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ABSTRACT  
Genetic variations have essential impacts on drug exposure and response. Pharmacogenomics (PGx), 
deciphering the drug-gene relationship, have been widely applied in drug design, discovery, development, 
and labeling. To facilitate scientific progress in the field of PGx and the use of PGx data in drug 
development, FDA officially issued a few guidelines to assist pharmaceutical sponsors engaged in 
evaluating the role of genetic variations on drug response and to encourage voluntary PGx data 
submission. To that end, the Study Data Tabulation Model Implementation Guide: 
Pharmacogenomics/Genetics (SDTMIG-PGx) was published in 2015 to provide guidance on the 
implementation of SDTM PGx domains. However, there is no official guidance on implementation of 
Analysis Data Module (ADaM) on PGx data. There are even fewer discussions on ADaM implementation 
of PGx data. Due to the complicated nature of PGx data, it is not only technical but also scientific 
challenge to fit PGx data in ADaM structure. Nevertheless, this topic gets more and more important and 
urgent while FDA highlighted the advancing use of biomarkers and PGx as one of the key principles of 
Prescription Drug User Fee Act for fiscal years 2018-2022 (PDUFA VI). 

This paper will illustrate the implementation of ADaM Basic Data Structure (BDS) on typical genetic 
variation data including single nucleotide polymorphism (SNP) and short tandem repeat (STR). The 
common difficulties and solutions while programming genetic variation data will be dissected minutely. 
This paper will also go beyond ADaM implementation – discuss the incorporation of genetic variations as 
baseline covariates into efficacy and PK analysis, and the adaption of data structure to the purpose of 
specific analysis. 

INTRODUCTION  
Pharmacogenomics (PGx), integrating pharmacology (the science of drugs) and genomics (the study of 
the full genetic complement of an organism), investigates how the inter-individual differences of genomic 
components affect individual responses to disease and to treatment (Weinshilboum, 2003). PGx offers 
the promise of achieving personalized treatment by utilizing accurate and reliable genomic information to 
maximize efficacy and minimize the adverse drug reactions. PGx is now widely applied throughout drug 
discovery, development and all phases of clinical trials. As the result, over 200 drugs approved by FDA 
have PGx information in the drug labeling by February 2018 (Table of Pharmacogenomic Biomarkers in 
Drug Labeling, FDA). Furthermore, FDA published several guidelines to facilitate scientific progress in the 
field of PGx studies and to facilitate the use of PGx data in drug development (Resources Related to 
Pharmacogenomics, FDA). Realizing the increasing needs of PGx data submission to regulatory 
agencies, the Clinical Data Interchange Standard Consortium (CDISC) released the Study Data 
Tabulation Model (SDTM) Implementation Guide for PGx/Genetics (referred to as PGxIG) to provide 
guidance on the implementation of SDTM on PGx/genomic biomarker data. Clinical trial programmers are 
interesting in diving into PGx studies and mapping biomarkers (Cherukuri, 2016) and genetic variations 
(Zhang, 2017) in SDTM PGx domains.   

In contrast to the active practice on implementing SDTM on PGx data, the implementation of Analysis 
Data Module (ADaM) on PGx data is left behind. PGx is a new study class for clinical trials. Programmers 
have less knowledge of PGx data and need to know how the PGx data is used in statistical analysis. 
There is even no official guidance on ADaM implementation of PGx data. Given the complicated nature 
and lack of standards for PGx data, there are manh challenges to fit PGx data in ADaM structure. 
Nevertheless, there are many advantages to generate ADaM dataset for PGx data, such as facilitating 
the clear communications, supporting review tools used by regulatory agencies, reducing the learning 
curve for new data and new studies, thereby reducing the review duration, etc. Starting with a brief 
introduction on genetic variations and SDTM PGx domains, this paper will explore the implementation of 
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ADaM Basic Data Structure (BDS) on genetic variation data and discuss the strategic and practical 
considerations of creating ADaM PGx data in a clinical trial setting. 

GENETIC VARIATION 
Genetic variation is the alternate forms of genotypes causing the genotypic and phenotypic differences 
between individuals in a population, and between populations. Depending on the location and type of 
genetic variation and its impact on gene function, the consequences of genetic variation vary from neutral 
or benign phenotype to life-threaten genetic disorders. Genetic variation can influence an individual’s 
response to certain drugs, susceptibility to environmental factors and risk of developing particular 
diseases. Based on the structure of genetic contents, genetic variation can be divided into different forms 
according to DNA and RNA characteristics (E15, ICH). The DNA sequence variations can be found 
across the genome in different structure levels (Figure 1). The concepts related genomics are vast, 
complicated and not the scope of the paper. The common sequence variations are illustrated graphically 
in Figure 1 to assist the understanding about the characteristics of genetic variations.  

Figure 1. Common DNA sequence variations.

 
Table 1. SNPs and STR used in this paper. 

 
The single nucleotide polymorphism (SNP) and short tandem repeat (STR) are two typical DNA sequence 
variations. SNP is a substitution, deletion, or insertion in a single-base nucleotide of a DNA sequence in 
at least 1% of the population (Figure 1A). STR, also known as microsatellite, is a class of DNA sequence 

Gene
(Full Name)

rs ID in 
dbSNP

Reference 
Sequence

Location 
within a gene 
(exon, intro, 

etc.)

Major 
Allele

Minor 
Allele

Nucleotide 
change(s)

Amino acid 
change(s)

Effects on 
transporter 

activity

Effects on 
drug Exposure

rs2306283 NM_006446.4 Exon A G c.388A>G N130D Increase Decrease AUC

rs11045819 NM_006446.4 Exon C A c.463C>A P155T Increase Decrease AUC

rs4149056 NM_006446.4 Exon T C c.521T>C V174A Decrease Increase AUC

rs4148323 NC_000002.11 Exon G A c.211G>A G71R Decrease Increase AUC

rs3064744 NC_000002.11 Promoter (TA)6
(TA)5
(TA)7
(TA)8

- - Unknown Unknown

SLCO1B1
(solute carrier organic 

anion transporter family 1 
member B1)

UGT1A1
(UDP-

glucuronosyltransferases 
family 1 member A1)
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repeats. In STR, a couple of nucleotides (usually 1 to 10bp) repeat several times and the repeated 
sequences are directly adjacent to each other. STR is typically in the non-coding regions. The structure 
and clinical relevance of SNPs and STR used in this paper are summarized in Table 1. 

SDTM PGX DOMAINS 
To support the increasing need in PGx studies and provide guidance on PGx data submission, the 
CDISC PGx team released the SDTM PGx IGv1.0 to guide the implementation of SDTM on gene 
expression data and genetic variation data. It is necessary to have the knowledge about the SDTM PGx 
domains. The PGxIGv1.0 provided guidance on the implementation of the SDTM for gene expression and 
genetic variation data for human and viral studies. Seven domains are used to carry data from three 
categories. 

1) Data about biospecimen: BE (Biospecimen Events), BS (Biospecimen Findings), and RELSPEC 
(Related Specimens). 
2) Data about PGx findings: PF (PGx/Genetics Findings) and PG (PGx/Genetics Methods and Supporting 
Information). 
3) Data defining a genetic biomarker or assigning it to a subject: PB (Pharmacogenomics/Genetics 
Biomarker) and SB (Subject Biomarker). 

Based on the FDA Data Standards Catalog, SDTM and ADaM are the study data and analysis data for 
clinical use, respectively. In this paper, the SDTM PGx Findings (PF) is the source for PGx analysis data, 
referred to as ADPF. Other data structures not listed in FDA Data Standards Catalog will not be 
considered as the source for ADPF given regulatory considerations. The implementation of SDTM PGx 
domains on genetic variation data (Zhang, 2017) can be referred to as an example of PGx domains. The 
sample records and variables in SDTM.PF used in this paper are shown in table 2.  

Table 2. Example records in SDTM.PF used to generate ADPF.

 

 

ADAM   
ADaM is a data standard and designed to facilitate the clear and unambiguous communication of the 
content and source of the datasets supporting the statistical analyses. There are four classes of ADaM 
datasets, but only three standard data structures (Table 3). ADaM OTHER class has no standard 
structure. The summary information of the three standard structures in Table 3 can be used as a lookup 
table to determine the class of ADaM for PGx data.  

BEFORE IMPLEMENTATION OF ADAM ON GENETIC VARIATION DATA 
The implementation of ADaM on PGx data must adhere to the fundamental principles. Analysis-ready and 
traceability are key considerations for ADaM implementation on PGx data. Before implementing ADaM on 
genetic variation data, the basic questions are: 

1) Of the four ADaM structures, which ADaM structure is used to implement genetic variation data?  

Row PFSEQ PFTESTCD PFTEST PFGENRI PFGENTYP PFREFSEQ PFCAT PFSCAT PFORRES
1 1 NUC Nucleotide SLCO1B1 GENE NM_006446.4 GENETIC VARIATION GENOTYPE C/T
2 2 NUC Nucleotide SLCO1B1 GENE NM_006446.4 GENETIC VARIATION GENOTYPE C/A
3 3 NUC Nucleotide SLCO1B1 GENE NM_006446.4 GENETIC VARIATION GENOTYPE T/T
4 4 NUC Nucleotide UGT1A1 GENE NC_000002.11 GENETIC VARIATION GENOTYPE (TA)6/(TA)6
5 5 NUC Nucleotide UGT1A1 GENE NC_000002.11 GENETIC VARIATION GENOTYPE G/G

Row PFORREF PFGENLOC PFSTRESC PFRSNUM PFSPEC PFMUTYP PFMETHOD PFDTC
1 C 388 c.[388A>G];[=] rs2306283 DNA GERMLINE MICROARRAY 2014-09-25T15:15
2 A 463 c.[463C>A];[463C>A] rs11045819 DNA GERMLINE MICROARRAY 2014-09-25T15:15
3 T 521 c.[=];[=] rs4149056 DNA GERMLINE MICROARRAY 2014-09-25T15:15

4 (TA)6 234668881
g.[234668881_2346688
82[6]];g.[234668881_2

34668882[6]]
rs3064744 DNA GERMLINE

POLYMERASE 
CHAIN 

REACTION
2014-10-12T11:25

5 G 234669144 c.[=];[=] rs4148323 DNA GERMLINE MICROARRAY 2014-09-25T15:15
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2) How to achieve the standard of traceability and analysis-ready? 

To address these questions, the features of genetic variation data and statistical model should be 
considered carefully. 

The two types of genetic variations used in this paper, SNP and STR are both germline characteristics 
describing differences between the DNA sequences. Like other subject-level features, e.g. race, gender, 
date of birth, SNP and STR are not caused by drug administration and will not be changed over time. 
Therefore, occurrence and incidence analysis are not applied on germline characteristics and OCCDS is 
not appropriate to present genetic variations. In terms of statistical models, SNP and STR will be used as 
subject-level covariates integrated into PK and efficacy analysis to evaluate the role of genetic variation 
on drug response. The statistical models can be mixed model, generalized linear model, logistic 
regression, etc. Genotypes can be used as categorical variables in these models. Thus, both ADSL and 
BDS can present SNP and STR and enable statistical analysis. 

Table 3. Three standard data structures of ADaM datasets. 

 

ADSL OR BDS? 
The BDS is favored than ADSL for a few reasons.  

First, the vertical structure of BDS is more flexible and powerful to present the derivation of records. Take 
SNP as an example. In SDTM.PF, the DNA sequence is character variable shown as two-letter 
combination of A, T, G, C in PFORRES (Table 3). In analysis data, the character PFORRES can be 
recoded to numeric analysis value (AVAL) to incorporate into statistical models. In one study, different 
recoding rules can be applied to the same SNP based on genetic effect, statistical models, sample size, 
etc. For example, additive model assumes genetic effects are the sum of two individual alleles equally. 
Then the copy number of minor alleles used for statistical analysis can be 0, 1, 2 in analysis data. If 
genetic effect presents dominance model that the dominant allele masks function of the recessive allele 
and the dominant trait is caused by either one or two copies of the dominant allele, then AVAL is a binary 
value: 0 if homozygous for the recessive allele; 1 if at least one copy of the dominant allele. When two 
recoding rules are applied to one SNP under distinct genetic effects, two sets of records must be 
generated separately. BDS is well adapted to this scenario. 

Second, in terms of analysis-ready, BDS supports the majority of statistical models (Table 2) and table 
products. The generation of BDS data is a creative process. Implementation of BDS can provide more 

Class Structure Statisitical Analysis Dataset(s) Typical Variables

ADSL
(Subject Level 
Analysis Data)

One record per subject
Descriptive 
information

ADSL

Subject-level variables:
Demographic 
Disease status
Treatment 
Baseline observations
Population flags
Dates of important events

BDS
(Basic Data 
Structure)

One or more records 
per analysis parameter 
per observation per 
subject

ANOVA
Linear regression
Logistic regression
Mixed model

ADEG
ADLB
ADVS
ADPC

Record-level variables:
Analysis parameters
Analysis values
Treatment/dose
Timing variables
Analysis indicators

OCCDS
(Occurance Data 
Structure)

One record per SDTM 
collected term

Occurrence analysis
Incidence analysis

ADAE
ADCM
ADMH

Events
Start and end of date/time
Analysis flags
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flexibility and potential for exploratory analysis. Moreover, BDS supports common table layouts used in 
clinical study report (CSR), e.g. frequency, summary statistics, shift tables, etc. 

Third, BDS enables the datapoint traceability that points directly to the specific predecessor record(s). 
The derivation for AVAL in PGx analysis can be a complex data manipulation path, it’s very helpful to 
include original variables from source data (SDTM.PF) to trace back to the specific data values used as 
input for an analysis value. Like other ADaM datasets, the common variables assisting traceability are 
SRCDOM, SRCSEQ, SRCVAR, and --SEQ from SDTM. In addition, specific variables in SDTM.PF can 
be included in ADPF, such as PFORRES, PFORREF, PFSPEC, PFMETHOD, PFDTC, etc.  

At last, adding PGx data in ADSL may cause the delay in finalizing analysis deliverables. In a typical 
analysis and report procedure, the order of programming execution is usually ADSL first, then BDS and 
OCCDS, and finally tables. Unlike clinical data that is collected by eCRF and captured by Electric Data 
Capture (EDC) system, PGx data usually is not documented in EDC because the PGx assays are often 
conducted by external vendors, not central lab. In addition, PGx form may not even be included in eCRF 
in exploratory studies. As the result, the format of PGx data is nonstandard and varies from vendors. The 
nonstandard formats can cause programming difficulties. Moreover, the delivery of PGx data can be 
delayed for many reasons, then further delays the finalization of ADSL if PGx data is implemented in 
ADSL dataset. Thus, it is better to present genotype data in a separeted dataset (e.g. ADPF) than in 
ADSL. Then the consequence of programming difficulties and the delay of raw PGx data will be limited in 
only a few ADaM datasets used in PGx analysis.  

WHY NOT ADAM OTHER CLASS? 
Another question is, can ADaM OTHER class be used to present genetic variation or other type of PGx 
data, since there is no ADaM implementation guidance for PGx data? The general rule of thrumb is that 
use standard structures if the standard structures can support the analysis (Troxell, 2015). There are 
many benefits of using standard structures. ADaM standard structures are preferred by regulatory 
agencies, pharmaceutical sponsors, clinical trial programmers, and many others using standard 
structures. Standard structures facilitate the clear communications, reduce the learning curve for new 
data and new studies, support review tools used by regulatory agencies. Therefore, standard structures 
should be used other than nonstandard structures. ADaM OTHER class is not a standard structure, 
thereby ADaM OTHER is not recommended unless the standard structures are not capable of supporting 
the analysis.  

IMPLEMENTATION OF ADAM BDS ON GENETIC VARIATION DATA 
The BDS structure usually contains several sets of variables enabling statistical analysis and traceability. 
This paper will focus on analysis parameters and analysis values relevant to PGx observations. 

ANALYSIS PARAMETER VARIABLES 
Analysis parameter variables (e.g. PARAM) describe the values being analyzed. The definitions of 
PARAM and PARAMCD must follow the rules as ADaM implementation guide suggested: 

Unique, meaningful, and informative 

One-to-one map of PARAM and PARAMCD  

The length of PARAMCD value is eight characters or less   

However, applying these mapping rules can be very challenge for PGx data because PGx observations 
are more complicated and not standardized compared with other clinical tests. Examples in Table 4 
provided sorts of ideas to create PARAM and PARAMCD, but none of them can meet all the rules above.  

The PGx tests need to be uniquely identified to allow them to be combined for analysis. In addition, 
analysis parameters must include descriptive and qualifying information relevant to the analysis purpose 
of the parameter. In order to consistently create PARAM and PARAMCD based on ADaM rules for PGx 
data, a naming algorithm is proposed to incorporate type of biomarker, genetic specimen, variation, and 
variable (Figure 2). 
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Table 4. Examples of PARAMCD failed to follow ADaM rules for PARAMCD. 

 
 Figure 2. An example algorithm for creating PARAMCD. 

 

ANALYSIS VALUE VARIABLES 
Under additive effect, genotype for each SNP was categorically defined as 0, 1 or 2 depending on the 
copies of the minor allele (Table 5).  

Table 5. Derivation of AVAL for SNPs under additive genetic model.

 
Similarly, the genotype of TA repeats in the UGT1A1 promoter was categorically defined as 0, 1 or 2 for 
genotypes TA 6/6, TA 6/7 or TA 7/7 respectively (Table 6). Subjects with genotypes that fall outside of TA 
6/6, TA 6/7 or TA 7/7 are rare and will not be included in the analysis of UGT1A1. The three major 
genotypes contribute over 96% of the study population.  

Table 6. Derivation of AVAL for (TA)n repeat in UGT1A1. 

 

Meaningful Unique Informative ≤ 8 char
RS reference number RS11045819, RS2306283    
Gene name + mutant loaction SLCO1B1:c.[388A>G]    
Chromosome number + 
chromosome loaction

Chr2:g.234668881-234668882    

Study defined SNPs SNP01, SNP02, …  *  

Study defined variations VARNT01, VARNT02, …  *  

Derivation Rule Example
ADaM Rules

* PARAMCD is uniqe for each indivadule study, but may need to recode for the analysis cross studies 

PFRSNUM PFORRES PFORREF Minor Allele
Copy Number of 

Minor Allele
AVAL PFSTRESC

rs2306283 C/T C T 1 1 c.[388A>G];[=]
rs11045819 C/A A C 1 1 c.[463C>A];[463C>A]
rs4149056 T/T T C 0 0 c.[=];[=]
rs4148323 G/G G T 0 0 c.[=];[=]

PFORRES PFORREF
Copy Number

of (TA)7
AVAL

(TA)6/(TA)6 (TA)6 0 0
(TA)6/(TA)7 (TA)6 1 1
(TA)7/(TA)7 (TA)6 2 2
(TA)5/(TA)6                                                     (TA)6 0
(TA)5/(TA)7 (TA)6 1
(TA)6/(TA)8 (TA)6 0
(TA)7/(TA)8 (TA)6 1
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CASE STUDIES 
In the case studies, the roles of genetic variations on efficacy and pharmacokinetics (PK) were evaluated 
by statistical analysis. Genetic variations are used as subject-level covariates.   

CASE 1 
In this study, the impacts of genetic variations in SLCO1B1 and UGT1A1 on PK exposure were 
investigated. The primary PK endpoints are AUC0-∞, steady state AUC0-τ and maximal concentration 
(Cmax). The genetic endpoints are three SNPs in SLCO1B1, one SNP in UGT1A1 and one SRT (TA 
repeat) in UGT1A1.  

A linear mixed effect model was performed on the individual natural log transformed PK parameters 
(AUC0-∞, AUC0-τ, and Cmax). This model contains fixed effects of treatment (categorical), genotype 
(categorical, coded as 0, 1 or 2) for each variant separately, and a random subject effect. Covariates of 
disease status, weight, gender, and race will be included in the model as appropriate. For example, the 
model for AUC0-∞ was in the following format: 

ln(AUC0-∞ ijk) = ß0+ ß1j*I(treatmenti=j)+ß2*I(genotypei=1) + ß3*I(genotypei=2) + ß4*covariatesi (e.g., 
disease status, age, weight, gender, and race) + Si + ε ijk 

i – ith subject 
j – jth treatment 
k – kth observation 
AUC0-∞ ijk – the AUC0-∞ value from subject i, treatment j, observation k 
Si – the random subject effect 
eijk – the residual error 

The sample records of ADPF and ADPP (PK parameter analysis dataset) are shown in Table 7 and Table 
8.  

Table 7. Example layout of ADPF for one subject. The AVAL was derived from SDTM.PF records shown 
in Table 2. 

  
Table 8. Sample records in ADPP. Analysis genotypes (AGTGzVz) were derived from AVAL in ADPF 
shown in Table 7.

   

CASE 2 
In this study, a similar linear mixed effect model was proposed to investigate genetic effect of rs2306283 
in SLCO1B1 on PK profile. However, in certain subgroup analysis, there are insufficient sample size for 
subjects having either 1 or 2 copies of the minor allele (defined here as a sample size less than 5 
subjects). Then genotype will instead be defined at the subject level as 0 (homozygous of major allele) or 

Row PARAM PARAMCD AVAL PFRSNUM PFORRES PFORREF
1 SLCO1B1 SNP rs2306283 Recode N G01DS02N 1 rs2306283 C/T C
2 SLCO1B1 SNP rs11045819 Recode N G01DS01N 1 rs11045819 C/A A
3 SLCO1B1 SNP rs4149056 Recode N G01DS03N 0 rs4149056 T/T T

4 UGT1A1 Repeat rs3064744 Recode N G02DR01N 0 rs3064744 TA6/TA6 TA6

5 UGT1A1 SNP rs4148323 Recode N G02DS01N 0 rs4148323 G/G G

Parameter 
Code

Parameter
Analysis 
Value

Aanalysis 
Genotype 
of SLCO1B1 
rs2306283 

Analysis 
Genotype
of SLCO1B1 
rs11045819

Aanalysis 
Genotype 
of SLCO1B1 
rs4149056 

Aanalysis 
Genotype 
of UGT1A1 
rs3064744

Aanalysis 
Genotype 
of UGT1A1 
rs4148323

PARAMCD PARAM AVAL AGTG1V2 AGTG1V1 AGTG1V3 AGTG2V1 AGTG2V2
AUCINF AUC Infinity (h*ng/mL) 78540 1 1 0 0 0
LNAUCINF Log(AUC Infinity (h*ng/mL)) 11.2714 1 1 0 0 0
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1 (at least one copy of the minor allele). Therefore, two sets of analysis records were derived from the 
same set of original observations (Table 9).  

Table 9. The different derivations of PARAM for the same SNP. Two sets of analysis parameters were 
generated for main group (PARAM=”G01DS02A”) and subgroup (PARAM=”G01DS02B”) analysis.      

 
Table 10. Example layout of ADPP. Analysis genotypes were derived from G01DS02A and G01DS02B 
shown in Table 9.  

 

CASE 3 
In an anti-HCV study, the primary efficacy endpoint was sustained viral response at 12 weeks (SVR12). 
Undetectable HCV for 12 or more weeks after the end of treatment is an SVR12. SVR12 was numerically 
defined as a binary endpoint of achieved (SVR12=1) or failure (SVR12=0).  

For each subject, genome-wide SNPs (~0.85 million) were assayed by microarray. The 0.85M SNPs are 
considered as a huge set of variables with some redundancies and correlations, e.g. SNPs in linkage 
disequilibrium regions in chromosomes, SNPs measuring the same construct. Obviously, it is not feasible 
and over modeled to incorporate all of the 0.85M variables in one statistical model. To reduce the huge 
set of observed variables and account for most of the variance in the observed variables, the principal 
component analysis (PCA) was applied to these 0.85M SNPs to generate a small set of artificial variables 
(called principal component, PC). These PCs describe the overall ancestry related genetic structure of 
this patient population. The number of components generated in a PCA is equal to the number of 
observed variables being analyzed, but usually the first few components account for meaningful amounts 
of variance. In this study, the first three PCs contributed for over 90% of total variance as shown in scree 
plot (Figure 3) and were used in efficacy analysis. 

 

 

USUBJID PARAM PARAMCD AVAL PFORRES PFORREF Minor Allele
Copy Number of 

Minor Allele
002-001 SLCO1B1 SNP rs2306283 Recode N G01DS02A 0 C/C C T 0
002-002 SLCO1B1 SNP rs2306283 Recode N G01DS02A 1 C/T C T 1
002-003 SLCO1B1 SNP rs2306283 Recode N G01DS02A 2 T/T C T 2
002-001 SLCO1B1 SNP rs2306283 Recode B G01DS02B 0 C/C C T 0
002-002 SLCO1B1 SNP rs2306283 Recode B G01DS02B 1 C/T C T 1
002-003 SLCO1B1 SNP rs2306283 Recode B G01DS02B 1 T/T C T 2

Unique 
Subject 

Identifier

Parameter 
Code

Parameter
Analysis 

Value

Analysis 
Genotype  
rs2306283 
Additive 

Analysis 
Genotype 
rs2306283 

Binary 
USUBJID PARAMCD PARAM AVAL AGTG1V1A AGTG1V1B
002-001 LNAUCINF Log(AUC Infinity (h*ng/mL)) 11.2714 0 0
002-002 LNAUCINF Log(AUC Infinity (h*ng/mL)) 14.3997 1 1
002-003 LNAUCINF Log(AUC Infinity (h*ng/mL)) 12.0094 2 1

Figure 3. Scree plot of PC versus its corresponding 
eigenvalue. The eigenvalues are ordered from largest to 
smallest. The eigenvalues of the correlation matrix equal 
the variances of the PCs. Scree plot is used to select the 
number of components to use based on the size of the 
eigenvalues. In this plot, the first three PCs account for 
over 90% of total variances. 
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A logistic regression model was performed on SVR12 to evaluate the relationship between the probability 
(p) of achieving SVR12 and genetic variations. The impact of three SNPs in SLCO1B1 and overall 
ancestry related genetic structure on the probability of achieving SVR12 was investigated. The model 
includes fixed effects of genotype (categorical coded as 0, 1, 2), the first three PCs obtained from the 
PCA, and other covariates (treatment, treatment duration, baseline HCV RNA, etc.). The model for the 
probability (p) of achieving SVR12 was in the following format: 

 
I – ith subject 
G – genotype 
PC – principal component 
X – covariates of treatment, treatment duration, baseline HCV RNA, etc 

The genotypes of three SNPs and first three PCs are included as subject-level variables in the efficacy 
analysis dataset (ADEFF, Table 11).     

Table 11. Example layout of ADEFF. The genetic covariates are three SNPs in SLCO1B1 and the first 
three PCs from a PCA of 0.85M SNPs. 

 
The SNPs and PCs are genetic covariates in ADEFF for efficacy analysis. However, the inclusion of three 
PCs in ADEFF caused the traceability problems when PCs are not mapped in SDTM domains and 
SDTM.PF does not contain all of the 0.85M SNPs. As calculated values, PCs are not direct observations 
and should not be mapped to SDTM.PF, which is limited to genetic finding records. The PGx IGv1.0 
doesn’t suggest the implementation of derived values from genetic findings yet. In terms of total data 
fitness, it is not practical to list 0.85M records for each subject in SDTM.PF. In addition, it’s not necessary 
to report all the SNPs since they are redundant and correlated. Sponsors are allowed to present only the 
interesting genetic findings according to PGx IGv1.0. Then the traceability between ADaM and SDTM is 
broken when PC is included in any of SDTM domains and only a few of 0.85M SNPs are reported by 
SDTM.PF.  

In order to build bridge for PC between ADEFF and SDTM datasets, a custom SDTM domain, e.g. 
genetic parameters (GP, Table 12), can be generated to contain the three PCs, then a separated ADaM 
dataset (e.g. ADGP) can carry over PCs from SDTM. The dataset relationship between SDTM.PC 
(Pharmacokinetics Concentration) and SDTM.PP (Pharmacokinetics Parameters) can be a reference for 
the custom domain for genetic parameters and SDTM.PF. PP records are not direct observations and 
derived from PK concentrations in SDTM.PC, but can fit SDTM finding class well. As a reference from 
SDTM.PP, genetic parameters (e.g. three PCs derived from PCA) can be presented by SDTM finding 
class. Then the traceability between ADaM and SDTM is achieved by generating a customer SDTM 
domain. 

Table 12. Example layout of a custom SDTM domain to present genetic parameters derived from 
SDTM.PF. 

  

Unique 
Subject 

Identifier

Parameter 
Code

Analysis 
Value

Analysis 
Genotype of 
rs2306283 

Analysis 
Genotype of 
rs11045819

Analysis 
Genotype of 
rs4149056 

Principal 
Component 
1

Principal 
Component 
2

Principal 
Component 
3

USUBJID PARAMCD AVAL AGTG1V2 AGTG1V1 AGTG1V3 PC1 PC2 PC3
003-011 SVR12 0 1 0 0 -0.001629 -0.010175 -0.018122
003-012 SVR12 1 0 1 0 0.0148152 -0.010058 0.0009233
003-013 SVR12 1 0 2 1 0.0157934 -0.010744 0.0063899

SUBJID --TEST --TESTCD --ORRES
003-011 Principal Component 1 PC1 -0.0016294
003-011 Principal Component 2 PC2 -0.0101749
003-011 Principal Component 3 PC3 -0.0181217
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CONCLUSIONS 
The powerful ADaM BDS class provides sufficient flexibilities to present genetic variation data, enable 
datapoint traceability and support statistical analysis. 
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