
PharmaSUG 2018 - Paper HT-02 

An updated collection of items from a programmers’ notebook 

 
Cecilia Mauldin, Biogen, RTP, NC 

David Franklin, Real-World & Late Phase Research, IQVIA, Cambridge, MA 

 

ABSTRACT 

Every programmer should have a notebook with notes and pieces of code that are of interest to them. Some will be 
categorized as personal, notes only of interest to them, but most are of interest to a broader range of SAS® 
programmers. This paper brings together new and updated tips from the notebooks of two SAS programmers with 
nearly fifty years of combined experience that will be useful to beginner and experienced SAS programmer alike. 
Topics include advice for using the SAS Editor; combing SAS data sets; reviewing SAS Logs; creating Excel files 
from SAS data sets; creating SAS data sets from Excel files; creating editor macros in Enterprise guide; splitting the 
info from &sysinfo; keep only the character, numeric or printable characters in a strip of text; creating empty data 
sets; to that little bit of code that calculates the first, middle or end date of month. Bring along your notebook and take 
away an idea or two. 

INTRODUCTION  

Every SAS programmer has that piece of code or interesting programming note that is put on a scrap of paper or tries 
to remember it in their head. Unfortunately, using this approach, that note or programming code is lost within hours -- 
to avoid this, the note should be saved in a notebook, electronic or paper. 

 

With too many years of SAS experience, two programmers have kept such notebooks for many years and share, in 
this paper, ten of the most referenced of items for SAS programmers to also share and use. 

 

1. PROC OPTIONS 

An overlooked procedure is PROC OPTIONS, this procedure displays the options in the log with a short description 
of the option.  The groups in the SAS documentation are in the following table, but there are other groups depending 
in the operating system, like SQL 

 

proc options <listgroups>;  

run; 

 

Values for Use with GROUP= 

CODEGEN HELP META 

COMMUNICATIONS INPUTCONTROL ODSPRINT 

DATAQUALITY INSTALL PDF 

EMAIL LANGUAGECONTROL PERFORMANCE 

ENVDISPLAY LISTCONTROL SASFILES 

ENVFILES LOG_LISTCONTROL SECURITY 

ERRORHANDLING LOGCONTROL SORT 

EXECMODES MEMORY SVG 

EXTFILES MACRO GRAHICS 

 

To find the options for a specific group you specify the group: 

proc options group=sql; 

run; 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

proc options group=sql define; 

run; 

 

 

 

 

 

 

 

 

 

 

 

Proc options does not allow you to change the values of your options, you will need to use an 
option statement, a SAS command, an option in your configuration statement, your 

 

2. The LAG function 

 
The lag function returns the value of its argument the last time the function was 
executed, this can confuse programmers because if the function is preceded by an IF 
statement, the last time the variable is executed is also conditional to the IF statement; 
the following example shows an example of it. 

 

data test; 

  do i=1 to 10; 

     j=2**i; 

    simple_lag=lag(j); 

    if i>1   then tricky_lag1=lag(j); 

    if i>3   then tricky_lag3=lag(j); 

    if i>5   then tricky_lag5=lag(j); 

    put _all_; 

  output; 

  end; 

run; 

 

i j simple_lag tricky_lag1 tricky_lag3 tricky_lag5 

Group=SQL 

 SQLCONSTDATETIME 

Option Definition Information for SAS Option SQLCONSTDATETIME 

    Group= SASFILES 

    Group Description: Library and member file information 

    Group= SQL 

    Group Description: SQL settings 

    Description: PROC SQL replaces references to the DATE, TIME, DATETIME, and TODAY functions with 

their equivalent constant values before a query executes. 

    Type: The option value is of type BOOLEAN 

    When Can Set: Startup or anytime during the SAS Session 

    Restricted: Your Site Administrator can restrict modification of this option 

    Optsave: PROC Optsave or command Dmoptsave will save this option 

Group=SQL 

 SQLCONSTDATETIME  PROC SQL replaces references to the DATE, TIME, DATETIME, and TODAY functions with 

their equivalent constant values before a query executes. 

 SQLGENERATION=(NONE DBMS='TERADATA DB2 ORACLE NETEZZA ASTER GREENPLM HADOOP SAPHANA') 

                   Specifies whether and when SAS procedures generate SQL for in-database processing of 

source data. 

 NOSQLIPONEATTEMPT Allows an SQL query to continue processing when an implicit pass-through request 

fails. 

 SQLMAPPUTTO=SAS_PUT 

                   Specifies the PUT function mapping to SQL. 

 SQLREDUCEPUT=DBMS For PROC SQL, specifies the engine type to use to optimize a PUT function in a query. 

 SQLREDUCEPUTOBS=0 For PROC SQL, specifies the minimum number of observations that must be in a table 

for PROC SQL to optimize the PUT function in a query. 

 SQLREDUCEPUTVALUES=0 

                   For PROC SQL, specifies the maximum number of SAS format values that can exist in a 

PUT function expression to optimize the PUT function in a query. 

 SQLREMERGE        PROC SQL processes queries that use remerged data. 

 SQLUNDOPOLICY=REQUIRED 

                   Specifies how PROC SQL handles updated data if errors occur while you are updating 

data. 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

3 

1 2 . . . . 

2 4 2 . . . 

3 8 4 4 . . 

4 16 8 8 . . 

5 32 16 16 16 . 

6 64 32 32 32 . 

7 128 64 64 64 64 

8 256 128 128 128 128 

9 512 256 256 256 256 

10 1024 512 512 512 512 

 

3. THE SAS EDITOR  

Enterprise Guide has only the Enhanced Editor, but in the Windowing environment there are two default editors in 
interactive mode available within SAS, the Enhanced Editor and the ‘Old Style’ editor, known as the DMS Editor. 
While the Enhanced Editor is sometime better than the DMS Editor, it is sometimes a lot quicker to edit in the latter 
without having to reach across and edit with a mouse. 

One of the key pieces of information a programmer likes to know when editing a program is what line number are on 
and this is switched on by the NUMS command on the Command Line, as shown below: 

 

and results in the following display in the program window: 

 

Key commands with editing text are within the Windows environment are much the same as elsewhere within 
Windows, but a few other useful commands are: 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

4 

F11 Command Bar (not available in Enterprise Guide) 

:In or :IAn Insert n lines after the current line 

:IBn Insert n lines before the current line 

:Dn Remove n lines starting at the current line 

:Rn m Repeat m lines from the current line, n times 

A few useful key combinations are: 

Ctrl + ] Find matching parenthesis or bracket 

Ctrl + G Goto Line 

Ctrl + Shift + U Put highlighted text into uppercase 

Ctrl + Shift + L Put highlighted text into lowercase 

Commenting code, especially multiple lines of code or text, can be a fraught with issues, notably forgetting to start a 
line with the ‘/*’ and/or end with ‘*/’ -- an easier way to do it is by highlighting the text and pressing the Ctrl key and ‘/’ 
together. To un-comment code, hit the Ctrl + Shift + / keys together. 

Frequently we write standard pieces of code and we usually do not like having to write it over and over again, so in 
the editor we can do that though making an abbreviation. To do this action, hit the keys Ctrl + Shift + A and a 
window similar to that below appears: 

 
were you would enter a set of text for an abbreviation, then the text that it is to use in the lower box. The following is a 
setting for a standard comment that we often use: 

 

 
 

and after being entered into the SAS Editor by pressing OK, results in wherever the word ‘ZKSTDCOMMENT’ being 
replaced with the line 

 
*----------------------------------------------------------* 

  <Comment> 

*----------------------------------------------------------*; 

 

One word of note, that while it is possible to type in any text for an abbreviation, it is wise to stay away from SAS 
keywords due to possible confusion between SAS knowing it is a keyword you type in versus a defined abbreviation. 

 

  

A window will pop-up: 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

5 

  

3. Type the name of your editor macro in the Abbreviation line, in this example, the name of the editor macro is  
PRI, and copy the saved code with Control-C to the box in the Text to Insert box. Your box will look like if 
you keep the SAS code editing mode selected 

  

or like this if the SAS code editing mode box is not selected 

 

4. After both fields are entered, you can press the OK key 
5.  You are done, the next time you type the text used in the abbreviation, pri  in this example, you will get the 

option of getting it, press return if you want it or keep if you don’t want to use it. 
  

If you need to modify an existing macro, the steps are 

1. Select Program from the TOP menu and then select Editor Macros and Macros 
 

 

2. A list with your existing macros you have will appear, select the macro you want to edit. 
 

 

3. Select Edit and make the modifications you need to make. 

  

4. COMBINING DATA SETS  

There are two basic ways SAS data sets are combined, one being where two or more data sets are being merged by 
a common variable or list of variables, and a second an append where one set of data is added to a second second 

data set. 

A large number of papers, including one titled “Countdown of the Top 10 Ways to Merge Data” written by the author 
and presented at PharmaSUG 2010, give numerous ways of merging data -- this topic itself could fill an entire paper, 
so refer to outside sources on this. 

A similar situation is with appending data where there numerous papers and documentation on the subject. 

But there is one method that is not well known, and it refers to where you have one data set with one observation and 
one or more variables that are not in the data set you want to combine, for example a number representing a total to 
be put into a data set with summary information -- to do this you need two set statements, as the following illustrates: 

 

1    proc delete data=work._all_; 

 

2    data _incidence; 

3    length area $10; 

4    infile cards; 

5    input area $ count; 

6    cards; 

 

NOTE: The data set WORK._INCIDENCE has 4 observations and 2 variables. 

 

11   ; 

12   run; 

13   proc summary data=_incidence; 

14      var count; 

15      output out=_total (drop=_type_ _freq_) sum=total; 

16   run; 

 

NOTE: There were 4 observations read from the data set WORK._INCIDENCE. 

NOTE: The data set WORK._TOTAL has 1 observations and 1 variables. 

 

17   data _all0; 

18   if _n_=1 then set _total; 

19   set _incidence; 

20   run; 

 

NOTE: There were 1 observations read from the data set WORK._TOTAL. 

NOTE: There were 4 observations read from the data set WORK._INCIDENCE. 

NOTE: The data set WORK._ALL0 has 4 observations and 3 variables. 

 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

6 

21   proc print data=_all0; 

22   run; 

 

NOTE: There were 4 observations read from the data set WORK._ALL0. 

 

which result in the following output: 

Obs    total    area     count 

 

 1       75     NORTH      20 

 2       75     SOUTH      22 

 3       75     EAST       18 

 4       75     WEST       15 

 

The example above demonstrates how to merge a single observation with no common variable into a data set with 

multiple observations. 

Another useful tip when appending multiple data sets with the same prefix, it is possible to put just put the first frew 
characters of the data set name, followed by the ‘:’, as the following code demonstrates when appending data sets 

starting with ‘_t’: 

 

23   proc delete data=work._all_; 

24   data _t1; 

25      set sashelp.class; 

26      where sex='F'; 

 

NOTE: There were 9 observations read from the data set SASHELP.CLASS. 

      WHERE sex='F'; 

NOTE: The data set WORK._T1 has 9 observations and 5 variables. 

 

27   data _t2; 

28      set sashelp.class; 

29      where sex='M'; 

 

NOTE: There were 10 observations read from the data set SASHELP.CLASS. 

      WHERE sex='M'; 

NOTE: The data set WORK._T2 has 10 observations and 5 variables. 

 

DATA _all0;    

    SET t_:   

    INDSNAME=in_dataset;  

    origin=in_dataset;    

run; 

  

 Any data set that starts with the letters t_ will be added without having to explicitly write the data set name(s). 

 The reserved word INDSNAME stores the name of the data set from which the current row is read in the 
temporary variable in_dataset. 

 Because the variable in_dataset is temporary, it is necessary to create a variable origin if to preserve the value of 

in_dataset. 

 
NOTE: There were 9 observations read from the data set WORK._T1. 

NOTE: There were 10 observations read from the data set WORK._T2. 

NOTE: The data set WORK._ALL0 has 19 observations and 5 variables. 

 

It must be noted from the example above that the data sets _T1 and _T2 have the variable attributes the same and 
where two or more data sets are appended in this manner it may be necessary to amend variable lengths, types and 

formats before using the SET statement with the ‘:’. 

5. REVIEWING SAS LOGS  

The SAS LOG is an important file to review. But how does someone review it efficiently for issues, particularly if it is 
hundreds of pages in length? Now one can even look at a SAS LOG that long and find all messages referring to 

ERROR or WARNING messages efficiently. 

First though some options need to be set from their default so as to make any output useful, and by that means show 

the code, including macros, that was used to generate an output. Some of the SAS options worth considering are: 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

7 

 

 

mlogic causes the macro processor to trace its execution and to write the trace 
information to the SAS log 

mlogicnest enables the macro nesting information to be displayed in the MLOGIC output in 
the SAS log 

mprint displays the SAS statements that are generated by macro execution 

mprintnest enables the macro nesting information to be displayed in the MPRINT output in 
the SAS log 

symbolgen displays the results of resolving macro variable references 

 

To avoid some additional issues, it is often advantageous to have set 

mergenoby= Specifies the type of message that is issued when MERGE processing occurs 
without an associated BY statement. Valid values are NOWARN (specifies that 
no warning message is issued, this is default), WARN (specifies that a warning 
message is issued), and ERROR (specifies that an error message is issued) 

msglevel= Specifies the level of detail in messages that are written to the SAS log. Valid values are N 
(specifies to print notes, warnings, CEDA message, and error messages only, default) and 
I (specifies to print additional notes pertaining to index usage, merge processing, sort 
utilities, and Hadoop MapReduce jobs along with standard notes, warnings, CEDA 
messages, and error messages). 

source2 specifies to write to the SAS log secondary source statements from files that 
have been included by %INCLUDE statements. 

There are certainly more options that can be set but these are the core that the authors find useful. 

Now the LOG checker itself. Some have LOG checkers that are already written, some can even be written in other 

languages including VBA, but for any such tool there are two features that are useful: 

Search for text strings, at a minimum ERROR and WARNING messages 

Be able to read multiple files in a single directory 

A code fragment that is useful to fulfill these requirements is given below: 

*Define location of LOG Files to process; 

%let logdir=%str(c:\pharmasug2015\TABLES); 

 

*Bring in ALL SAS LOG(s); 

data _alllogs0; 

   attrib _txt length=$256 informat=$char256. format=$char256. 

          _fn length=$256 

          _myinfile length=$256 

          _ln length=8 

          _myinline length=8; 

   infile "&logdir.\T*.log"  /*Here use t*.log for all table LOGS 

                               but can be anything*/ 

          lrecl=256 filename=_myinfile line=_myinline length=len; 

   input _txt $varying256. len; 

   _fn=scan(strip(_myinfile),-1,'\'); 

   _ln=_n_; 

proc sort data=_alllogs0; 

   by _fn _ln; 

run; 

 

*Output findings; 

title1 "QC of SAS LOG(s)"; 

data _null_; 

   retain _k 0; *Internal counter; 

   file PRINT; 

   set _alllogs0 end=eof; 

   by _fn _ln; 

   if first._fn then do; 

      put // @1 '***** LOG FILE: ' _fn /; 

      _k=0; 

   end; 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

8 

   if index(_txt,'ERROR:') or 

      index(_txt,'WARNING:') then do; 

      _k+1; 

      put _txt; 

   end; 

   if last._fn and _k=0 then put @1 '** NO ISSUES FOUND **'; 

   if eof then put / '/*EOF*/'; 

run; 

 

The INFILE statement in the data step is key to what SAS LOGs are read into the LOG Checker -- in the code given, 
these are all LOG files with starting with ‘T’ in the directory specified by the LOGDIR macro variable. In the last data 
step, the only text that is searched for is ‘ERROR:’ and ‘WARNING:’ but this can be set to any text your group needs. 
Note that if a SAS LOG has no issues found then a message is output to that effect in the output file. 

 

6.CREATING EXCEL FILES FROM SAS DATA SETS  

There are a number of ways an Excel file can be created from a SAS data set, but the three methods here are the 
ones that the authors find useful. 

First is the simple CSV file using a SAS data step. The following code will take take the CLASS data set and put it 

into a CSV file, delimited by the character ‘~’: 

 

data _null_; 

   file 'c:\pharmasug2015\class.csv' dsd delimiter="~" lrecl=1024; 

   set sashelp.class; 

   put (_all_)(+0); 

run; 

 

A CSV file can be simply read into Excel and is an standard which can be read my almost all data related systems. 
The disadvantage here is that it is not strictly Excel and usually takes some user knowledge to read this type of file in. 

The second method shown here is PROC EXPORT which can create CSV files, and Excel files if the SAS/ACCESS 
Interface to PC Files is installed. The basic syntax of the PROC EXPORT for either CSV or EXCEL files are 

PROC EXPORT DATA=<libref.>SAS data set 

            OUTFILE="filename" 

            <DBMS=identifier> 

            <REPLACE>; 

where 

<libref.>SAS data set identifies the input SAS data set. data set options, including KEEP, DROP and 
WHERE, may also be used. 

OUTFILE= specifies the complete path and filename or a fileref for the output PC file, 
spreadsheet, or delimited external file. A fileref is a SAS name that is associated 
with the physical location of a file. To assign a fileref, use the FILENAME 
statement. 

DBMS= These include CSV (comma separated files), DLM (delimited files where the 
character is specified), TAB (tab delimited files), and XLSX (Excel files) 

REPLACE overwrites an existing file. If you do not specify REPLACE, the EXPORT 
procedure does not overwrite an existing file. 

There are other DBMS values that relate to the Excel type file, e.g. XLS, but in recent times SAS documentation has 

suggested strongly that the XLSX value be used. 

Some useful options for different types of file are: 

DELIMITER= specifies the delimiter to separate columns of data in the output file. You can specify the 
delimiter as a single character or as a hexadecimal value. This option can only be used in 
DBMS=DLM files. 

NEWFILE= when exporting a SAS data set to an existing Excel file (XLS or XLSX file), specifies 
whether to delete the Excel file and load the data to a sheet in a new Excel file. Default is 
NO.  

 

PUTNAMES determines whether to write SAS variable names as column headings to the first row of 
the exported data file. Default is NO.  



 
 
A Collection of Items from a Programmers’ Notebook, continued 

9 

SHEET= identifies a particular worksheet in an Excel workbook. 

To create the CSV file from SASHELP.CLASS using PROC EXPORT, you could write something like 

proc export data=sashelp.class 

            outfile='c:\pharmasug2015\class.csv' 

            dbms=CSV 

            replace; 

run; 

that would result in each value separated by a ‘,’, or if we want our original file created in the data step 
above using the delimited ‘~’ we could write something like 

proc export data=sashelp.class 

            outfile='c:\pharmasug2015\class' 

            dbms=dlm;  

            delimiter='~'; 

run; 

For EXCEL files, using DBMS=XLSX, would be 

proc export data=sashelp.class  

            dbms=xlsx  

            outfile='c:\pharmasug2015\class.xlsx' 

            replace; 

run; 

One useful option when using PROC EXPORT is that it is possible to create separate sheets in the one 
Workbook, as the following example shows where we create the sheets CLASS and BASEBALL in the 
Workbook StatsPaper.xlsx 

proc export data=sashelp.class  

            dbms=xlsx  

            outfile='c:\pharmasug2015\StatsPaper.xlsx' 

            replace; 

   sheet='Class'; 

run; 

proc export data=sashelp.baseball  

            dbms=xlsx  

            outfile='c:\pharmasug2015\StatsPaper.xlsx'; 

   sheet='Baseball'; 

run; 

While the data step and PROC EXPORT methods are good, sometimes we need something more where 
a sheet that has titles and footnotes, this is where the use of the MSOFFICE2K in ODS, as the following 
code demonstrates: 

proc format; 

   value $gender 

      'M'='Male' 

      'F'='Female'; 

run; 

ods escapechar='^'; 

ods msoffice2k file='c:\pharmasug2015\class.xls' style=minimal; 

title1 j=l h=3 "PharmaSUG 2015"; 

title2 j=c h=3 "Class Data"; 

footnote1 j=l h=1 "Source: SASHELP.CLASS ^n Created &sysdate9.@&systime."; 

proc report data=sashelp.class (obs=10) nowindows headline headskip split='|' missing; 

   columns name age sex height weight; 

   define name    /group order=internal 'Student|Name' style={cellwidth=1in just=l}; 

   define age     /display 'Age|(years)' style={cellwidth=1in just=c}; 

   define sex     /display 'Gender' format=$gender. style={cellwidth=1in just=c}; 

   define height  /display 'Height|(in)' format=8.1 style={cellwidth=1in just=c}; 

   define weight  /display 'Weight|(lbs)' format=8.1 style={cellwidth=1in just=c}; 

   quit; 

run; 

ods _all_ close; 

ods listing; 

run; 

which results in the output given below: 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

10 

 

Notice that the title and footnote statements were used in the generation of the Excel file, but the HEIGHT and 
WEIGHT formats were not used. Another item to note is that the separate TITLE statements created a blank line in 
between the two titles, while the ‘^n’ used in the footnote created the second section of text immediately on the next 
row. 

There are other methods, including tagsets.excelxp, that have appeared in other forums, but this is beyond the scope 
of the paper. 

7. CREATING SAS DATA SETS FROM EXCEL FILES  

Before PROC IMPORT, the way to import data from an Excel file was to create a CSV version of the file and then 
import it using a data step. In a large number of cases PROC IMPORT has replaced that, and where you have the 
SAS/ACCESS Interface to PC Files is installed, it is possible to do it directly from the Excel sheet without need for 
conversion to CSV. 

The basic syntax of the PROC IMPORT for either CSV or EXCEL files are 

PROC IMPORT OUT=<libref.>SAS data set 

            DATAFILE="filename" 

            <DBMS=identifier> 

            <REPLACE>; 

where 

<libref.>SAS data set identifies the output SAS data set 

DATAFILE= specifies the complete path and filename or a fileref for the input PC file, 
spreadsheet, or delimited external file. A fileref is a SAS name that is associated 
with the physical location of a file. To assign a fileref, use the FILENAME 
statement. 

DBMS= These include CSV (comma separated files), DLM (delimited files where the 
character is specified), TAB (tab delimited files), and XLS/XLSX (Excel files) 

REPLACE overwrites an existing file. If you do not specify REPLACE, the IMPORT 
procedure does not overwrite an existing file. 

Some useful options for different types of file are: 

DATAROW=n  specifies the row number where the IMPORT procedure starts reading data. Default is 1 if 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

11 

GETNAMES=NO, 2 if GETNAMES=YES. 

DELIMITER=’char’ specifies the delimiter, either a single character or hexadecimal value, that separates the 

columns of data.  

GETNAMES= specifies whether the call is to generate SAS variable names from the data values in the 
first row of the import file. Default is YES. 

GUESSINGROWS=n specifies the number of rows that the IMPORT procedure is to scan to determine the 
appropriate data type for the columns. Default is 20. 

MIXED= assigns a SAS character type for the column and converts all numeric data values to 
character data values when mixed data types are found. Default is NO. 

RANGE= subsets a worksheet by identifying the rectangular set of cells to import. This can be either 
a 'range-name' or  'absolute-range'  

SHEET= identifies a particular worksheet in an Excel workbook. Use SHEET= when you want to 

import the entire worksheet.  

TEXTSIZE= specifies the SAS maximum variable length that is allowed while importing data from 
Microsoft Excel text columns. Any TEXT data in Excel whose length exceeds this value is 

truncated when it is imported into SAS. Valid values are 1 to 32767. 

In the section regarding Creating Excel Files From SAS Data Sets, we created a CSV file of SASHELP.CLASS, and 

to import it again into a SAS data set the following code could be used: 

 

proc import datafile="c:\pharmasug2015\class.csv"  

            dbms=csv  

            out=class  

            replace; 

run; 

To import a ‘~’ separated file, the DELIMITER statement is used, as shown in the example below: 

 

PROC IMPORT OUT=class 

            DATAFILE="c:\pharmasug2015\class.txt" 

            DBMS=DLM 

            REPLACE; 

   DELIMITER='~'; 

RUN; 

To import an Excel file with a sheet called CLASS it is possible to use the code 

proc import datafile="c:\pharmasug2015\prdsale.xlsx"  

            dbms=xlsx  

            out=work.prdsale  

            replace; 

   sheet=”CLASS”; 

run; 

 

The topic of importing an Excel file into a SAS data set is large and beyond the scope of this paper. Please refer to 
relevant documentation for specifics. 

 

8. SPLIT THE INFO FROM &SYSINFO  

The COMPARE procedure reports 16 possible discrepancies between two data sets.  One of the outputs from Proc 
Compare is the code stored in the automatic macro variable &SYSINFO, this macro variable stores the 16 possible 
discrepancies.  One of the advantages of the macro variable is that it is possible to store the value from the variable 
in a data set and report the information of more than one comparison in a single report.  The purpose of this section is 
to show a method to split the possible values. 

From the BASE SAS 9.4 Procedures guide, page 322 and 323, the 16 discrepancies reported by PROC COMPARE 
are: 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

12 

 

The table talks about ‘bits’ so the SYSINFO value is actually a string of 1’s and 0’s in decimal form so we have to 
change the value to a string, and where there is a ‘1’ that issue exists in the data set.  If the SYSINFO value is ‘0’ 
then the data sets compare exactly. 

The secret for actually decoding the return code is convert it to a binary format, and read it from right to left, and this 
can be done easily using the BINARY16. format. For example, there is a return code of 4097 which when run through 
a data step: 

 

43   data _null_; 

44      x=4097; 

45      y=put(x,binary16.); 

46   put x= y=; 

47   run; 

x=4097 y=0001000000000001 

so, from this we can see the first byte on the extreme right is ‘1’ so the labels of the data set differ, and a ‘1’ at the 
13th position (4th form the left) which means a value comparison is unequal. 

Taking a look at at value 2049 we get a ‘bit’ equivalent of 

x=2049 y=0000100000000001 

so, from this we can see the first byte on the extreme left is ‘1’ so the labels of the data set differ, and a ‘1’ at the 12 th 
position (5th form the left) which means the comparison data set has variable not in base. 

In the examples we have only looked at two differences, but up-to 16 different messages can be retrieved. 

Let’s crank this up a notch, where we can use it practically, lets create a macro! 

  

 %macro compare_ds( 

  baseds= /*Base Data set*/ 

 ,compareds= /*Compare Data set*/ 

 ,byord= /*Variable(s) to get same order (optional)*/ 

              ); 

  



 
 
A Collection of Items from a Programmers’ Notebook, continued 

13 

 *Sort our two incoming data sets; 

 %if (z&byord ne z) %then %do; 

   proc sort data=&baseds; 

   by &byord; 

   proc sort data=&compareds; 

   by &byord; 

   run; 

 %end; 

  

 *Do compare; 

 proc compare base=&baseds compare=&compareds; 

 run; 

  

 *Capture result; 

 %let retcode=&sysinfo; 

  

 *Put messages out to SAS LOG; 

 data _null_; 

  

  *Initialize; 

  retain _sysinfoval &retcode; 

  put "********************************************"; 

  put " PROC COMPARE SUMMARY RESULT"; 

  put "********************************************"; 

  put; 

  put "Result of Comparison between data sets " 

   "%upcase(&baseds) and %upcase(&compareds) " 

   "are:"; 

  

  *Set up messages; 

  array compmsg {16} $ 40 _temporary_ ( 

     "Data set labels differ", 

     "Data set types differ", 

    "Variable has different informat", 

    "Variable has different format", 

    "Variable has different length", 

     "OLD data set has observation not in NEW", 

     "NEW data set has observation not in OLD", 

    "OLD data set has BY group not in NEW", 

     "NEW data set has BY group not in OLD", 

     "OLD data set has variable not in NEW", 

     "NEW data set has variable not in OLD", 

     "A value comparison was unequal", 

    "Conflicting variable types", 

     "BY variables do not match", 

     "Fatal error: comparison not done" 

     ); 

  

  *Put return code into bit code, reversing so 

   first is on left; 

  _bitcode=reverse(put(_sysinfoval,binary16.)); 

  

  *If return code is 0 then compare is identical; 

  if index(_bitcode,'1')=0 then 

    put @3 "Data sets are identical"; 

  

   *Compare not identical, put out messages; 

   else do; 

   put @3 "The following issue(s) are found:"; 

   do i=1 to 16; 

     if substr(_bitcode,i,1)='1' then 

      put @5 '-' compmsg(i); 

   end; 

   end; 

  

   put; 

   put @1 '***** END OF COMPARE *****'; 

  

   run; 

%mend compare_ds; 

Now let’s run this macro, using the SASHELP.CLASS data set and changing the data set label, adding a new 
variable and changing an existing variable: 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

14 

 

data class (label='2015 Class Data'); 

   set sashelp.class; 

   age=round(age+rand("Uniform")); 

   ht_cm=height*2.54; 

run; 

then calling the macro in the following call: 

 

%compare_ds(baseds=sashelp.class,compareds=class); 

which creates the following in the SAS LOG: 

********************************************* 

 PROC COMPARE SUMMARY RESULT 

********************************************* 

  

Result of Comparison between data sets BASEDAT and COMPAREDAT are: 

  The following issue(s) are found: 

 -Data set labels differ 

 -NEW data set has variable not in OLD 

 -A value comparison was unequal 

  

***** END OF COMPARE ***** 

This output is much more concise than trying to interpret pages of listing output. 

The summary is in the SAS LOG but if you wanted to look at the individual issues you can look at the listing from the 
PROC COMPARE. 

9. KEEP ONLY THE CHARACTER, NUMERIC, OR PRINTABLE CHARACTERS  

The compress function not only removes spaces from character variables, it can keep or remove characters based 

in their keeps the kind of characters that you want.   You can keep or remove only the kind of text that can be 
converted to an integer variable; you can keep only the text that cannot be converted to an integer variable or only 
the text that is printable, this is not a unique list of possible scenarios.  This is an example of how you can keep only 
the characters that you need, remember that the first 32 of the 256 ASCII (American Standard Code for Information) 
characters are not printable. 

The compress function takes up to 3 character parameters, the first one is the source, it can be a character variable 
or text, the second parameter has special characters that will be removed or kept, and the third parameter has the 
conditions of to keep or remove characters.  If ‘K’ is indicated, the COMPRESS function will keep characters 
indicated, if there is not ‘K’, the compress function will remove the desired characters. 

  

data forcomp(drop=i); 

  length text $50; 

  INFILE DATALINES MISSOVER LENGTH=LEN; 

  i=_n_; 

  nonprint=BYTE(i); 

  printable=BYTE(i+180); 

  INPUT text $varying200. len; 

 onlyalphaNspace=  compress(text,  ' ','ka');  

 onlyalphaNospace= compress(text,     ,'ka');  

 noletters=        compress(text,  ' ','a');                    

 onlynumbersNdot=  compress(text,  '.','kd');  

 onlyalphaNnumbers=compress(text,     ,'kn');  

 printablef=       compress(nonprint,    ,'kw');          

 printablef2=      compress(printable,   ,'kw');         

 printablet=       compress(text,     ,'kw');                
 datalines; 

the number in the house is 58, 

the house is located in mile 39.5 of I-40 NC, 

the telephone number is 123=1234-1234. 

;;;; 

run; 

 

The example is keeping the alpha characters and the spaces, the third parameter includes a ‘k’, so the reference is 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

15 

about keeping characters, the third parameter also includes an ‘a’, so alpha characters will be kept.  Because there is 

a space between the quotes of the second parameter, spaces will be kept. 

  The example is similar to the previous one, but the is no second parameter, so spaces are not kept. 

  

   The example removes any alpha character. 

  The example KEEPS decimals and because the second parameter has a dot, the decimal place is kept. This is 

the case you would use to convert the converted variable to an integer variable. 

 

  This example keeps alpha and digits, other symbols are not kept. 

 

 In these 3 examples show what is left when Non-printable characters are removed, this is useful when 

importing data.  The values of nonprintable exist, they don’t just don’t print.  The values of printablef, would be empty 

if it weren’t for the quote function. 

 

10. CREATING EMPTY DATA SETS  

One way to create empty data sets is using the call missing routine, that assigns missing values to the numeric and 
character variables in the argument list.  If more than one variable is used as an argument, a comma should separate 
the variables. 

 

DATA comparecase; 

  LENGTH table $8; 

  FORMAT cdate datetime15.; 

  CALL MISSING(cdate,code,table); 

RUN; 

NOTE: The data set WORK.COMPARECASE has 1 observations and 3 variables. 

Notice that there were no errors or notes in the log about uninitialized variables, the only problem is that a row was 
created and we want an empty data set, so we will add delete; 

DATA comparecase; 

  LENGTH table $8; 

  CALL MISSING(cdate,code,table); 

  DELETE; 

RUN; 

 

NOTE: The data set WORK.COMPARECASE has 0 observations and 3 variables. 

and reviewing what data we have, the tool to use is PROC CONTENTS as shown below: 

PROC CONTENTS DATA=_LAST_ VARNUM; 

RUN; 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

16 

 

with the output of 

Variables in Creation Order 

  

# Variable    Type Len Format 

  

1   table       Char   8             

2   cdate       Num    8 DATETIME15. 

3   code        Num    8 

 

When creating an empty data set, it is important to set the type of a variable at the beginning of the data set the 
length, to establish if the variable is character or numeric, if not all the attributes of character variables, should be set 
before the missing routine is called, otherwise, the default type for a variable is n SAS is numeric.  The Programming 
data vector has the variables specified in the attributes section first, then the variables are created in the order of the 
call routine.  Here is an example where the variable table was defined as character after the call missing routine was 
called. 

 

16      DATA comparecase; 

17        FORMAT cdate DATETIME15.; 

18        CALL MISSING(cdate,code,table); 

19        LENGTH table $8; 

ERROR: Character length cannot be used with numeric variable table. 

20        DELETE; 

21      RUN; 

NOTE: The SAS System stopped processing this step because of errors. 

 

One way to create empty data sets is using the call missing routine, that assigns missing values to the numeric and 
character variables in the argument list.  If more than one variable is used as an argument, a comma should separate 
the variables. 

  

DATA comparecase; 

  LENGTH table $8; 

  FORMAT cdate datetime15.; 

  CALL MISSING(cdate,code,table); 

RUN; 

NOTE: The data set WORK.COMPARECASE has 1 observations and 3 variables. 

Notice that there were no errors or notes in the log about uninitialized variables, the only problem is that a row was 
created and we want an empty data set, so we will add delete; 

 

DATA comparecase; 

  LENGTH table $8; 

  CALL MISSING(cdate,code,table); 

  DELETE; 

RUN; 

NOTE: The data set WORK.COMPARECASE has 0 observations and 3 variables. 

and again using PROC CONTENTS we have 

 

PROC CONTENTS DATA=_LAST_ VARNUM; 

RUN; 

with the output of 

 

Variables in Creation Order 

  

# Variable    Type Len Format 

  

1   table       Char   8             

2   cdate       Num    8 DATETIME15. 

3   code        Num    8             

When creating an empty data set, the length, if not all the attributes of character variables should be set before the 
missing routine is called, otherwise, SAS will think that the variables in the argument are numeric.  The Programming 
data vector has the variables specified in the attributes section first, then the variables are created in the order of the 
call routine.  Here is an example where the variable table was defined as character after the call missing routine was 
called. 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

17 

  

16      data x; 

17        format cdate datetime15.; 

18        call missing(cdate,code,table); 

19        length table $8; 

ERROR: Character length cannot be used with numeric variable table. 

20        delete; 

21      run; 

  

NOTE: The SAS System stopped processing this step because of errors. 

11. CALCULATE THE BEGINNING, MIDDLE OR END OF THE MONTH  

Dates of events are things we handle every day, but they are not always complete dates -- some will have day 
missing, some will have day and month missing, and there will be some cases where the date is completely missing. 
Then rules start to be applied, usually standards applied in-house. The first of the month, first of the year, date of first 
treatment, are easy to apply, but what if you needed the middle or the end of the month. 

In a number of older papers, you will see macros that do such things as find out what month it is, add one to it, get 
the date of the first of that month, and then subtract one day, all to find the last day of the month. All of this has been, 
thankfully, replaced with the INTNX function, the syntax of which is shown below in one of its forms: 

Return_Date=INTNX(interval,date,increment,alignment); 

where 

interval this is usually values such as WEEK (each Sunday), SEMIMONTH (the first and sixteenth of each 
month), MONTH (the first of each month), QTR (the first of January, April, July, and October), 
SEMIYEAR (the first of January and July) and YEAR (the first of January) 

date SAS date, time, or datetime as a starting reference point 

increment number of intervals to shift the value of date 

alignment    optional parameter aligns the beginning, middle, end or same of the period (‘B’, ‘M’, ‘E’, ‘S”), if the 
fourth parameter is not used, ‘B’ is implied. 

 

DATA missday; 

  LENGTH partial $20; 

  FORMAT last middle same nofourth IS8601DA.; 

  INFILE DATALINES MISSOVER LENGTH=LEN; 

  
  INPUT partial $; 

  IF LENGTHN(partial)=7      THEN  DO; 

          last=INTNX('MONTH',     

      INPUT(STRIP(partial)||'-01',IS8601DA.), ‚ 

   0,     

   'E');  

    middle=INTNX('MONTH',INPUT(STRIP(partial)||'-01',IS8601DA.),0,'M'); 

    same  =INTNX('MONTH',INPUT(STRIP(partial)||'-01',IS8601DA.),0,'S'); 

    nofourth=INTNX('MONTH',INPUT(STRIP(partial)||'-01',IS8601DA.),0); 

  END; 

  ELSE IF LENGTHN(partial)>=10  THEN  DO; 

       last=INPUT(SUBSTR(partial,1,10),IS8601DA.);** No change; 

     middle=INTNX('MONTH',INPUT(SUBSTR(partial,1,10), IS8601DA.),0,'E'); 

     same  =INTNX('MONTH',INPUT(SUBSTR(partial,1,10), IS8601DA.),0,'M'); 

   nofourth=INTNX('MONTH',INPUT(SUBSTR(partial,1,10), IS8601DA.),0,'S'); 

  END; 

CARDS4; 

  2014-02      The interval or unit of time that is going to be added. 

  2012-02     A numeric date variable to which you will add an interval. 

  2000-02      Number of times that you are going to add the interval, in this example  

  1900-02       is zero, but it can be a negative or positive or negative number. 

  2015-10      Alignment parameter. 

  2015-06-15 



 
 
A Collection of Items from a Programmers’ Notebook, continued 

18 

;;;; 

run; 

The resulting data set 

 
 

The character variable PARTIAL has the original value. The numeric variable LAST has the imputed last date of 
that month. The numeric variable MIDDLE has the imputed middle date of the month. The variable SAME, has 
the NUMERIC value of the numeric date, because I chose to add ‘-01’ the months dates where day was missing 
are displaying 01 as the day of the month, but the last observation with a day 13, has the 13 as the day of the 
month, the variable NOFOURTH is the variable where the first date of the month is imputed, notice that in the 
observation when day was not missing, the 13 is changed for 01. 

 

Typically, we would find the beginning of a month, where we have a given numeric date but we are told that the 

precision is only to month and year value, by using a call similar to 

Return_Date=INTNX(‘MONTH’,date,0,’BEGINNING’); 

or find the middle of the month by 

Return_Date=INTNX(‘MONTH’,date,0,’MIDDLE’); 

of the end of the month by 

Return_Date=INTNX(‘MONTH’,date,0,’END’); 

The examples here have been using date values, but the INTNX function will work equally well with datetime or time 
values. 

 

CONCLUSION 

Presented in this paper are ten frequently referenced items of interest for the SAS Programmer from the notebooks of 
two programmers. We hope that you find them useful and you can incorporate them into your work life. 

REFERENCES 

http://support.sas.com/resources/papers/proceedings12/063-2012.pdf SAS Institute  

Base SAS 9.4 Procedures Guide, Second Edition. 

http://support.sas.com/kb/45/011.html 

SAS Functions by Example, Second Edition Ron Cody 

 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged.  Contact the author at: 

Name: Cecilia Mauldin 
Enterprise: Biogen 

Email: Cecilia.mauldin@biogen.com 

Name: David Franklin 
Enterprise: Real-World & Late Phase Research, Quintiles 
Email: david.franklin@Quintiles.com 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. 

Other brand and product names are trademarks of their respective companies. 

 

http://support.sas.com/resources/papers/proceedings12/063-2012.pdf
mailto:Cecilia.mauldin@biogen.com
mailto:dfranklin@TheProgrammersCabin.com

