;

%let type&j=&&type&j;

%end;

DATA PROCEDURE OUTPUT MODEL

DATA SHELL CREATION

 If a data shell is the goal, then all one would need is the variable declaration portion of the DS2

data procedure:

 proc ds2;
data &dset._start2(overwrite=YES);

Creating a Data Shell or an Initial Data Set with the DS2 Procedure, continued

4

%do i=1 %to &cnt;

 dcl &&type&i &&var&i having label %tslit(&&lab&i) &&format&i;

%end;

enddata;

run;

quit;

A same result can be achieved using a data step with an attribute function:

data adsl_start3;

%do i=1 %to &cnt;

 attrib &&var&i label = "&&lab&i" length= &&fmt&i;

%end;

run;

 There are a few more things a programmer will need to keep in mind when creating a data set

using the DS2 procedure. When declaring a variable, it is only necessary to give the type (char(10),

integer, float…) and variable name (USUBJID, COUNTRY,…). Thus, label and formatting assignments

are extras. One may notice in the declare %do loop, the label uses a system macro function %tslit. This

is needed since the double quotations “ “ are handled differently within this procedure. Whatever is within

“ “ is considered as another variable (i.e. trt02p=”TRT2” would be interpreted as assigning trt02p the value

of the TRT2 variable). %tslit is like double quotations in a data step setup (also note the label for

usubjid_dm is in single quotes, otherwise it would error.)

 The empty shell can be used to carry the prescribed labels and formats when the final dataset is

output at the end of a data creation program. It can also be the starting place and populated along the

way. To create this initial data set, further work can be done using various aspects of the DS2 procedure.

THREAD USE

With creative FEDSQL merging and queries, the data analyst is able to create an initial dataset

that gets close to the prescribed final product. In this given setup, the dataset created will be specific to

the ADSL. Other datasets will use a different merge. Although not necessary with this simple project, a

thread will be used to merge the DM and DS datasets as an another example of implementing a complex

imbedded FEDSQL query:

proc ds2;

thread dmds / overwrite=yes;

 method run();

 set {select a.dsdecod,b.maxvis, c.*

 from sdtm.ds a

 join (select max(visitnum) as maxvis, usubjid from sdtm.ds group by usubjid) b

 on a.usubjid=b.usubjid and a.visitnum=b.maxvis and a.dscat='DISPOSITION EVENT'

 right join libdev.dm c on a.usubjid=c.usubjid};

 end;

endthread;

run;

quit;

 The set statement picks the last disposition event in the DS dataset and merges it with the DM

dataset. Unlike the SQL procedure, the FEDSQL code uses the ANSI standard. Code that works with

an SQL procedure may not work using FEDSQL, thus the SAS programmer who wants to fully implement

the DS2 procedure should also get familiarized with FEDSQL.

PACKAGES TIME

Creating a Data Shell or an Initial Data Set with the DS2 Procedure, continued

5

 Macro caches are very handy. The institutional knowledge within can be used over and over

again by the SAS programmer with a simple macro call. Often, a diversity of programmers contribute to

these sets of macros, thus exhibiting many interesting and useful coding techniques. Sometimes, these

macros sit permanently and are universally used. Other caches go project to project and are modified

based on the specific needs of the work at hand. DS2 packages can be used in a similar matter.

 Packages are a collection of methods. These methods can be invoked similarly as a macro to

perform a task and to often return a value. In this example, to show the usefulness of instituting a project

specific package, three variables will have their own method assigned.

proc ds2;

package plib.bedrock / overwrite = yes;

/*signature 1*/

method usubjid(char(22) usubjid) returns char(22);

return upcase(usubjid);

end;

/*signature 2*/

method usubjid(char(12) stud, char(4) site, char(6) subjid) returns char(22);

dcl char(22) usubj; /*variable local to this method*/

usubj=stud||'-'||site||'-'||subjid;

return upcase(usubj);

end;

method trt01p(char(200) arm) returns char(4);

dcl char(4) trt; /*variable local to this method*/

if upcase(arm)='Treatment 1' then trt='TRT1';

else trt='TRT2';

return(trt);

end;

endpackage;

run;

quit;

 This simple example exhibits a few services and items offered by this technology. Initially, each

method has a return statement, and it is necessary for these methods to indicate in their return statement

the variable type. Secondly, one notices that there are two usubjid methods. They have the same name,

but different signatures since the parameter calls are different. During the data portion of the DS2 thread,

one will see the usefulness of this method overloading.

Another thing to note is that the package is output to a permanent package library,plib, thus

enabling other programs to use this package and its methods. Also, one notes that there is a method that

declares a variable. This variable is considered local and will cease to exist once the method is done.

Any variable within the package will only be local to that package and will also disappear once the

package is being used. No package level variables were declared. Lastly, it is important to include the

‘overwrite = yes’ statement so that the package is rewritten every time it runs.

INITIAL DATA FORMATION

 Things are now set to create a dataset. The last portion of this example is the data step which

reads the data through a thread. The previously created macro variable values will be used to declare

the data vector with labels and formatting. The packaged methods are used to create a few variables:

proc ds2;

data adsl_start(overwrite=YES keep=(%do j=1 %to &cnt; &&var&j %end;));

%do i=1 %to &cnt;

 dcl &&type&i &&var&i having label %tslit(&&lab&i) &&format&i; /*Global variables*/

%end;

Creating a Data Shell or an Initial Data Set with the DS2 Procedure, continued

6

dcl char(22) usubjid_dm having label 'DM usubjid' format $22.; /*Global variable*/

dcl package plib.bedrock bed();/*Packages need to be declared and given a name: bed()*/

dcl thread dmds dmds; /*Threads also need to be declared and given a name: dmds*/

method run();

 set from dmds threads=2; /*Thread processes 2 rows at a time*/

 usubjid_dm=bed.usubjid(usubjid); /*signature 1 usubjid method in bedrock package*/

 usubjid=bed.usubjid(studyid,siteid,subjid); /*signature 2 usubjid method in bedrock pkg*/

 trt01p=bed.trt01p(arm); /*Another example calling a method within a package*/

end;

enddata;

run;

quit;

Packages and threads need to be declared similar to variables. Packages are also instantiated

which means that memory is allocated for the contents within the package. This instantiation occurs

when the parentheses are added at the end of the name it’s given. Without the parentheses, the

package variable has a name but can’t be used. This is another example of the DS2 procedure’s

sensitivity to both memory allocation and computing efficiencies. A programmer is forced to understand

and manually control these things which were previously done automatically by the regular data step and

macro language.

Similar to macro calls, methods are called upon to form 3 variables from the bedrock package.

The other variables are read directly from the data created by the FEDSQL merge. Then, viola’, an initial

ADSL dataset with all the required variables including the usubjid_dm variable is created for the sake of

this example. A portion of the resulting dataset:

CONCLUSION

For any dataset then, the process is as such:

1. Import specification details (Proc Import)

2. Adjust details to be used in DS2 procedures (Proc DS2 (imbedded FEDSQL))

3. Create macro variables (Proc SQL, count, data types, data names, labels, formats, informats)

4. Create Thread to query and merge various feeder datasets (Proc DS2)

5. Create Package of variable methods (Proc DS2)

6. Create Data using the macronized specification information (Proc DS2)

Object oriented programming, memory allocation, modular code, threads vs. programs, ANSI

FEDSQL queries can all seem strange to the SAS programmer who is used to writing with more of a

stream of conciousness. The DS2 procedure seems to write like a collection of character studies that

when combined create an overall narrative. It may be important in the future to know how to write in both

styles. This example is more of an outline for future OOP novels.

REFERENCES

STUDYID USUBJID SUBJID SITEID AGE AGEU SEX RACE ARM TRT01P usubjid_dm

STUDYID-DS2 STUDYID-DS2-10-3000 3000 10 45 YEARS M White Treatment 1 TRT1 STUDYID-DS2-10-3000

STUDYID-DS2 STUDYID-DS2-10-3001 3001 10 77 YEARS M Asian Treatment 2 TRT2 STUDYID-DS2-10-3001

STUDYID-DS2 STUDYID-DS2-10-3002 3002 10 2 YEARS M Asian Treatment 1 TRT1 STUDYID-DS2-10-3002

STUDYID-DS2 STUDYID-DS2-10-3003 3003 10 56 YEARS M Black or African American Treatment 1 TRT1 STUDYID-DS2-10-3003

STUDYID-DS2 STUDYID-DS2-10-3004 3004 10 28 YEARS M Asian Treatment 2 TRT2 STUDYID-DS2-10-3004

STUDYID-DS2 STUDYID-DS2-10-3005 3005 10 11 YEARS F Asian Treatment 2 TRT2 STUDYID-DS2-10-3005

Creating a Data Shell or an Initial Data Set with the DS2 Procedure, continued

7

Eberhardt, Peter. March 2016. The DS2 Procedure: SAS
®

Programming Methods at Work. Cary, NC:
SAS Institute Inc.

Kumbhakarna, Viraj R, 2017 “PROC DS2: What’s in it for you?” Session 0916-2017: Orlando, FL: SAS
Global Forum 2017, ,

ACKNOWLEDGMENTS

I would like to thank my manager Upendra Thapaliya for the support and help in the writing this paper. I
would also like to thank Nancy Brucken for answering all my questions and giving me guidance during the
submission process.

CONTACT INFORMATION

Matthew Wiedel
Syneos

TM
 Health

402-480-5792
Matthew.wiedel@syneoshealth.com

