PharmaSUG 2018 - Paper DS-12

An Alternate Way to Create the Standard SDTM Domains

Sunil Kumar Pusarla, Omeros Corporation

ABSTRACT

Sponsors who initiate clinical trials after 2016-12-17 are required to submit data from the studies in CDISC Study Data Tabulation Model (SDTM) format in their FDA submission. SDTM Implementation Guides provide the rules, assumptions, and examples necessary to create the standard domains. It is common practice to use software tools to assess compliance with CDISC standards before transmitting the domains to a regulatory agency. By pre-building the standard domain templates directly from the CDISC Share data stores, compliance with metadata (type, storage, and internal documentation) is guaranteed. These version-specific templates are then used as the scaffolding to which study-specific data are added. This paper outlines how this top-down approach minimizes coding issues as well as errors/warnings raised by metadata checking tools. A macro with dual functionality will be presented. One function utilizes the metadata library to produce specific standard domains variables, labels and their canonical order in that domain. The second function derives the maximum length of each individual character variable and assigns that length to that variable. This paper is intended for people new to CDISC requirements and operating with limited corporate resources.

INTRODUCTION

FDA has mandated that, for NDAs, BLAs, ANDAs and their subsequent submissions, the clinical data must be submitted in CDISC formats for studies that start after 2016-12-17. This paper is intended for an audience with limited corporate resources, and provides insight into building a metadata (provided by CDISC share) driven solution to implement the SDTM standards. Sponsors with abundant resources, can afford to develop their own or purchase third party MDRs (Metadata Directory Repository) to maintain the SDTM IG standards; hence it is easy for them to implement the regulatory standards. For sponsors with limited resources, it is difficult to develop or obtain third-party MDRs.

It is common practice to verify the SDTM domains using tools such as Pinnacle 21. Based on generated warnings/errors, one makes the necessary changes to SAS code to address them wherever applicable, and if not, explain them in a Reviewer's Guide. By relying on CDISC published data standards, and a single, streamlined macro, one avoids the aggravation of tracking down and adjusting myriad miniscule code details across multiple domains.

OVERVIEW

Rather than creating the SDTM domain, and then relying on Pinnacle 21 tool to verify compliance, one can use CDISC share provided SDTM metadata as a foundation, minimizing the problems created and subsequent code modifications.

We created a SAS library (Figure 1) from the CDISC share metadata. It has all the individual standard SDTM domains. Each domain (i.e. Figure 2) has its variables in the required order. The variables are associated with their respected labels. By using these templates, one reduces the use of many ATTRIB or LABEL statements to assign the labels to each variable (Figure 3) during their creation. This approach also avoids typing (spelling or casing) errors. One should use only LENGTH statement while creating the character standard variables. Because the order is provided in these templates, it assures the final dataset variables will be in the required order.

FDA requires the EPOCH variable in most of these domains, and each character variable must match the maximum length of its longest observed length. CDISC SDTM share metadata doesn't provide EPOCH variable in all the domains. We included the EPOCH variable in each standard domain where required, and at the required position within the created SAS library (*Figure 1*). Our macro assigns the appropriate labels to the standard SDTM variables, calculates the maximum observed length of each variable, and then orders the variables to comply with the specifications.

Figure 1 – SDTM standard domains SAS library

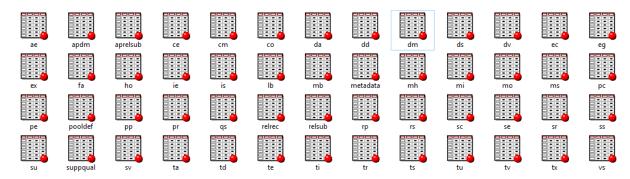


Figure 2 – SDTM Demographics (DM) domain

STUDYID		DOMAIN		USUBJID		SUBJID	RFSTDTC	
	- 1		2		3		4	5
RFENDTC		RFXSTDTC		RFXENDTC		RFICDTC	RFPENDTC	
	6		7		8	Ç		10
DTHDTC		DTHFL		SITEID		INVID	INVNAM	
	11		12		13	14	1	15
BRTHDTC		AGE		AGEU		SEX	RACE	
	16		17		18	19		20
ETHNIC		ARMCD		ARM		ACTARMCD	ACTARM	
	21		22		23	24		25
0011117771		D.110.TO		DIAB.		1		
COUNTRY		DMDTC		DMDY				
	26		27		28			

Figure 3 – Assigning labels and lengths – the tedious way

```
Command ===>
 131 DATA AE (LABEL='Adverse Events');
 132 attNib
 133 STUDYIA LABEL='Study Identifier'
                                                   LENGTH=$6
 134 DOMAIN INBEL='Domain Abbreviation'
                                                   LENGTH=$2
 135 USUBJID LABET = 'Unique Subject Identifier'
                                                    LENGTH=$20
 136 AESEQ LABEL='Sequence Number' LENGTH=8
 137 AESPID LABEL='Sponsor-Defined Identifier'
 138 AETERM LABEL='Reported Term for the Adverse Event' LENGTH=$200
 139 AEMODIFY LABEL='Modified Reported Term' LENGTH=$200
 140 AEDECOD LABEL='Dictionary Perived Term'
                                                          LENGTH=$200
 141 AEBODSYS LABEL='Body System or Organ Class'
                                                                         H=$200
                                                                    LEN
 142 AELOC LABEL='Location of Event
 143 AESEV
             LABEL='Severity/Intensit
                                                                      LENGTH=$40
 144 AESER LABEL='Serious Event'
                                                                 ngth=$2
 145 AEACN LABEL='Action Taken with Study Treatment'
                                                                             LENGTH=$40
 146 AEREL LABEL='Causality'
                                              LENCTH=$40
 147 AERELNST LABEL='Relationship to Non-Study
                                                     ratment'
                                                                  LENGTH=$200
 148 AEOUT LABEL='Outcome of Adverse Event'
                                                              LENGTH=$40
 149 AESDTH LABEL='Results in Death'
                                                             TENGTH=$3
                                              spitalization
 150 AESHOSP
               LABEL='Requires or Prolongs
                                                                         LENGTH=$3
 151 AECONTRT LABEL='Concomitant or Additional Trtmnt Given
                                                                         LENGTH=$3
 152 AESTDTC LABEL='Start Date/Time of Adverse Event'
                                                                    ENGTH=$20
 153 AEENDTC LABEL='End Date/Time of Adverse Event'
                                                                LENGTY=$20
 154 AESTDY LABEL='Study Day of Mart of Adverse Event'
                                                                    LENGTH=8
 155 AEENDY LABEL='Study Day of End of Adverse Event'
156 AEENRF LABEL='End Relative to Reference Period'
                                                                  TENGTH=8
                                                            LENGTH=$20;
 157 ;
 158 SET ae_dm;
 159 by usubjid aeterm aedecod aestdtc;
 160 if first.usabjid then aeseq=1;
 161
       else acseq+1;
       DOMNIN='AE';
 162
 163
 164 KUN;
```

The end process consists of three steps: building the penultimate dataset; calling the macro, which generates two global macro variables, and then creating the desired SDTM domain in a regular Data step, which employs the above macro variables.

The penultimate dataset is created using a combination of CDISC guidelines (variable names) and local specifications (defining age, Study Day #).

Then, one calls the macro by supplying at least two keyword parameters. The first (*ind*) specifies your penultimate dataset name to modify (apply variable labels); the second (*supply*) specifies the template dataset name that supplies the CDISC share metadata labels and appropriate variable order. Two global macro variables are produced during macro execution.

These will be used in a very simple Data step to create the final domain. Macro variable &varlist_length contains the string of required variables with their derived lengths (delimited by a space) in the required order, to be used with length statement in the final Data step. Macro variable &varlist is a list of the mandatory variables to keep in that standard domain.

CONCLUSION

While creating SDTM domains, developing a small set of macro tools enables one to achieve compliance with regulatory guidelines with minimal effort and minimizes the chance of error. It ensures adherence to the data standards and reduces the possibility of creating metadata errors and having to fix them in post processing.

The opinions expressed in this paper are the opinions of the author and should not be interpreted as the opinion or position of Omeros Corporation.

REFERENCES

https://www.cdisc.org/

 $\underline{\text{http://documentation.sas.com/?docsetId=mcrolref\&docsetTarget=titlepage.htm\&docsetVersion=9.4\&local} \\ \underline{e=en}$

ACKNOWLEDGMENTS

My sincere thanks to our director Mr. Paul Hamilton for encouraging, suggesting and helping in writing this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Sunil Kumar Pusarla Enterprise: Omeros Corporation Address: 201 Elliott Avenue West City, State ZIP: Seattle, WA 98119 Work Phone: 206-676-5000 E-mail: skumar@omeros.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Macro and its usage are presented below:

```
32
33∃ %macro LablLen(ind = , supply =, dlib = );
34 %local dat varnum sqvar vnum ;
35
     %global varlist_length varlist;
36
37
     %let dat = flengs1;
38
     %* Applying appropriate labels to your data variables;
39
40
     %if %length(&ind) eq 0 %then %do;
      %let ind = &syslast;
41
42
     %end;
43
     %if %length(&dlib) eq 0 %then %do;
44
45
      %let dlib = cdisc;
46
     %end;
47
48 proc contents data = &dlib..&supply
49
     out = cdisc_&supply. (keep = name label varnum)
50
                nodetails
51
                noprint;
52 run;
53
54 proc sort data = cdisc_&supply.;
55
     by name ;
56 run;
57
58
     proc contents data = &ind.
59
                 out = yourdata (keep = name varnum type)
60
                        noprint ;
61
    run;
62
63 data yourdata;
64
    set yourdata;
65
      name = upcase(name);
66 run;
```

```
67
 68
     proc sort data = yourdata ;
 69
      by name;
 70
     run;
 71
 72 data ourdata;
      merge yourdata (in = a rename = (varnum = vnum))
 73
 74
        cdisc_&supply. (in = b);
      by name;
 75
 76
       if a and b;
 77
      length varlab sqvar $200 ;
 78
       varlab = catx(' = ',name,quote(strip(label)));
 79
       if (type eq 2) then sqvar = catx('',
 80
                                      cats('max(length(',name,'))'),
 81
                                      'as',
 82
                                      cats('len', varnum)
 83
                                      );
 84
       else if (type eq 1) then sqvar = cats('8 as len',
 85
 86 run;
 87
 88 proc sql noprint;
 89
       select varlab, sqvar, varnum into :varlab separated by ' ',
 90
                                       :sqvar separated by ',',
 91
                                       :varnum separated by '/'
 92
         from ourdata
 93 order by varnum;
 94 quit;
 95
 96 proc datasets library = work nolist;
 97
      modify &ind;
 98
       label &varlab ;
 99
       run;
100 quit;
101
```

```
102
      %* Get the max length of your data variables ;
103
104
     proc sql ;
105
      create table lengs as
106
      select &sqvar.
107
       from &ind;
108 quit;
109
110 proc transpose data = lengs
111
                   out = tlengs;
112
      var len:;
113 run;
114
115 proc sql ;
116
      create table flengs as
117
        select a.*, b.col1 as lengt
118
         from ourdata a left join tlengs b
119
      on strip(scan(a.sqvar,-1,' ')) eq b._name_;
120 quit;
121
122
     data &dat;
123
      set flengs;
124
      length wanted $10;
125
      if (type eq 2) then wanted = cats('$',lengt);
                          wanted = strip(put(lengt,8.));
126
      else
127
      if (substr(name, length(name) - 1) eq 'FL')
                                then wanted = '$1';
128
129
      if length(name) ge 6 then do;
130
      else if (substr(name, length(name) - 3) eq 'STAT') then wanted = '$8';
131
       end;
132 run;
133
134 proc sql noprint;
135
      select catx(' ', upcase(name), wanted),
136
               name,
137
               varnum
138
                     into: varlist length separated by ' ',
139
                         : varlist separated by ' ',
140
                         : vnum separated by ' '
141
       from &dat
142
      order by varnum;
143 quit;
144 %mend;
```

Example Demographics (DM) dataset creation:

```
1∃data dm0;
 2 set rawdata.dm (rename = (race = race1) drop = studyid siteid);
     length usubjid race raceoth1 raceoth2 $40;
 3
    studyid = project;
 4
    domain = 'DM';
 5
    subjid = subject;
 6
 7
    siteid = sitenumber;
 8
    usubjid = catx('/',
 9
                   studyid,
10
                    subjid);
rficdtc = put(input(compress(consdt raw),date9.),yymmdd10.);
12    if index(brthdat_raw,'UN') and
13
        index(brthdat_raw,'JUN') lt 1 then put 'WAR' 'NING: Fix the below.';
brthdtc = put(input(compress(brthdat_raw), date9.), yymmdd10.);
15 ageu = 'YEARS';
16
    ethnic = upcase(ethnic);
17
    race = race_std;
18
    if (race eq 'OTHER') then do;
     put /racel;
19
20
      raceoth1 = scan(race1,1,'/');
21
      raceoth2 = scan(race1,2,'/');
22
       if index("&pgmpath", 'prod') then put 'WAR' 'NING: Check the race other.';
23
    end:
24 sex = first(sex);
    visit = 'VISIT 1';
25
26
    visitnum = 1;
27 run;
```

... (Continue to create the penultimate dataset and then use the macro.)

```
286∃data all1;
287 set all;
288 by usubjid;
289
     if (input(rfstdtc, yymmdd10.) ne .) and
290
         (input(dmdtc,yymmdd10.) ne .) then
291
         dmdy = input(dmdtc,yymmdd10.) - input(rfstdtc,yymmdd10.);
292
     if (dmdy ge 0) then dmdy = dmdy + 1;
293 run;
294
295 %lablLen(ind = all1, supply = dm)
296
297 options varlenchk = nowarn;
298 data sdtm.dm (label = "Demographics" keep = &varlist);
299 length &varlist length;
300
     set all1;
301 run;
302 options varlenchk = warn;
303
304 % makexpt (sdtm.dm)
```