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Adding another dimension to oncology graphs: 3-D Waterfall Plots in SAS 
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ABSTRACT  
Waterfall plots and swimmer’s plots are almost ubiquitous for displaying the results of oncology trials. 
Both present compact patient-level summaries that can be quickly absorbed and offer more detail than a 
traditional table of best response, but they are typically presented as separate outputs with differing sort 
orders. This separation makes it difficult to match a patient’s change in tumor burden with their duration of 
therapy. One proposed visualization displays the traditional waterfall plot on the facing X-Z plane and 
adds a swimmer’s plot of duration of therapy on the orthogonal X-Y plane. This 3-D waterfall plot has 
been most commonly implemented in R, using a variety of 3-D projection libraries. We created a set of 
macros to dynamically normalize data to a unit cube, transform 3-D coordinates to a customizable 2-D 
projection, and used these projected coordinates with vector and polygon statements in PROC SGPLOT   
to construct a 3-D waterfall plot. 

INTRODUCTION  
Waterfall plots and swimmer’s plots are almost ubiquitous for displaying the results of oncology trials. A 
waterfall plot (Figure 1) presents continuous data on maximal tumor shrinkage on study, while a 
swimmer’s plot (Figure 2) places response milestones on patient-level timelines. Figure 3 is a 3-D 
Waterfall plot, proposed in a JCO article (Castanon Alvarez, Aspeslagh, & Soria, 2017), which combines 
some aspects of a swimmer’s plot with a traditional waterfall plot to add information about the durability of 
a response to the magnitude of response. Because the 3-D Waterfall plot consists of two 2-D plots 
presented orthogonally to one another and is not truly 3 dimensional, use of PROC 3D is not 
recommended. We have created a SAS program based on multiple macro calls that constructs a clean 3-
D Waterfall plot. A basic understanding of SAS macro coding and PROC SGPLOT is necessary to follow 
along, while a deeper understanding of matrix algebra is helpful to fully understand how the 3-D to 2-D 
projection works. All figures present randomly generated data with an assumed 75% correlation between 
time on study and maximum percent change in tumor size.  

 
Figure 1. Classical Waterfall Plot 
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Figure 2. Swimmer’s Plot  
 

 

 
Figure 3. 3-D Waterfall Plot (Orthographic projection)  
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The main steps to construct the 3-D waterfall plot are: 

1. Sort data 

2. Construct plot elements in 3-D coordinates 

3. Normalize to unit cube 

4. Project to 2-D coordinates 

5. Plot from background to foreground 

STEP 1: SORT THE DATA 
Waterfall plots are arranged in descending order of tumor size change. Consolidate all relevant 
information, which consists at minimum of: Subject ID, tumor size change, time on study, and indicator of 
whether a subject is still under observation. Sort this data in descending order of the tumor size change 
variable, and add a new numeric subject ID assigned to the automatic variable _n_ to preserve this sort 
order. 

STEP 2: CONSTRUCT PLOT DATASETS IN 3-D COORDINATES 
There are three basic plot elements needed to construct the 3-D waterfall plot: 

• Polygons (flat bars and arrows) 
• Lines (axes, tickmarks, reference lines) 
• Text (labels) 

 

Start from a dataset with integer-valued subject IDs, continuous time on study, and continuous percent 
change from baseline, as well as a flag of whether the subject is continuing on study. 

Determine plot limits: X-axis runs from 0 to the highest subject number; Y-axis runs from 0 to maximum 
time on study; Z-axis runs from -100 to a positive integer, usually 40 or 100, depending on response 
criteria and preference. 

Polygon data is built using the X, Y, and Z variables, along with the indicator of continuing time. If the 
patient is still on study, an arrowhead will extend past the observed time. If the percent change in tumor 
burden is beyond the predefined plot area limits, an arrowhead will extend past the limit. Figure 4 
illustrates how the coordinates for arrow and bars are parameterized. 
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Figure 4. Arrow and Bar parameterization  
Polygon data to construct the bar and arrows in the X-Y and X-Z plane uses some parameterization (delta 
is half the width of a bar (ranging from 0 to 0.5), wide represents the relative width of the arrowhead 
(1=take all the space, 0=same width as bar), yarrowmult and zarrowmult multiplicative factors 
representing the length of the arrowhead relative to ymax and zmax, respectively. The original X, Y, and 
Z variables are passed as macro variables defined outside of the data step:   

data polydata(drop=delta2); 
 set mydat; 
 length grpid delta2 8; 
 delta2=&wide.*(0.5) + (1-&wide.)*&delta.; 
 grpid=1; 
 x=&x.-&delta; y=0; z=0; output; 
 y=&y.; output; 
 if cont=1 then do; 
  x=&x.-delta2; output; 
  x=&x.; y=&y.+&yarrowmult.*&ymax.; output; 
  x=&x.+delta2; y=&y.; output; 
 end; 
 x=&x.+&delta; output; 
 y=0; output; 
 x=&x.-&delta; output; 
 grpid=2; 
 x=&x.-&delta; y=0; z=0; output; 
 z=min(&z.,&zmax.); output; 
 if &z.>&zmax. then do; 
  x=&x.-delta2; output; 



Adding another dimension to oncology graphs: 3-D Waterfall Plots in SAS, continued 
 

5 

  x=&x.; z=(1+&zarrowmult.)*&zmax.; output; 
  x=&x.+delta2; z=&zmax.; output; 
 end; 
 x=&x.+&delta; output; 
 z=0; output; 
 x=&x.-&delta; output; 
run;  
 

Axis data has a row for each starting coordinate and a row for each ending coordinate, along with an ID 
variable that matches up the start and end of each line: 

data axes; 
 length idlab x y z 8 type $5; 
 type="start"; idlab=1; x=&xmin.; y=0; z=0; output; 
 idlab=2; x=0; y=&ymin.; z=0; output; 
 idlab=3; x=0; y=0; z=&zmin.; output; 
 idlab=4; x=&xmax.; y=0; z=0; output; 
 type="end"; idlab=1; x=&xmax.; y=0; z=0; output; 
 idlab=2; x=0; y=&ymax.; z=0; output; 
 idlab=3; x=0; y=0; z=&zmax.; output; 
 idlab=4; x=&xmax.; y=&ymax.; z=0; output; 
run;  

In this example, idlab=1 constructs the x-axis, idlab=2 constructs the y-axis, idlab=3 constructs the z-axis, 
and idlab=4 adds a line parallel to the x-axis to the back wall. 

Tickmark data can be constructed in a similar fashion. 

STEP 3: RESCALE PLOT DATA TO UNIT CUBE 
You can rescale data with or without recalculating the plot limits. This code constructs a range for each x, 
y, and z axis, and uses that range along with the minimum and maximum values to map the data so that 
the minimum equates to -0.99 and the maximum equates to 0.99. This allows a small gutter in each 
direction to give more space for annotations. 

• &x-&xmin is the distance of x from the minimum. 

• Dividing that by the range normalizes the xvalue to [0,1]. 

• Multiplying by 2 normalizes to [0,2] 

• Subtracting 1 normalizes to [-1,1] 

• Multiplying by 0.99 normalizes to [-0.99,0.99] 

The macro code that normalizes the data is below: 
%macro normalize(dataset=, x=x, y=y, z=z); 
data &dataset._n(drop=xrange yrange zrange); 
 set &dataset; 
 xrange=&xmax-&xmin; 
 yrange=&ymax-&ymin; 
 zrange=&zmax-&zmin; 
 x=0.99*(2*(&x-&xmin)/xrange-1); 
 y=0.99*(2*(&y-&ymin)/yrange-1); 
 z=0.99*(2*(&z-&zmin)/zrange-1); 
run; 
%mend;  
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STEP 4: PROJECT TO 2-D COORDINATES 
Projection from 3-D to 2-D coordinates is a moderately complex problem. A thorough explanation for the 
interested reader is available (House, 2014).  

The code approaches the projection process in several steps: 

• Define rotation matrices 

• Define translation matrix 

• Define projection matrix 

• Multiply matrices together to get a single ‘world’ matrix 

• Set original data and express in 4-dimensional homogenous coordinates 

• Apply the world matrix to the re-parameterized data 

• Divide the first and second parameter of the resulting vector by the fourth parameter to obtain 
projected x and y coordinates, respectively. 

ROTATION MATRICES  
Rotation matrices twist the data around one of the three axes into a new set of coordinates. This allows 
the user to modify the angle of the view so that all data can be seen, as demonstrated in Figure 5: 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5. Rotating a die around the X-axis  
Once you define a rotation around an axis in degrees (macro variables &rotx, &roty, and &rotz), the code 
transforms degrees into radians, and constructs an appropriate rotation matrix: 

pi=constant("PI"); 
  fac=pi/180; 

A=&rotx.*fac; 
/*--Set up X rotation matrix--*/ 
rx[1,1]=1;     rx[1,2]=0.0;     rx[1,3]=0.0;      rx[1,4]=0.0; 
rx[2,1]=0.0;   rx[2,2]=cos(A);  rx[2,3]=-sin(A);  rx[2,4]=0.0; 
rx[3,1]=0.0;   rx[3,2]=sin(A);  rx[3,3]=cos(A);   rx[3,4]=0.0; 
rx[4,1]=0.0;   rx[4,2]=0.0;     rx[4,3]=0.0;      rx[4,4]=1.0; 
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TRANSLATION MATRIX 
Once all the rotations are done, the data is still centered at the origin, and may have both positive and 
negative Z-values. The origin in the step prior to the projection represents the location of the viewer’s eye, 
so you will translate the data away from the origin by at least two units in the Z direction. This allows the 
full viewing area to be seen, as illustrated in Figure 6: 

 

 

 

 
 
 
Figure 6. Viewpoints (inside and outside viewing area)  

/*--Set up translation matrix--*/ 
tr[1,1]=1.0;   tr[1,2]=0.0;  tr[1,3]=0.0;      tr[1,4]=0.0; 
tr[2,1]=0.0;   tr[2,2]=1.0;  tr[2,3]=0.0;      tr[2,4]=0.0; 
tr[3,1]=0.0;   tr[3,2]=0.0;  tr[3,3]=1.0;      tr[3,4]=-2.0; 
tr[4,1]=0.0;   tr[4,2]=0.0;  tr[4,3]=0.0;      tr[4,4]=1.0; 

 

PROJECTION MATRIX 
There are two commonly-used projection transformations: orthographic projection and perspective 
projection. 

Orthographic projection preserves parallel lines, but can be misleading in depth. 

Perspective projection does not preserve parallel lines, and gives a more natural expression of depth.  

The textbook definitions of the orthographic and perspective transformation matrices in homogenous 
coordinates are: 
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The parameters for these matrices are as follows:  

• r: ½ the view plane width, which should be 1 since we normalized to the unit cube.  

• t: ½ the view plane height, which is also 1. 

• n is the location of the near plane (in Z-coordinates), which is set to -1 

• f is the location of the far plane, which is set at -3 

WORLD MATRIX 
Sanjay Matange published several matrix multiplication functions to support the 3-D Scatter Plot Macro 
published on Graphically Speaking in 2015 (Matange, A 3D Scatter Plot Macro, 2015). Development of 
our code for the 3-D Waterfall Plot started as a modification of this published macro, and still uses the 
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MatMult function defined here: 
https://blogs.sas.com/content/graphicallyspeaking/files/2015/03/Matrix_Functions.txt. 

/*--Build transformation matrix--*/ 
call MatMult(ry, rx, u);  *Rotate in X direction first, then Y direction; 
call MatMult(rz, u, uu);  *Rotate in Z direction; 
call MatMult(tr, uu, v);  *Translate away from the Z-origin so viewpoint is 
                           not within the field; 
call MatMult(m, v, w);    *Apply the projection matrix; 

ORIGINAL DATA IN HOMOGENOUS COORDINATES 
A 3-D vector can be represented in homogenous coordinates by appending a parameter with the addition 
of a scale parameter w: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

𝑥𝑥𝑥𝑥
𝑦𝑦𝑥𝑥
𝑧𝑧𝑥𝑥
𝑥𝑥

� 

The simplest assignment is w=1. 

TRANSFORM DATA 
The code below assigns the data, creates a temporary vector d representing the data in homogenous 
coordinates, multiplies by the world matrix into another temporary vector p to complete rotation, 
translation, and projection, then divides the resultant xw and xy coordinates of the vector by the scale 
parameter w: 

set &ds.; 
/*--Transform data--*/ 
d[1,1]=&x; d[2,1]=&y; d[3,1]=&z; d[4,1]=1; 
call MatMult(w, d, p); 
x2=p[1,1]/p[4,1]; y2=p[2,1]/p[4,1]; 

FULL PROJECTION MACRO CODE 
/* Projection macro -> translates &x, &y, &z into coordinates x2 and y2 */ 
%macro project(ds=, x=x, y=y, z=z, rotx=100, roty=198, rotz=180); 
data &ds._p; 
  array u[4,4] _temporary_;  /*--Intermediate Matrix--*/ 
  array v[4,4] _temporary_;  /*--Intermediate Matrix--*/ 
  array uu[4,4] _temporary_; /*--Intermediate Matrix--*/ 
  array w[4,4] _temporary_;  /*--Final Transformation Matrix--*/ 
  array m[4,4] _temporary_;  /*--Projection Matrix--*/ 
  array rx[4,4] _temporary_; /*--X rotation Matrix--*/ 
  array ry[4,4] _temporary_; /*--Y rotation Matrix--*/ 
  array rz[4,4] _temporary_; /*--Z rotation Matrix--*/ 
  array tr[4,4] _temporary_; /*--Translation Matrix--*/ 
  array d[4,1] _temporary_;  /*--World Data Array --*/ 
  array p[4,1] _temporary_;  /*--Projected Data Array --*/ 
  retain r t f n; 
  r=1; t=1; f=-3; n=-1; 
  pi=constant("PI"); 
  fac=pi/180; 
  A=&rotx.*fac; B=&roty.*fac; C=&rotz.*fac; 
 
  /*--Set up orthographic projection matrix--*/ 
  m[1,1]=1/r;   m[1,2]=0.0;  m[1,3]=0.0;      m[1,4]=0.0; 
  m[2,1]=0.0;   m[2,2]=1/t;  m[2,3]=0.0;      m[2,4]=0.0; 
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  m[3,1]=0.0;   m[3,2]=0.0;  m[3,3]=-2/(f-n); m[3,4]=-(f+n)/(f-n); 
  m[4,1]=0.0;   m[4,2]=0.0;  m[4,3]=0.0;      m[4,4]=1.0; 
 
  /*--Set up translation matrix--*/ 
  tr[1,1]=1.0;   tr[1,2]=0.0;  tr[1,3]=0.0;      tr[1,4]=0.0; 
  tr[2,1]=0.0;   tr[2,2]=1.0;  tr[2,3]=0.0;      tr[2,4]=0.0; 
  tr[3,1]=0.0;   tr[3,2]=0.0;  tr[3,3]=1.0;      tr[3,4]=-2.0; 
  tr[4,1]=0.0;   tr[4,2]=0.0;  tr[4,3]=0.0;      tr[4,4]=1.0;  
 
  /*--Set up X rotation matrix--*/ 
  rx[1,1]=1;     rx[1,2]=0.0;     rx[1,3]=0.0;      rx[1,4]=0.0; 
  rx[2,1]=0.0;   rx[2,2]=cos(A);  rx[2,3]=-sin(A);  rx[2,4]=0.0; 
  rx[3,1]=0.0;   rx[3,2]=sin(A);  rx[3,3]=cos(A);   rx[3,4]=0.0; 
  rx[4,1]=0.0;   rx[4,2]=0.0;     rx[4,3]=0.0;      rx[4,4]=1.0; 
 
  /*--Set up Y rotation matrix--*/ 
  ry[1,1]=cos(B);  ry[1,2]=0.0;  ry[1,3]=sin(B);  ry[1,4]=0.0; 
  ry[2,1]=0.0;     ry[2,2]=1.0;  ry[2,3]=0.0;     ry[2,4]=0.0; 
  ry[3,1]=-sin(B); ry[3,2]=0.0;  ry[3,3]=cos(B);  ry[3,4]=0.0; 
  ry[4,1]=0.0;     ry[4,2]=0.0;  ry[4,3]=0.0;     ry[4,4]=1.0; 
 
  /*--Set up Z rotation matrix--*/ 
  rz[1,1]=cos(C);  rz[1,2]=-sin(C); rz[1,3]=0.0;  rz[1,4]=0.0; 
  rz[2,1]=sin(C);  rz[2,2]=cos(C);  rz[2,3]=0.0;  rz[2,4]=0.0; 
  rz[3,1]=0.0;     rz[3,2]=0.0;     rz[3,3]=1.0;  rz[3,4]=0.0; 
  rz[4,1]=0.0;     rz[4,2]=0.0;     rz[4,3]=0.0;  rz[4,4]=1.0; 
   
  /*--Build transformation matrix--*/ 
  call MatMult(ry, rx, u);  *Rotate in X direction first, then Y direction; 
  call MatMult(rz, u, uu);  *Rotate in Z direction; 
  call MatMult(tr, uu, v);  *Translate away from the Z-origin so viewpoint  
                             is not within the field; 
  call MatMult(m, v, w);    *Apply the projection matrix; 
 
  set &ds.; 
 
  /*--Transform data--*/ 
  d[1,1]=&x; d[2,1]=&y; d[3,1]=&z; d[4,1]=1; 
  call MatMult(w, d, p); 
  x2=p[1,1]/p[4,1]; y2=p[2,1]/p[4,1]; 
run; 
%mend; 

 

STEP 5: PLOT BACKGROUND TO FOREGROUND 
You will start by reshaping the line data (axes, tickmarks) from long data (with one row for start and 
another row for end, and a key variable defined in Step 2) to wide data, with xs, ys as the projected 
coordinates of the start and xe, ye as the projected coordinates of the line end. If you want to plot different 
line styles (e.g. gridlines), either create a variable with the line style or use distinct start and end 
coordinate names. Append to this dataset the polygon data, split into the foreground waterfall plot 
polygons using coordinates xz, yz and the swimmer’s plot polygons in the background, using coordinates 
xy and yy. 

First we plot the solid lines, then dotted lines, then the filled swimmer’s plot polygon, the outline of the 
swimmer’s plot polygon, the filled waterfall polygons, and finally the outline of the waterfall polygon: 
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proc sgplot data=combined nowall noborder aspect=1 noautolegend 
sganno=anno; 
 vector x=xe y=ye / xorigin=xs yorigin=ys noarrowheads 
     lineattrs=(color=black) attrid=AxisTick; 
 vector x=xe2 y=ye2 / xorigin=xs2 yorigin=ys2 noarrowheads 
     lineattrs=(pattern=dot color=black) attrid=RefLine; 
 polygon id=&x. x=xy y=yy / fill fillattrs=(color=gold); 
 polygon id=&x. x=xy y=yy / lineattrs=(color=black pattern=solid); 
 polygon id=&x. x=xz y=yz / fill group=&group. name=”dose”; 
 polygon id=&x. x=xz y=yz / lineattrs=(color=black pattern=solid); 
 keylegend “dose” / title=”Cohort”; 
 xaxis display=none; 
 yaxis display=none; 
run; 

   

CONCLUSION 
There is an ongoing discussion about whether the 3-D Waterfall Plot is an appropriate way to display 
oncology efficacy and exposure data together. Despite the valid criticisms of this data presentation style, 
it has been increasingly requested by clinicians and investigators. This paper walks through one way to 
construct this plot using SAS, but it is involved and requires a lot of intermediate steps. At the time of the 
writing of this paper, we learned that Sanjay Matange is developing a macro using orthographic projection 
to create a similar plot (Matange, A 3D waterfall chart, 2018). We look forward to seeing whether 3-D 
Waterfall Plots are adopted and welcome your thoughts and opinions. 
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