
1

PharmaSUG 2018 - Paper DV-24

CONSORT Diagrams with SG Procedures

Prashant Hebbar and Sanjay Matange, SAS Institute Inc., Cary, NC

ABSTRACT

In Clinical trials, Consolidated Standards of Reporting Trials (CONSORT) flow diagrams are an important
part of the randomized trials report. These diagrams present a bird’s eye view of the flow of patients
through the different stages of the trial.

The SG Procedures do not support a statement for drawing these diagrams. But with some data
processing steps and tricks, we can draw CONSORT diagrams using SG Procedures. In this paper, we
show how to harness power of SG Procedures to create these diagrams.

INTRODUCTION

A CONSORT diagram shows the flow of subjects through each stage in a clinical trial. Typical flow
progression is enrollment, allocation to treatment, follow-up or disposition status and analysis. Such a
flow diagram is considered an important tool for assessing a trial. (Hopewell et al, 2011).

Previously published work for drawing these diagrams with SAS primarily used Rich Text Format (RTF)
templates (Carpenter and Fisher, 2012; Mallavarapu and Shults, 2016). Here we show how to use an SG
procedure, namely the SGPLOT procedure, to draw a CONSORT diagram. We assume that the requisite
counts used in the diagram have already been computed. Some DATA step pre-processing is needed to
create the data set for the graph.

The SG procedures debuted with ODS Graphics in SAS® 9.2. They offer a simple interface to using the
Graph Template Language (GTL) that underlies the ODS Graphics system. The SGPLOT procedure lets
you create single-celled scatter plots, series plots, box plots and more in a quick and simple manner.

The program in this paper is based on a previously published Graphically Speaking blog post titled
“Outside-the-box: CONSORT diagram” at
https://blogs.sas.com/content/graphicallyspeaking/2016/10/20/outside-box-consort-diagram/. It was tested
with SAS 9.4M3 and newer releases.

CONSORT DIAGRAM DATA AND STRUCTURE

We are going to recreate the diagram shown in Mallavarapu and Shults (2016). This figure is for a 4 arm
study. At its essence, the CONSORT diagram is composed of boxes, with or without colored background
that may be linked by directed lines. The text in these boxes may be horizontal or vertical with center or
left alignment.

PLOT STATEMENTS

To implement these elements in PROC SGPLOT, we use the following plot statements:

 POLYGON statement to draw the boxes (with background fill and without).

 SERIES statement to draw the links and arrows.

 TEXT statement to render the various text elements.

DATA PREPARATION

The data for the diagram is based on assuming a data area of [0,100] horizontal (X axis) space and [0,
200] vertical (Y axis) space. Data sets for the links, boxes and text elements are created in this coordinate
space.

https://blogs.sas.com/content/graphicallyspeaking/2016/10/20/outside-box-consort-diagram/

CONSORT Diagrams with SG Procedure, continued

2

Links Data

Vertices for the links are defined in the vertices data set as per the connections needed between the
boxes in the diagram. This data set has 3 variables: a vertex identifier vId and its coordinates (vX, vY).

Next, a links data set is created by defining each link as a multi-segment line in terms of the previously
defined vertex id vId in the vertices data set. This data set has 5 variables: linkId, v1-v4. For the diagram
at hand, a maximum of 4 vertices is sufficient, but more can be added if needed.

We then create another links data set (linksCoord) that contains the (vX, vY) coordinates for the
corresponding vertices from the vertices data set. A data set hash object populated from the vertices data
set is used to look up the coordinates by the vertex id (vId). These variables are used for a SERIES plot
statement with an arrow head at the end of the series.

Note that the two-step data generation is simply for convenience in diagramming the links. We can also
create the linksCoord data set by directly specifying the link vertex coordinates.

Data for the Boxes

Two separate data sets are defined for the empty rectangles and the filled rectangles. You can then use
two POLYGON statements: one for the empty boxes and another with FILL and FILLATTRS= options for
boxes with background color for the phase labels on the left. The variables have been defined directly,
but they could easily be based on vertex ids and then resolved to their coordinates via the hash object,
like we did for the link data.

Text Data

Similarly, text is defined in three data sets, one for the rotated text in the phase labels, one for the center-
aligned text and one for the left-aligned text. While the phase labels are simple to define, the horizontal
text have varying counts embedded in the same text for a given phase row. You can use the CATS()
function to generate these values by combining the text with count variables. This allows for easy reuse
with a different set of counts for other studies. Each text observation also has x and y coordinate
variables.

These variables are used in three separate TEXT statements to populate the text inside the boxes. The
phase labels are rotated via the ROTATE=90 option. Note that we have embedded the ‘.’ character
judiciously in the text at positions where we want to split the text. The split is achieved by using the
FITPOLICY=SPLITALWAYS with the SPLITCHAR="." options on the TEXT statements.

Once again, the coordinates for the text data have been specified directly, but they could have been
defined as vertex ids and resolved by the hash object for coordinates.

Consolidated Graph Data Set

The last step in the data preparation is to combine all the data sets generated so far. Since we have used
distinct variables for each plot, we can merge all the data sets to create the final consort data set. This
combined data set is then used with PROC SGPLOT.

PROC SGPLOT

The code for PROC SGPLOT is fairly simple and shown below:

proc sgplot data=consort noborder noautolegend;

 /* lines connecting boxes, with arrows */

 series x=vX y=vY / group=linkid lineattrs=graphdatadefault

 arrowheadpos=end arrowheadshape=barbed arrowheadscale=0.4;

 polygon id=epid x=xEp y=yEp; /* Empty boxes */

 polygon id=fpid x=xFp y=yFp / fill outline /* Filled boxes */

 fillattrs=(color=STGB) lineattrs=(color=VLIGB);

CONSORT Diagrams with SG Procedure, continued

3

 /* horizontal text, centered */

 text x=xHtc y=yHtc text=hTextC / splitchar='.' splitpolicy=splitalways;

 /* horizontal text, left aligned */

 text x=xHtl y=yHtl text=hTextl / splitchar='.' splitpolicy=splitalways

 position=right;

 /* vertical text */

 text x=xVt y=yVt text=vtext / rotate=90 textattrs=(size=9 color=white);

 xaxis display=none min=0 max=90 offsetmin=0 offsetmax=0; /* suppress */

 yaxis display=none min=0 max=200 offsetmin=0 offsetmax=0; /* suppress */

run;

Note that we have hidden the X and Y axes since they are not needed for the diagram.

SGPLOT OUTPUT

The listing destination output from the above program (at 200 DPI) is shown in Figure 1 below.

Figure 1. Consort Diagram Output from the SGPLOT Procedure.

CONCLUSION

We have demonstrated that a CONSORT diagram can be created using only SAS, reducing the
complexity of using additional applications or template files. The output can be generated in a variety of
formats supported by ODS Graphics.

Also note that since PROC SGPLOT is based on GTL, this graph can be similarly created using a GTL
template and the SGRENDER procedure.

REFERENCES

CONSORT Diagrams with SG Procedure, continued

4

Hopewell, S., et al. 2011. “Reporting of participant flow diagrams in published reports of randomized
trials.” Trials, 12:253.

Carpenter, A. and Fisher D. G. 2012. “Reading and Writing RTF Documents as Data: Automatic
Completion of CONSORT Flow Diagrams.” Proceedings of PharmaSUG 2012, TF16. Available at
https://www.pharmasug.org/proceedings/2012/TF/PharmaSUG-2012-TF16.pdf

Mallavarapu, A. and Shults, D. 2016. “CONSORT Diagram: Doing it with SAS.” Proceedings of PhUSE
2016, Poster PP03. Available at
http://www.phusewiki.org/docs/Conference%202016%20PP%20Papers/PP03.pdf

Matange, S. and Heath, D., 2011. Statistical Graphics Procedures by Example: Effective Graphs Using
SAS®. Cary, NC: SAS Institute Inc.

Matange, Sanjay. “Graphically Speaking.” Available at http://blogs.sas.com/content/graphicallyspeaking .
Accessed on March 12, 2018.

ACKNOWLEDGMENTS

Thanks to Warren Kuhfeld and Rick Langston for their help with the data step code.

RECOMMENDED READING

 SAS® 9.4 ODS Graphics: Procedures Guide

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Prashant Hebbar Sanjay Matange
SAS Institute, Inc. SAS Institute, Inc.
prashant.hebbar@sas.com sanjay.matange@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX – FULL SOURCE CODE

/**

 * Create some vertices with x coordinate [0,100], and y [0,200].

 */

data vertices;

 input vId vX vY;

 datalines;

 0 30 200

 1 30 190

 2 30 180

 3 50 180

 4 30 170

 5 30 160

 6 20 150

 7 30 150

 8 40 150

 9 60 150

10 80 150

11 20 140

12 40 140

https://www.pharmasug.org/proceedings/2012/TF/PharmaSUG-2012-TF16.pdf
http://www.phusewiki.org/docs/Conference%202016%20PP%20Papers/PP03.pdf
http://blogs.sas.com/content/graphicallyspeaking/
mailto:prashant.hebbar@sas.com
mailto:sanjay.matange@sas.com

CONSORT Diagrams with SG Procedure, continued

5

13 60 140

14 80 140

15 20 100

16 40 100

17 60 100

18 80 100

19 20 90

20 40 90

21 60 90

22 80 90

23 20 50

24 40 50

25 60 50

26 80 50

27 20 40

28 40 40

29 60 40

30 80 40

;

run;

/**

 * Define links using the above vertices. Each link is assigned a separate

 * group value.

 */

data links;

 input linkId v1 v2 v3 v4;

 datalines;

 1 1 4 . .

 2 2 3 . .

 3 5 7 6 11

 4 7 8 12 .

 5 8 9 13 .

 6 9 10 14 .

 7 15 19 . .

 8 16 20 . .

 9 17 21 . .

10 18 22 . .

11 23 27 . .

12 24 28 . .

13 25 29 . .

14 26 30 . .

;

run;

/**

 * Find the coordinates for the link vertices from the vertices data set

 * and create data for a series plot.

 */

data linksCoord;

 keep linkId vX vY;

 array vertices{4} v1 - v4;

 set links;

 /* Create a hash object from the vertices data set */

 if _n_ = 1 then do;

CONSORT Diagrams with SG Procedure, continued

6

 declare hash vertCoords(dataset:'vertices');

 vertCoords.defineKey('vId');

 vertCoords.defineData('vX', 'vY');

 vertCoords.defineDone();

 call missing(vX, vY); /* avoid NOTE about uninitialized vars */

 end;

 /* Set vertex coordinates */

 do idx = 1 to dim(vertices); /* iterate over vertices{} */

 if vertices{idx} ne . then do;

 vId = vertices{idx};

 if vertCoords.find() eq 0 then

 output;

 end;

 end;

run;

/**

 * Empty Box Data

 */

data emptyBoxes;

 input epId xEp yEp;

 datalines;

 1 15 200

 1 45 200

 1 45 190

 1 15 190

 2 15 170

 2 45 170

 2 45 160

 2 15 160

 3 50 195

 3 80 195

 3 80 165

 3 50 165

 4 11 140

 4 29 140

 4 29 100

 4 11 100

 5 31 140

 5 49 140

 5 49 100

 5 31 100

 6 51 140

 6 69 140

 6 69 100

 6 51 100

 7 71 140

 7 89 140

 7 89 100

 7 71 100

 8 11 90

 8 29 90

 8 29 50

 8 11 50

 9 31 90

 9 49 90

CONSORT Diagrams with SG Procedure, continued

7

 9 49 50

 9 31 50

10 51 90

10 69 90

10 69 50

10 51 50

11 71 90

11 89 90

11 89 50

11 71 50

12 11 40

12 29 40

12 29 0

12 11 0

13 31 40

13 49 40

13 49 0

13 31 0

14 51 40

14 69 40

14 69 0

14 51 0

15 71 40

15 89 40

15 89 0

15 71 0

;

run;

/**

 * Filled Box Data

 */

data filledBoxes;

 input fpId xFp yFp;

 datalines;

1 4 195

1 9 195

1 9 155

1 4 155

2 4 140

2 9 140

2 9 100

2 4 100

3 4 90

3 9 90

3 9 50

3 4 50

4 4 40

4 9 40

4 9 0

4 4 0

;

run;

/**

* Horizontal text, center aligned.

*/

CONSORT Diagrams with SG Procedure, continued

8

data hTextC;

 input xHtc yHtc htextc $10-75;

 datalines;

30 195 Assessed for Eligibility (n=445)

30 165 Randomized (n=406)

;

run;

/**

 * Horizontal text, left aligned. With help from Warren Kuhfeld.

 */

data hTextL(drop=type n1-n5 arm);

 length type $12 hTextL $125;

 input xHtl yHtl type $ arm $ 20-27 n1-n5;

 infile datalines missover;

 select (type);

 when ('Enrollment')

 hTextL = cats('Excluded (n=', n1,

 ').* Not meeting inclusion criteria (n=', n2,

 ').* Declined to participate (n=', n3,

 ').* Other reasons (n=', n4, ')');

 when ('Allocation')

 hTextL = cats('Allocated to ', arm, '. (n=', n1,

 ').* Received allocated. drug (n=', n2,

 ').* Did not receive. allocated drug (n=', n3, ')');

 when ('Follow-Up')

 hTextL = cats('Discontinued drug. (n=', n1,

 ') due to:.* Adverse events (n=', n2,

 ').* Withdrawn (n=', n3,

 ').* Death (n=', n4, ').* Other (n=', n5, ')');

 when ('Analysis')

 hTextL = cats('FAS (n=', n1,

 ').* Excluded from FAS. (n=', n2,

 '). .* Safety set (n=', n3,

 ').* Excluded from SS (n=', n4, ')');

 otherwise;

 end;

 datalines;

50 180 Enrollment 39 22 14 3

11 120 Allocation Placebo 95 90 5

31 120 Allocation ARM 1 103 103 0

51 120 Allocation ARM 2 105 98 7

71 120 Allocation ARM 3 102 101 1

11 70 Follow-Up 10 2 4 0 4

31 70 Follow-Up 7 3 2 1 1

51 70 Follow-Up 11 5 2 1 3

71 70 Follow-Up 16 7 6 2 1

11 20 Analysis 89 7 90 6

31 20 Analysis 100 3 103 0

51 20 Analysis 98 7 98 7

71 20 Analysis 92 10 101 1

;

run;

CONSORT Diagrams with SG Procedure, continued

9

/**

 * Vertical text for stage labels

 */

data vText;

 input xVt yVt vtext $10-75;

 datalines;

 6 175 Enrollment

 6 120 Allocation

 6 70 Follow-Up

 6 20 Analysis

;

run;

/**

 * Combine all graph data

 */

data consort;

 merge vertices linksCoord emptyBoxes filledBoxes hTextC hTextL vText;

run;

%let dpi=200;

ods listing image_dpi=&dpi;

/**

 * Draw the Consort Diagram

 */

ods graphics / reset width=6in height=4in imagename='Consort';

title 'Consort Diagram for a 4 Arm Study';

proc sgplot data=consort noborder noautolegend;

 /* lines connecting boxes, including arrows */

 series x=vX y=vY / group=linkid lineattrs=graphdatadefault

 arrowheadpos=end arrowheadshape=barbed arrowheadscale=0.4;

 /* Empty boxes */

 polygon id=epid x=xEp y=yEp;

 /* Filled boxes */

 polygon id=fpid x=xFp y=yFp / fill outline

 fillattrs=(color=STGB) lineattrs=(color=VLIGB);

 /* horizontal text, centered */

 text x=xHtc y=yHtc text=hTextC / splitchar='.' splitpolicy=splitalways;

 /* horizontal text, left aligned */

 text x=xHtl y=yHtl text=hTextl / splitchar='.' splitpolicy=splitalways

 position=right;

 /* vertical text */

 text x=xVt y=yVt text=vtext / rotate=90 textattrs=(size=9 color=white);

 xaxis display=none min=0 max=90 offsetmin=0 offsetmax=0;

 yaxis display=none min=0 max=200 offsetmin=0 offsetmax=0;

run;

ods _all_ close;

/*** End program ***/

