
1

PharmaSUG 2018 - Paper BB-22

Expand Your Skills from SAS® to R with No Complications
Andrii Korchak, Experis Clinical Solutions, Kyiv, Ukraine

ABSTRACT
Learning a new language is rarely a quick and simple process. Learning word by word from the very
beginning requires a great deal of energy and time. Is there a way not to start all over again? Is it possible
to use the knowledge of your native language, and just pull up a little to begin to communicate?

In this article, we will outline the main similarities and differences between SAS and R, and show how to
start programming in R relying on your SAS skills. In particular, we will program DATA steps and
procedure calls to perform data analysis in both languages, and present results by creating a table and
graphs. We will learn how to recreate some popular SAS operations in R and make use of a few R-
specific ones.

Use your SAS dictionary to break through a language barrier!

INTRODUCTION
The usage of R in pharmaceutical industry is growing at a rapid rate. R made a wide selection of
statistical procedures and data visualization instruments available for everyone. However, such a huge
variety of packages can be confusing for beginners.

Many SAS programmers hesitate to start programming in R because they cannot decide what to learn
first. In this paper, we will show how to do the usual SAS tasks by the three most essential packages: R
BASE, DPLYR, and GGPLOT2.

BASE package is the key element of R environment.

The instruments of BASE are universal and can do a significant part of work, but if you want to solve a
more sophisticated problem, you will need to use additional equipment.

DPLYR is the next tool to learn for beginners. It provides a universal mechanism for data manipulation
that makes it possible to do with data almost all that you can in the SAS DATA step. This package
provides comprehensive tools for data manipulation.

GGPLOT2 package based on Leland Wilkinson’s famous book "The Grammar of Graphics." It is a
universal tool for data visualization that allows doing a publication-ready graphics in a fast and efficient
way. Moreover, you can create custom plots by adding graphic elements one on top of another. This
approach makes GGPLOT2 quite easy and straightforward to use.

BASE SAS AND R
The materials in the following chapters require the reader to be familiar with basic syntax of SAS and R
languages.

For SAS you can find interactive courses on Learn / Training section of SAS Support Cite.[5]
For R you can learn basics from the book “R for Data Science” by Garrett Grolemund and Hadley
Wickham[6] or take an interactive course “SWIRL, Learn R, in R”[7].

SAS examples are done in SAS STUDIO UNIVERSITY EDITION 2.5 9.4M4.
R scripts run in R Studio Version 1.0.153, R version 3.4.2 (2017-09-28).

DATA MANIPULATION IN SAS AND R

Expand Your Skills from SAS® to R with No Complications, continued

2

When you are working with data, you are repeating three main processes:

1. Reading the data.

2. Data Analysis and Transformation.

3. Data Visualization and Reporting.

In this article, we will have a look at how these procedures are carried out in both SAS and R.

1. READING THE DATA
You can get data from a number of sources. Those can be external files (XLS, CSV, and TXT),
databases, or/and data from other statistical environments (SPSS, Stata, etc.)

1.1 Reading Delimited data
Sometimes it might be necessary to read Delimited data. In SAS, you can use INPUT STATEMENT.
In R, you can do it by read.table(). This function has many arguments to accommodate for your input.
There is a list of functions with pre-specified default parameters, which allow you to solve typical
problems:

• read.csv()
• read.csv2()
• read.delim()
• read.delim2()

Function names speaks for themselves. The difference between read.csv() and read.csv2() in
default delimiter. It is “.” dot for read.csv() function and “,” comma for read.csv2(). The same
approach applies to read.delim() and read.delim2() accordingly.

In the example below, we are reading text data into the Data Set / Data Frame.
Example 1.1 shows how to read data from external file in SAS and R.

SAS Language Result of Execution:
 data dm;
 input SUBJID AGE POFL $;
 datalines;

 1 23 Y
 2 45 Y
 3 61 N
 ;
 run;
 proc print data=dm;
 run;

Data from WORK.DM
Obs SUBJID AGE POFL

1 1 23 Y

2 2 45 Y

3 3 61 N

R Language Result of Execution:
 dm<-read.table(header=TRUE,
 stringsAsFactors = FALSE,
 text ="
 SUBJID AGE POFL
 1 23 Y
 2 45 Y
 3 61 N"
)
 dm
 str(dm)

> dm
 SUBJID AGE POFL
1 1 23 Y
2 2 45 Y
3 3 61 N
 str(dm)
'data.frame':3 obs. of 3 variables:
 $ SUBJID: int 1 2 3
 $ AGE : int 23 45 61
 $ POFL : chr "Y" "Y" "N"

Example 1.1 Reading a text input into the Data Set / Data Frame.

Expand Your Skills from SAS® to R with No Complications, continued

3

Note, that if you specify header=TRUE option in read.table(), the column names will be read from
the text file. Column types assigned automatically.

1.2 Reading data from External Files
In this article, we will be using data from OSMI Mental Health in Tech Survey.
The data is available as a CSV file. You can download it from the OSMI site[1] or GitHub page with
additional materials[3].

Firstly, we need to upload the data into our system.

Example 1.2 shows how to read data from external file in SAS and R:

SAS Language
 filename csv_srs "/folders/ mental-heath-in-tech-2016_20161114.csv";
 proc import datafile = csv_srs

 out = raw_ds
 dbms = csv replace ;
 guessingrows = MAX ;
 getnames = no ;
 datarow=2;

 run;
Result of Execution:
NOTE: 1433 records were read from the infile CSV_SRS.
 The minimum record length was 219.
 The maximum record length was 3504.
 NOTE: The data set WORK.RAW_DS has 1433 observations and 63 variables.
 NOTE: DATA statement used (Total process time):
 real time 0.02 seconds
 cpu time 0.02 seconds
R Language
 setwd("E:/R/folder with data");
 path <- "mental-heath-in-tech- 2016_20161114.csv"
 csv_file<-read.csv(path, stringsAsFactors = FALSE)
 # Checking number of Rows and Columns
 dim(csv_file)
 # Reading names of First 3 columns
 names(csv_file)[1:3]
Result of Execution:
> dim(csv_file)
[1] 1433 63
> names(csv_file)[1:3]
[1] "Are.you.self.employed."
[2] "How.many.employees.does.your.company.or.organization.have."
[3] "Is.your.employer.primarily.a.tech.company.organization."

Example 1.2 Reading data from external files in SAS and R.
PROC IMPORT allows to read data from various data souses. In R the same action can be done by
read.csv() function. In the SAS part, we specified getnames = no option because in CSV file
column`s names are longer than 32 symbols. It leads to column names VAR1 to VAR63. To obtain at
least variable labels we developed a work around. Further information about it can be found in the
Additional materials [3].

R doesn’t have such problems and we read meaningful names. Option stringsAsFactors = FALSE

Expand Your Skills from SAS® to R with No Complications, continued

4

allows to get DATA FRAME with strings instead of factors.
So now we know how to get data into the environment and can move on to the second chapter.

2. TRANSFORMING DATA
SAS in one of the most convenient languages for working with data. Combinations of the DATA steps and
Procedures Calls easily allow to manipulate data.

Typical data flow looks as follows:

 *** Do not run ***;
 proc sort data = row_data;
 by BY_VAR1 descending BY_VAR2;
 where STAT ~="NOT DONE";
 run;

 data output_ds (drop = (VAR1));
 set row_data (keep = (BY_VAR1 BY_VAR2 VAR1)
 rename = (LOG_VAR1 = AVAL)
);
 by BY_VAR1 descending BY_VAR2;
 if first.BY_VAR1 then BLFL = "Y" ;
 LOG_VAR1 = log(VAR1);
 run;

 *** End Do not run ***;

However, R also has something to offer. It is a DPLYR package.

It provides a universal mechanism for data manipulation that enables you to operate data almost like in the SAS
DATA step. This package provides comprehensive tools for data manipulation, and can work as a substitute for the
following SAS procedures:
• PROC SORT – allows sort data with arrange() function.
• SET / MERGE statements – allows combine data vertically and horizontally by functions such
bind_rows(), left_join(),inner_join(), etc.

• BY statement – group_by() function allow to process data group wise.
• IF / WHERE – filter() function can be used to pick only necessary records.
• KEEP, DROP, RENAME – select() and rename() allow to work with columns of data frame.
• New Variables – mutate() and summarise() making possible adding new columns.

To install a package you can use R function install.packages().
The first argument is the name of the package.
The next command below installs the package DPLYR from CRAN repository:
 install.packages("dplyr")
To start using the package it has to be loaded with library() function.
 library("dplyr")
Now all is ready to work.
Before starting, it is always a good idea to check documentation. It can be done by help() function.
 help("dplyr")

2.1 Pipe operator
Let`s start with one thing that doesn’t do any data manipulation, but makes the programmer`s life easier –
it is Pipe Operator %>%.
We are already familiar with assignments operators = and <- . The Pipe is different.
It places the left argument onto the first position of the right function e.g. x %>% f(,y) is the same as f(x,y).

Expand Your Skills from SAS® to R with No Complications, continued

5

You shouldn’t worry about the operator`s length - there is a short cut in R Studio: Ctrl+Shift+M,
Cmd+Shift+M.

Let`s do a quick check on our OSMI dataset for wrong AGE values. It can be done by combination of
unique() and sort() R functions:

Example 2.1.1 Getting a vector of unique values:
 # variable # 56 is Age
 names(csv_file)[56]
 sort(unique(csv_file[,56]))

> names(csv_file)[56]
[1] "What.is.your.age."
> sort(unique(csv_file[,56]))
 [1] 3 15 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[19] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
[37] 52 53 54 55 56 57 58 59 61 62 63 65 66 70 74 99 323

Example 2.1.1 Output from sort(unique()) execution.
The same task can be accomplished by the Pipe Operator:

Example 2.1.1 Getting vector of unique values with Pipe:
 csv_file[,56] %>% unique %>% sort

> csv_file[,56] %>% unique %>% sort
 [1] 3 15 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[19] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
[37] 52 53 54 55 56 57 58 59 61 62 63 65 66 70 74 99 323

Example 2.1.2 Output from sort(unique()) execution with Pipe operator.
What if we want to use left expression not on the first position?
If it is required to use the left expression differently from the first position, you can take into consideration
the following:
 put a dot ‘.’ on position, where you want the Pipe operator to put a value.

For example R function rep(x,y) repeats its first argument(x) y times.
We can call this function two times to figure out how ‘.’ works with the Pipe.
Example 2.1.3 changing the position of the Pipe Argument:
 1 %>% rep(2)
 1 %>% rep(2,.)

> 1 %>% rep(2)
[1] 1 1
> 1 %>% rep(2,.)
[1] 2

Output 2.1.3 Output from the Pipe operator with a dot.

As you can see, the first time ‘1’ is used as first argument of rep() function. This value is repeated two
times. The second call shows, that ‘2’ used as the first argument. Its value is repeated once.

Now we can go ahead and re-create SAS DATA step by DPLYR functions.

2.2 Drop, Keep, and Rename your variables
In SAS selecting variables can be done by keep=, drop=, and rename= DATA step options or
corresponding statements.

In R select() and rename() functions can be used to do the same thing.
The first argument always is a data frame; all other arguments are unquoted columns.

Expand Your Skills from SAS® to R with No Complications, continued

6

To select variables (keep in SAS terms) from the data frame specify a name or list of names separated by
comma`s. To drop a column use minus operator ‘-‘ before the column`s name.
In addition, we can use the following list of functions to select records more efficiently:

• starts_with() – equivalent of SAS ‘:‘ operator;
• ends_with() - ends with a prefix;
• contains() – contains a string;
• matches() – name matches regular expression;
• num_range() – equivalent of SAS ‘-‘ operator.

Example 2.2.1 is based on the dm data set. This dataset was created in Example 1.1.

Example 2.2.1.1, usage of Drop, Keep, and Rename options:

Keep option
SAS Language R Language
 data dm_k;
 set dm(keep = SUBJID AGE);
 run;
 title "Data from &syslast.";
 proc print;
 run;

 # keep only SUBJID, AGE
 df_k <- dm %>%
 select(c("SUBJID","AGE"))
 df_k

Result of Execution:
Data from WORK.DM_K
Obs SUBJID AGE
1 1 23
2 2 45
3 3 61

> df_k <- dm %>%
 select(c("SUBJID","AGE"))
> df_k
 SUBJID AGE
1 1 23
2 2 45
3 3 61

Example 2.2.1.2 Using rename() function to change column`s name.

Renaming variables
SAS Language R Language
 *** Renaming variables ***;
 data dm_rename ;
 set dm ;
 rename SUBJID = PATNUM;
 run;
 title "Data from &syslast.";
 proc print data = dm_rename; run;

 dm_rename <- dm %>%
 rename("PATNUM" = SUBJID)
 dm_rename

Result of Execution:
Data from WORK.DM_RENAME
Obs PATNUM AGE POFL
1 1 23 Y
2 2 45 Y
3 3 61 N

> dm_rename <- dm %>%
 rename("Column1" = SUBJID)
> dm_rename
 PATNUM AGE POFL
1 1 23 Y
2 2 45 Y
3 3 61 N

From Output 2.2.1.2 we can understand that rename() function in R different from SAS version.
In R you should specify a new name first, and only after it an old one. Also, rename() function does not
drop columns, that were not specified.(The same as in SAS).

http://127.0.0.1:30186/help/library/dplyr/help/starts_with
http://127.0.0.1:30186/help/library/dplyr/help/ends_with
http://127.0.0.1:30186/help/library/dplyr/help/contains
http://127.0.0.1:30186/help/library/dplyr/help/matches
http://127.0.0.1:30186/help/library/dplyr/help/num_range

Expand Your Skills from SAS® to R with No Complications, continued

7

2.3 Filtering Data
Selecting records from data set is a common task. In SAS you can do it by where and if statements.
DPLYR package allows to do the same with filter() function.
filter() – first argument is a data frame; all other arguments are conditions. Note that, If you list more
than one condition all of them will be treated as one condition separated by AND operator(&).

Example 2.3.1 Filtering Observations

SAS Language R Language

 * Where statement ;
 data dm_i;
 set dm;
 where POFL = "Y" and AGE > 21;
 run;

 dm_i <- dm %>%
 filter(POFL=="Y", AGE > 21)
 dm_i

Result of Execution: Result of Execution:

Data from WORK.DM_I
Obs SUBJID AGE POFL
1 1 23 Y
2 2 45 Y

> dm_i <- dm %>%
 filter(POFL=="Y", AGE > 21)
> dm_i
 SUBJID AGE POFL
1 1 23 Y
2 2 45 Y

Example 2.3.1 shows the same results. SAS programmer must remember that in R check for equality is
done by == operator.

2.4 Creating new variables
To create a new variable in SAS you just need to initialize it.

In R it can be done by mutate() function. The first argument is data frame; all others are names of new
variables with assigned expressions.
mutate() considers functions as vectoring(e.g. input and output vectors have the same dimensions).

Example 2.4.1 Creating new variables:

SAS Language R Language

 *** Creating new Variables ***;

 data df_new_var;

 set dm nobs=n_obs;

 N_ROWS = n_obs;
 col4 = ifc(_N_ >= n_obs/2,
 ">=n/2","<n/2","missing");

 USUBJID ="A00-"||put(SUBJID,3.–l);
 drop SUBJID ;

 run;

 title "Data from &syslast.";
 proc print;
 run;

 df_new_var <- dm %>%
 mutate(
 N_ROWS = n(),
 col4 = if_else(
 row_number()>= n()/2,
 ">=/2",
 "<n/2",
 "missing"
),
 USUBJID = paste0("A00-",SUBJID)
) %>% select(-SUBJID)
 df_new_var

Result of Execution: Result of Execution:

Expand Your Skills from SAS® to R with No Complications, continued

8

SAS Language R Language
Data from WORK.DF_NEW_VAR
Obs AGE POFL N_ROWS col4 USUBJID
1 23 Y 3 <n/2 A00-1
2 45 Y 3 >=n/2 A00-2
3 61 N 3 >=n/2 A00-3

> df_new_var
 AGE POFL N_ROWS col4 USUBJID
1 23 Y 3 <n/2 A00-1
2 45 Y 3 >= n/2 A00-2
3 61 N 3 >= n/2 A00-3

In Example 2.4.1, we are creating two new variables: n_2 and col4, and modifying an existing one:
SUBJID.
 As you can see, R allows to refer to the aggregate functions such as n() and refer to windowing functions
such as row_number()(the current row number).

2.5 Sort the Data
Sorting Data sets based on values of one or more columns is also a common task.
In SAS it can be done by the SORT procedure. In DPLYR package we have similar functionality by
arrange().

arrange() function takes a data frame as first argument, after which you can specify a list of variable
names separated by a comma. If you want to sort out in DESCENDING order you should put the variable
name inside of desc() function.

Example 2.5.1 Sorting data
SAS Language R Language
 *** Sorting data ;
 *** save result into new data set;
 proc sort data=dm out= dm_sort;
 by POFL;
 run;
 title "Data from &syslast.";
 proc print;
 run;

 ## Sorting data with arrange
 ## saving into new data frame
 dm_sort <- dm %>%
 arrange(POFL)
 dm_sort

Result of Execution:
Data from WORK.DM_SORT
Obs SUBJID AGE POFL
1 3 61 N
2 1 23 Y
3 2 45 Y

> dm_sort <- dm %>% arrange(POFL)

> dm_sort
 SUBJID AGE POFL
1 3 61 N
2 1 23 Y
3 2 45 Y

2.6 By Groups
Often, while working with data you need to separate records by groups.
In SAS, the BY statement allows you to do so. This statement can be used in SAS DATA step and SAS
Procedures.

DRLYR function group_by() serves the same purpose.
The first argument is Data Frame, the others are variables used for grouping.

There are two types of functions:

• Summary functions - taking a vector and returning one value
e.g. max(), first(), mean(), etc.

• Windowing functions - taking a vector and returning a vector of the same length
e.g. lead(), lag(), row_number(), etc.

Expand Your Skills from SAS® to R with No Complications, continued

9

After grouping you can use both Summary and Windowing functions within groups.

In DRLYR mutate() works with functions in the same way as with windowing.
Functions called within summarise() produce outputs as Summary functions.
After computing you should remove grouping from data by operating ungroup() function.

In Example 2.6.1 we are working with the new data VS.
It consists of four variables: Subject Identifier, Test1 result, Test2 result and Period.

We are going to create a mean test score within each period, after which we will calculate average value
for each Subject.

Example 2.6.1 Computing by Group Statistics:
SAS Language R Language
 *** Grouping Variables ***;
 data vs;
 input SUBJID HT WT PERIOD ;
 datalines;
 001 180 . 1
 001 181 77 2
 002 173 85 1
 002 173 83 2
 ;
 run;
 title "Data from &syslast.";
 proc print;
 run;

 # Grouping variables and
 # statistics in R;
 vs <- read.table(header = TRUE,
 stringsAsFactors = FALSE,
 text = "
 SUBJID HT WT PERIOD
 001 180 NA 1
 001 181 77 2
 002 173 85 1
 002 173 83 2");
 print(vs);

Output From SAS code: Output From R code:
Data from WORK.VS
Obs SUBJID HT WT PERIOD
1 1 180 . 1
2 1 181 77 2
3 2 173 85 1
4 2 173 83 2

> print(vs)
 SUBJID HT WT PERIOD
1 1 180 NA 1
2 1 181 77 2
3 2 173 85 1
4 2 173 83 2

SAS Language R Language
 proc means data = vs;
 var HT WT ;
 by SUBJID;
 output out = vs_s;
 run;

 vs_s <- vs %>%
 group_by(SUBJID) %>%
 summarise_at(
 vars(HT,WT),
 funs(sum(!is.na(.)),
 mean(., na.rm=TRUE),
 sd(., na.rm=TRUE),
 min(. ,na.rm=TRUE),
 max(. ,na.rm=TRUE))
)%>% ungroup()
 vs_s

Output From SAS code:

Expand Your Skills from SAS® to R with No Complications, continued

10

Example 2.6.1 Computing by Group Statistics
group_by() R function allows to use statistics group wise(as SAS BY statement).
After the ungrpoup() call you can use summary functions across all the values.
summarise() produces one row for each group.

2.7 LAG in SAS and LAG in R
The following example shows how to work with windowing functions in SAS and R.
Example 2.7.1 Windowing functions:

SAS Language R Language
 *** LAG function ***;
 data vs_lag;
 set vs (keep = SUBJID HT);
 by SUBJID;
 LAG_HT = lag(HT);
 if first.SUBJID then LAG_HT = .;
 run;
 title "Lag in SAS,Data from syslast.";
 proc print;
 run;

 # lag and lead functions;
 vs_lag_lead <- vs %>%
 select(SUBJID, TEST1) %>%
 group_by(SUBJID) %>%
 mutate(
 LAG = lag(HT),
 LEAD = lead(HT)
) %>% ungroup()
 vs_lag_lead

Output From SAS code: Output From R code:
Obs SUBJID HT LAG_HT
1 1 180 .
2 1 181 180
3 2 173 .
4 2 173 173

A tibble: 4 x 4
 SUBJID HT LAG LEAD
 <int> <int> <int> <int>
1 1 180 NA 181
2 1 181 180 NA
3 2 173 NA 173
4 2 173 173 NA

Note that lag() and lead() in R are working within groups by default;
And there is no lead() function in SAS.

2.8 Combining data horizontally
Joins another important part of data manipulation. Both SAS and R languages allow combining data
horizontally.DPLYR package has a few functions for different merges:
inner_join(), left_join(), right_join(),

Data from WORK.VS
The MEANS Procedure
SUBJID=1
Variable N Mean Std Dev Minimum Maximum
HT
WT

2
1

180.5000000
77.0000000

0.7071068
.

180.0000000
77.0000000

181.0000000
77.0000000

SUBJID=2
Variable N Mean Std Dev Minimum Maximum
HT
WT

2
2

173.0000000
84.0000000

0
1.4142136

173.0000000
83.0000000

173.0000000
85.0000000

Output From R code:
> vs_s
A tibble: 2 x 11
 SUBJID HT_sum WT_sum HT_mean WT_mean HT_sd WT_sd HT_min WT_min HT_max WT_max
 <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 2 1 180.5 77 0.7071068 NaN 180 77 181 77
2 2 2 2 173.0 84 0.0000000 1.414214 173 83 173 85

Expand Your Skills from SAS® to R with No Complications, continued

11

full_join(), semi_join(), anti_join().

The function names speak for themselves. The first two arguments are data sets, the third one is the
joining key. If the third argument is missing – natural join is performed.
Example 2.8.1 Merge Data sets

SAS Language R Language
 data advs ;
 merge vs(in = in_x)
 dm(in = in_y);
 by SUBJID ;
 if in_x and in_y ;
 * inner join;
 keep HT WT SUBJID POFL ;
 run;
 title "Combined Data Set,";
 title2 "Data from &syslast.";
 proc print;
 run;

 advs <- vs %>%
 inner_join(y = dm,
 by =
 c("SUBJID" = "SUBJID")) %>%
 select(HT, WT, SUBJID, POFL)

 advs

Output From SAS code: Output From R code:

Data from WORK.ADVS
Obs SUBJID HT WT POFL
1 1 180 . Y
2 1 181 77 Y
3 2 173 85 Y
4 2 173 83 Y

> advs
 SUBJID POFL HT WT
1 1 Y 180 NA
2 1 Y 181 77
3 2 Y 173 85
4 2 Y 173 83

It is evident that, DPLYR can merge data sets vertically as SAS does.
If you need to combine two data sets without creating new rows (e.g. using set operators) you can use
the following functions:

• intersect(x1, x2),
• union(x1, x2)
• setdiff(x1, x2).
intersect() keeps rows that only appear in both data sets, union()keeps all unique rows, and
setdiff() keeps only rows from the first data set, which are missing from the second one.

ADDITIONAL MATERIALS
Presenting results of your analysis may be the most important part of the process.
You can carry this out in the form of Table or Graph. In the Additional Materials, we have analyzed some
demographic information from OSMI Survey. We have used information about Gender, Age, Tech/IT Role
and attitude to Working Remotely.

The example of Graph with Age distribution done by SAS SGPLOT and R GGPLOT2 is also included in
the Additional materials.

CONCLUSION
SAS DATA step is a core of the SAS Language. It provides a wide range of methods for data
transformation and manipulation.

R has many packages. Even checking the whole list will take a lot of time, but to do the main part of tasks
you do not need to be an expert in all of them.

Expand Your Skills from SAS® to R with No Complications, continued

12

DPLYR has simple syntax, and that`s why it is suitable for new R users. On the other hand, it can be a
substitute to SAS tools for data manipulation

REFERENCES
1. Open Sourcing Mental Illness - Changing how we talk about mental health in the tech community -

Stronger Than Fear. Available at https://osmihelp.org/research

2. Creative Commons Attribution-ShareAlike 4.0 International. Available at
https://creativecommons.org/licenses/by-sa/4.0/legalcode

3. Additional materials: GitHub with codes and raw data https://github.com/korchakandrey/Expand-
Your-Skills-From-SAS-To-R

4. Package ‘dplyr’ documentation. https://cran.r-project.org/web/packages/dplyr/dplyr.pdf

5. SAS e-Learning materials available at https://support.sas.com/edu/elearning.html

6. R for Data Science by Garrett Grolemund and Hadley Wickham http://r4ds.had.co.nz/

7. SWIRL, Learn R, in R free course http://swirlstats.com/

RECOMMENDED READING
• R packages for data science available at https://www.tidyverse.org/

• SAS 9.4 Product Documentation® available at http://support.sas.com/documentation/94/

• Introduction to dplyr available at https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html

• GGPLOT2 documentation available at https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf

• RStudio Cheat Sheets available at https://www.rstudio.com/resources/cheatsheets/

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Andrii Korchak

Experis Clinical Solutions / Intego Group LLC

+1 (407) 512 1006 (Ext. 2435)
Andrii.Korchak@intego-group.com
www.intego-group.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://osmihelp.org/research
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://github.com/korchakandrey/Expand-Your-Skills-From-SAS-To-R
https://github.com/korchakandrey/Expand-Your-Skills-From-SAS-To-R
https://cran.r-project.org/web/packages/dplyr/dplyr.pdf
https://support.sas.com/edu/elearning.html
http://r4ds.had.co.nz/
http://swirlstats.com/
https://www.tidyverse.org/
http://support.sas.com/documentation/94/
https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html
https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf
https://www.rstudio.com/resources/cheatsheets/
mailto:Andrii.Korchak@intego-group.com
http://www.intego-group.com/

	Abstract
	Introduction
	BASE SAS and R
	DATA MAnipulation in SAS and R
	1. READING the data
	1.1 Reading Delimited data
	1.2 Reading data from External Files
	2.1 Pipe operator
	2.2 Drop, Keep, and Rename your variables
	2.3 Filtering Data
	2.4 Creating new variables
	2.5 Sort the Data
	2.6 By Groups
	2.7 LAG in SAS and LAG in R
	2.8 Combining data horizontally

	Additional Materials
	Conclusion
	References
	Recommended Reading
	Contact Information

