

Beyond MERGE for Combining Datasets, Continued

PharmaSUG 2018 - Paper BB-23

Beyond MERGE for Combining Datasets
David Franklin, IQVIA, Cambridge, MA

ABSTRACT
Merging two datasets is one of the most common actions that a SAS® programmer does when
manipulating data to bring it into a form for either storage or analysis. The most common way data is
merged is with the use of the MERGE statement inside a DATA step but there are others. This paper will
introduce methods that use PROC SQL, HASH tables, POINT and KEY options in a SET statement and
PROC FORMAT; looking at one-to-one, one-to-many and many-to-many situations.

INTRODUCTION
Merging data from two datasets and putting the result into a third dataset is one of the basic data
manipulation tasks that a SAS programmer has to do. Before we introduce the methods, let's look at
some data:
Dataset: PATDATA

SUBJECT TRT_CODE

124263 A

124264 A

124265 B

124266 B

Dataset: ADVERSE

SUBJECT EVENT

124263 HEADACHE

124266 FEVER

124266 NAUSEA

124267 FRACTURE

This data has a one-to-many structure and will be used in this section of the paper. The same methods
apply using a one-to-one data structure.

The most common way two datasets are joined is using the MERGE statement within a DATA step, as
shown below:
DATA _alldat0;

 MERGE adverse (in=a)

 patdata (in=b);

 BY subject;

 IF a;

RUN;

The dataset that is produced is:

1

Beyond MERGE for Combining Datasets, Continued

SUBJECT EVENT TRT_CODE

124263 HEADACHE A

124266 FEVER B

124266 NAUSEA B

124267 FRACTURE

WIth the use of the ‘IF a;’ in the DATA step, an effective left join of the data is completed resulting in all
records from dataset ADVERSE being in the outgoing dataset, and only those records from PATDATA
being a match, included.

OTHER METHODS
There are a number of other ways the data can be merged, the next common using a PROC SQL as
shown below:
PROC SQL;

 CREATE TABLE _alldat0 AS

 SELECT a.*, b.trt_code

 FROM adverse a LEFT JOIN patdata b

 ON a.subject=b.subject;

 QUIT;

RUN;

SQL is a well known language that is very good at working with databases and is liked by many who deal
with large datasets and has the advantage of not sometimes needing a PROC SORT call for both
datasets before the MERGE statement.

Creating a format from the PATDATA dataset is another way that data can be merged, as shown below:
DATA fmt;

 RETAIN fmtname 'TRT_FMT' type 'C';

 SET patdata;

 RENAME subject=start trt_code=label;

PROC FORMAT CNTLIN=fmt;

DATA alldata0;

 SET adverse;

 ATTRIB trt_code LENGTH=$1 LABEL='Treatment Code';

 trt_code=PUT(subject,$trt_fmt.);

RUN;

In the example a character format TRT_FMT is created from the PATDATA dataset, and then this format
is used to set the TRT_CODE variable within the ADVERSE dataset. Like the PROC SQL, the datasets
do not need to be merged.

The SET statement has the KEY= option which is useful for merging as shown in the following example:
DATA _alldat0;

 SET adverse;

 SET patdata KEY=subject /UNIQUE;

 DO;

 IF _IORC_ THEN DO;

 ERROR=0;

 trt_code='';

 END;

 END;

RUN;

Before this type of merge can work the dataset PATDATA must have an index created inside it, using
either the INDEX statement inside a DATASETS or SQL procedure, or INDEX option inside a DATA step.
It is important to have the DO loop is if no match is found then TRT_CODE will be set to missing - if this is
not done then unexpected results may occur.

2

Beyond MERGE for Combining Datasets, Continued

The Hash Table is used by database programmers in other languages, this is considered one of the
fastest ways to merge data in two datasets. Many papers have been written about this recent feature,
how it works, and their use within SAS - references to some notable papers are the Reference section
below. The code below does the merge required:
DATA _alldat0;

 IF _n_=0 THEN SET patdata;

 IF _n_=1 THEN DO;

 DECLARE HASH _h1 (dataset: "PATDATA");

 rc=_h1.definekey("SUBJECT");

 rc=_h1.definedata("TRT_CODE");

 rc=_h1.definedone();

 call missing(SUBJECT,TRT_CODE);

 END;

 SET adverse;

 rc=_h1.find();

 IF rc^=0 THEN trt_code=" ";

 DROP rc;

RUN;

In the example above, the dataset PATDATA gets loaded into a hash table, then the ADVERSE dataset is
loaded into the DATA step and the match is made using the FIND() method.

MERGING A MANY-TO-MANY DATA STRUCTURE
When two datasets to join have no unique record structure this is called a many-to-many merge. To do
this correctly there are a couple of ways that this can be done, but first some data:
DATASET: ADVERSE

SUBJECT DATE EVENT

342001 16NOV2017 Nausea

342002 16NOV2017 Heartburn

342002 16NOV2017 Acid Indigestion

342002 18NOV2017 Nausea

342003 17NOV2017 Fever

342003 18NOV2017 Fever

342005 17NOV2017 Fever

DATASET: CONMED

SUBJECT DATE DRUG

342001 16NOV2017 Dopamine

342002 16NOV2017 Antacid

342002 16NOV2017 Sodium bicarbonate

342002 18NOV2017 Dopamine

342003 18NOV2017 Asprin

342004 19NOV2017 Asprin

342005 17NOV2017 Asprin

Using PROC SQL, which is the most common method for this structure, the code would be written as:
PROC SQL;

 CREATE TABLE _alldat0 AS

 SELECT a.*, b.drug

 FROM adverse a INNER JOIN conmed b

 ON a.subject=b.subject AND a.date=b.date;

 QUIT;

RUN;

A call to output the list to the Results window with PROC SQL would produce:

3

Beyond MERGE for Combining Datasets, Continued

subject date event drug

342001 21139 Nausea Dopamine

342002 21139 Heartburn Antacid

342002 21139 Heartburn Sodium bicarbonate

342002 21139 Acid Indigestion Antacid

342002 21139 Acid Indigestion Sodium bicarbonate

342002 21141 Nausea Dopamine

342003 21141 Fever Asprin

342005 21140 Fever Asprin

Another approach is to merge the data of this form is using a loop within a loop and the POINT option in
the SET statement:
DATA _alldat0;

 SET adverse;

 DROP _:; ** Drop temporary variables;

 match=0; ** Match flag;

 ** Our loop within a loop -- output if match;

 DO i=1 TO xnobs;

 ** Need to rename the "merging" variables within the CM dataset;

 SET conmed (RENAME=(subject=_subject date=_date)) NOBS=xnobs POINT=i;

 ** Have to rename matching variables so that they do not overwrite

 the original values in AE;

 IF (subject=_subject AND date=_date) or (subject=_subject AND date>. and _date=.)

THEN DO;

 match=1; ** Yes, there is a match my the "merging" variables;

 OUTPUT;

 END;

 END;

RUN;

This is a lot of code but does give the most control and the same results. An important note here is that
the matching variables have to be renamed so that they do not overwrite the original values in ADVERSE
(very important) but use the DROP statement to get rid of these when the dataset _ALLDAT0 is created.
Note also that the variable MATCH is used so that it is easy to see where a match is made but is not
necessary.

CONCLUSION
As can been seen there are a number of methods which can be used to merge data, beyond the MERGE
statement within a DATA step. No one method is better than another and does depend on a number of
factors including size of data and whether it is sorted or indexed first. Also, the methods shown here are
by no means exhaustive and it is only though trying these different methods at your installation that you
will see resource efficiencies between the methods.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

David Franklin
IQVIA
david.franklin1@iqvia.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies

4

