PharmaSUG 2018 - Paper QT-01

ODS/RTF Pagination Revisit

Ya Huang, Halozyme Therapeutics, Inc.

Bryan Callahan, Halozyme Therapeutics, Inc.

ABSTRACT

ODS/RTF combined with PROC REPORT has been used to generate publication quality TFL by many
people, and yet one problem has been persistently bothering them for years: Pagination of listings. When
a listing has columns that hold long text (concatenated AE terms, Lab comments etc.), depending on the
width of the columns and the length of the text, one line could wrap into multiple lines. Where the line
wraps is decided by Microsoft® Word rather than SAS®. This leads to a nightmare of page break control.
This paper presents an easy way to detect the number of lines needed when line wrapping occurs.

INTRODUCTION

Before ODS, many people relied on complicated macros to break up a string at proper positions [1], and
they were able to calculate exactly how many lines were needed to hold the text. This is critical for those
who use DATA _NULL_ for reporting. For those who use PROC REPORT, they could simply add a
FLOW option in the define statement and PROC REPORT would take care of the line wrap and
accurately control the page break for them. Both DATA _NULL_ and PROC REPORT work well because
they are all plain text based; output is in fixed or monospace font where characters are equal in width,
relatively easy for calculating the space needed.

With ODS/RTF, especially with proportional font such as Arial and Times New Roman, the number of
lines needed to hold a long string is no longer predictable for 3 main reasons: 1. The total number of
letters a line can hold varies due to unequal width of the letters. A string with many capital ‘W’s definitely
needs wider space than a string with many lower case ‘i’'s. 2. Order of “words” in the string. 3. Font
attributes such as bold, italic, height, and even horizontal justification of the text. All of these may change
the way MS Word wraps the line. Because of the unpredictability of line wrapping, SAS decided that
instead of trying to predict the line wraps, it will simply rely on MS Word to do that. SAS came up with
another ODS destination called TAGSETS.RTF, claiming that it offers better pagination control. In reality
though, it has proven unreliable.

REAL EXAMPLE OF BAD PAGINATION

Figure 1 and 2 show a protocol deviation listing with a simple design: The first column is subject id/basic
demographics, followed by visit, deviation category, and detailed description of deviation. In the data, the
combination of the 4 columns (variables) uniquely identify each observation. Because the length of the
detailed description are different, the number of lines needed by each observation varies from as few as 1
to as many as 7. Due to the unpredictability of lines needed for each deviation, the programmer decided
to do some test runs using different numbers of observations per page followed by a visual examination
of the output. He found out that 4 observations per page is the maximum number he could put without
seeing split pages (Figure 1); otherwise, some pages will be split up by MS Word (Figure 2). While 4
observations works for this data, clearly the first 3 pages have wasted a lot of space. He could have put
all the deviations from page 1 to 3 on one page and the space would still be enough.

Figure 1. Bad pagination, page break every 4 observations, no split page, wasted space

ODS/RTF Pagination Revisit, continued

Figure 2. Bad pagination, page break every 5 observations, split page and wasted space

THE ROOT CAUSE OF BAD PAGINIATION: UNPREDICTABLE LINE WRAP

When ODS/RTF and PROC REPORT is used for tables and listings, the text is always confined in cells.
Cell width is controlled by the style option in the define statement. Cell height, on the other hand, is
usually not set by SAS, but by MS Word. MS Word calculates the height of the cell or physical lines
needed based on many factors. As shown in Table 1 below, all five cells are equal in size. All strings
inside the cells have exactly the same letters and fonts are in the same height too. The differences are
the style and ordering of the words. These differences result in different wrapping positions; hence, a
different number of physical lines needed to hold the string. This kind of unpredictability is the root cause
of the bad pagination. Obviously, if we want to avoid the bad pagination, we need to know the accurate
count of line wraps.

Line wraps Line wraps Line different | Line different | Line Line

due to due different | reasons reasons wraps | different wraps due

different reasons to wraps due to | dueto reasons to

reasons wraps due to | different
reasons

TABLE 1 SAME TEXT DIFFERENT WRAPPING POSITION

SOLVE THE LINE WRAP PROBLEM, THE BRUTE FORCE WAY

Over the years, several papers [2,3,4] have been published with the intention of solving the problem of
unpredictable line wrapping and bad pagination. All proposed techniques help to solve the problem to
some extent, but none of them will do a good job when a complex line wrap is involved. It is particularly
difficult to get an optimal result when in-line formatting is used, for example the AE listing below.

Typically in an AE line listing, we need to show SOC, PT and Verbatim term of an AE within a column of
limited width so that we have enough space left to show, in other columns, AE start and stop dates, study
day, AE relationship to drugs, outcome, action taken, CTCAE grading, and serious flag etc. There are
several ways to display the AE terms. The first and simplest way is to display a concatenated string with a
‘I in between each term without a line break, as shown in the first cell below. Although easy to implement,
it is very hard to read. The second way is to add a line break (as shown by the { symbol) in between the
terms. It is also pretty easy to implement (‘*n’ to connect two terms), but still hard to tell the difference
between the terms when line wrap happens. The third way is to put an indentation between each term, a
method where in-line formatting and raw RTF control word is involved. Clearly, this is the most visually
appealing design.

System-Organ-Class-| System-Organ-Class- | System-Organ-Class-
Line/Preferred- LineM] Line/]
Terms-line/Verbatim- | Preferred-Terms- Preferred-Terms-
Term-linex lineA] lineq|
Verbatim-Term-linewx Yerbatim-Term-
i

Figure 3. Different ways to display AE terms.

ODS/RTF Pagination Revisit, continued

As shown in figure 3, each of the three designs will use a different number of physical lines to hold the
same string due to the line wrap. Brute force methods may be able to get a good estimate for the first
design. It may also be able to get a close estimate for second design. But it is almost impossible to do
that for the third design, because in-line formatting and raw RTF control word add extra text to the original
AE term string, and they are invisible in the Word table cells. Any brute force estimation based on the
original string will no longer work.

A BETTER WAY - LET MS WORD TELL US

Since the number of physical lines needed is decided by MS Word and hard to predict, the information is
better off retrieved from MS Word itself. We all know that MS Word can convert an ODS/RTF Word table
into a plain text file, but most of us probably don’t know that the “save as” command has an “inset line
breaks” option. When it is checked, MS Word not only can save the RTF file into a plain text file, it can
also retain the line breaks, including the soft break. As shown in Figure 4, a simple one cell Word table
with the indented AE terms is converted into a plain text file using the “save as” command. The two
preview windows show the impact of the “insert a line breaks” option on the plain text file. When the
option is unchecked (bottom left), the plain text shows 3 lines caused by the in-line formatting and raw
RTF control words built in the string. When the option is checked (bottom right), the plain text shows 6
lines, the extra three are from the soft break that MS Word added. It matches the 6 lines inside the table
cell. This can also be seen in a text editor, such as Notepad after the text file is created.

B E S »0Oocum. 2 M - 0O x|Be=k ot
~ e —
4 c <y A 2 am ' - « O50C) » Termp » test - 4y ~]
HO INSE DESI PAG REFE MAI REVI VIi+ @* / =
Cegange « New folder - “
- ! 2 : J
¢ Liteases
* Documents
o Mutic
~ Prteres
H vede
R YaHuany
& Computer
System Organ Class S Netwark
Une 35 58 88/ W Contrel Pane
Preferred Terms Recycle B
ecycle B
ne pp £p ppY
.:ew Tﬁm CIE Membor
A0S 000N Fle rame: Systems Ovgan Clads Line 53 45 4o -
Seve s type Plan Tent ("at) -
4 »
- = Hde folden Tes . Save Cancel
W W B -—p——+ n% L
Fie Comversion - System Ongan Class Uine 5 55 5.0 SRR | Fie Comversion - System Ovgan Class Line 55 55 ss.tut x|
Waning Savng o1 2 et hie will caute M formatting, peteres, and obyects in pour She 10 be ort VWarming: Saving at 2 text Tie will cause all Toomatting, DHIUIRS, 3nd Sbpects in your file 1o e lost
Test ercodng Test encodng
@ Pedows Defauty 5004 Qerr ercoang @ Yndows Detaut) M5 Q0% Qener encodwng : -
Opoeni ¢ Opnoen i .
riart Soe beeaks 4 Jroen boe beesty >
End poes Wit CRIUF [w £nd prves wthe | CR/LF | v ¢ :
’ [ey~ [T i e=—ry i)
ABow character Wb tution) flow chanscter substtution
ey ea] Prepew
S Oy Can L s - Sywtens Orpans Class
t' Prefared Tersa bue g 19 50 Laeststns
Virbetes T ke vy vy Preforced Torme
= e 1P 59 9
Vet T

o Cancel oK Cancel

Figure 4 MS Word “Save as” to convert RTF to plain text and keep the line break.

This is a really exciting finding, it means that we’ve found an indirect way to retrieve the number of line
wraps controlled by MS Word. We can take advantage of this finding by converting the RTF to a plain text
file with “insert line breaks” option, and then count the number of lines in the text file. By doing so, we

ODS/RTF Pagination Revisit, continued

determine how many lines the data really needs in the Word table. We can then set the page break
accordingly and ultimately gain better page break control.

The idea is a very simple. To make it work, we just need to run ODS/RTF based PROC REPORT twice.
The first PROC REPORT will create a temporary RTF file with two columns: the first column is the record
ID (_n_ from the input dataset) and the second column is the text variable for which we want to retrieve
the number of the line wraps. For the second column, we need to make sure the style options in the
define statement are exactly the same as when it is used in the second PROC REPORT that will
generate the final listing. After the first PROC REPORT is run, we need to invoke MS Word from within
SAS and ask it to convert the temporary RTF file to a temporary plain text file with the inserted line break.
This can be done by a simple VB Script. In the text file, lines from the first column are interlaced with lines
from the second column. By parsing the text file, we can retrieve the original record ID, and the number of
lines associated with each record ID. We can then merge it back to the original data by record ID. In this
way, we add a new variable which carries the critical information, i.e. the number of line wraps.

A macro called %getlines is developed to do all of this for us. It has the following parameters:

%getlines (dsin=, /* dataset for listing */
colv=, /* column variable we want to get the line count */
colstyle=, /* column style used in second proc report */
rptsyle= /* report style in second proc report */

)

After calling the macro, we will apply an enhanced page break setting algorithm to the dataset, then it will
be ready for the second PROC REPORT to generate the final listing.

RESET PAGE BREAK FOR BETTER PAGINIATION

The algorithm of setting a page break variable is quite simple. Assuming that we want to put a page break
on every N observations of the dataset, a simple data step as below will do the work.

data xx;

set xx;
pg_=ceil (_n_/N);
run;

If we apply this algorithm to the protocol deviation listing discussed earlier, and try a different N, we will
find that 4 is the maximum number we can do as we discussed earlier. Otherwise, we will see split pages.

Now let's see what happens if we call the macro and apply the enhanced page break algorithm to it.

%getlines (dsin=dv,
colv=dvdesc,
colstyle=%str (width=2.5in just=1),
style=halotfl);

Calling the macro will add a new variable named dvdesc_n to dataset DV, which is named after the
column variable dvdesc. An enhanced page break algorithm is shown below:

data dv;
set dv;
by subjid visit dvcat dvdesc;
if n then pg0 =1;
pg0 +dvdesc_n;
if last.dvdesc then pg0 +1; /* blank space in between each deviation */
pg =ceil (pg0 /20); /* assume 20 is the physical lines each page can use
for listing content, excluding title and footnote */

ODS/RTF Pagination Revisit, continued

run;

/* second proc report for the final listing */
proc report data=dv style=halotfl;

column pg subjid visit dvcat dvdesc;

define pg /noprint order order=internal;

define dvdesc /’Description’ style=[width=2.5in just=1]; /* this is used

for colstyle parameter */

break after pg /page;
run,

A MUCH BETTER RESULT

With the same dataset and an enhanced page break algorithm, we rerun the protocol deviation listing.
The result looks much better. As shown in figure 5, the orignal pages 1 to 3 are now all fitting into page 1,
and page 4 and 5 still look good, without splitting.

BRRER HEUR

Figure 5, rerun of the example with better pagination

Conclusion

Unpredictable line wrapping causes bad pagination. The technique discussed in this paper provides a
relatively robust way to overcome this problem. When a listing has multiple columns with potential
wrapping issues, we can call the macro multiple times for different columns, and then use the maximum
number of lines in the enhanced page break algorithm.

In this paper we assume the font height is fixed, and the method discussed here won’t be applicable if the
font height is not fixed.

Since this technique needs MS Word and VB Script support, it obviously has to be run in a Windows
platform. For those using Unix/Linux SAS, unfortunately, this won’t work.

REFERENCES

[1] H. lan Whitlock, A Macro to Word Wrap Long Text Strings into a SAS® Array, SUGI 96

[2] Chao Su, William Conover, Pagination in Clinical Trial PROC REPORT ODS, MWSUG 2011

[3] Songtao Jiang, Daniel Boisvert, Effective Strategy to Set Page Breaks for ODS RTF Output.
Pharmasug 2006

[4] John Kirkpatrick, Pagination in the ODS, Phuse 2005

ODS/RTF Pagination Revisit, continued

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ya Huang

Halozyme Therapeutics, Inc.
11388 Sorrento Valley Road
San Diego, CA 92121
United States
yhuang@halozyme.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

ODS/RTF Pagination Revisit, continued

APPENDIX

%macro getlines (ds=,colv=,colstyle=,style=);

ods listing close;

ods rtf file="%sysfunc (pathname (work))\ getnlen.rtf" style=&style;
ods escapechar='"";

options nodate nonumber;

title;

footnote;

data &ds.O0;

set &ds;

length n_ $50;

n_=cat ('>>>>>>>> ', put(n ,z8.));
run;

proc report data=&ds.0 noheader;
column n_ &colv;

define n_ / display style=[width=2in];
define &colv / style=[&colstylel];

run;

ods _all close;

filename script "%sysfunc (pathname (work))\wd2txt.vbs";
data null ;

file script;

put 'Const wdFormatText = 2';

put 'Set objWord = CreateObject ("Word.Application")';
put 'Set objDoc = objWord.Documents.Open ("'

"$sysfunc (pathname (work))\ getnlen.rtf" '")';
put 'objDoc.SaveAs "' "$sysfunc(pathname (work))\ getnlen.txt" '",

wdFormatText,,,,,,,,,,,True';
put 'objWord.Quit';
run;

filename rs pipe "cscript //nologo ""$%$sysfunc (pathname (work)) \wd2txt.vbs""";
data null ;
infile rs;

input;
put infile ;
run;

data &ds. 1;

length n_ $50;

infile "%sysfunc (pathname (work))\ getnlen.txt";
input;

retain n ;

if infile =:'>>>>>>>>' then do;
n = infile ;

&colv. n=0;

end;

else &colv. n+l;

run;

ODS/RTF Pagination Revisit, continued

data &ds. 1;
set &ds. 1;
by n ;
if last.n ;
keep n_ &colv. n;
run;

data é&ds;

merge &ds.0 (in=a) &ds.

by n_;
if a ;
drop n_;
run;

$mend getlines;

