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ABSTRACT  

Every study has data issues and those issues often make their way to the data sets that the statistical 
programmers use. It is a part of our job to do data checks, and those same types of tools are invaluable 
when validating data sets. Following are a few useful tips and tricks to make data checking a breeze. 

INTRODUCTION  

SAS
®
 has created stored code to make it easy to bring up code that you use often, but for those that still 

prefer coding and not clicking, these tips will bring that code up with a few quick keystrokes.  The 
examples given in this paper show the creation and use of abbreviation macros, and using them to bring 
up quick and easy data checking code to use on the fly. 

ABBREVIATION MACROS 

Abbreviation macros in SAS
®
 store code that can be quickly brought up in the program editor with just a 

few quick keystrokes as shown in Figure 1.  The code can be set up with placeholders for instance 
specific information, like data set name, variable names, and more.  Note that the code added to the 
abbreviation macro does not have to be a macro, it can be any free text. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Adding an abbreviation macro 
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In the program editor, type the abbreviation and the beginning of the code will display in a pop-up box.  
To bring the code in to the editor, press enter.  See Figure 2.  To ignore the code, simply continue typing.  
The ‘xxx’ placeholders can then be updated to produce the desired code on any data set and variables. 

 

 

 

 

 

 

 

 

Figure 2. Implementing an abbreviation macro for PROC FREQ. 

 

Another example of a useful abbreviation macro is PROC SORT, shown in Figure 3.  This abbreviation 
sets the by variable to USUBJID since it is often the first sort variable used, and just like a placeholder, 
can be easily replaced with the required variables. 

 

 

 

 

 

 

 

 

Figure 3. Implementing an abbreviation macro for PROC SORT 

COMPARING DATA 

Programming and validating data sets often requires the comparison of two data sets.  Two useful ways 
to compare data sets are PROC COMPARE and the use if the in= option in a DATA STEP merge.  These 
are both additional useful abbreviation macros to set up for quick recall in interactive programming. 

PROC COMPARE has several options available and setting these up in an abbreviation macro has them 
stored right at your fingertips, as shown in Figure 4. 

 

 

 

 

 

 

 

Figure 4. Implementing an abbreviation macro for PROC COMPARE 
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PROC COMPARE is a great tool to compare the values from one data set to another.  After updating the 
code from the abbreviation macro, a simple example of running a PROC COMPARE is as follows: 

proc compare base=dfsdtm compare=mydf ; 

  id usubjid dfcat dfscat dfobj dfeval dftestcd ; 

run ; 

 

What about when the PROC COMPARE shows that there are records in one data set that are not in the 

other data set based on the BY or ID variables?  When the ID variables don't match, the mismatching 

records can be discovered by using a DATA STEP merge with the in= option.   The below example will 
output two data sets with the observations that don't match on the BY variables.  Data set A will contain 
the records from data set DFSDTM that do not match to MYDF, and data set B will contain the records 
from data set MYDF that do not match to DFSDTM, and finally, all matching observations will be in data 
set C.  Figure 5 shows the use of another abbreviation macro and the code after updating the placeholder 
code. 

 

 

 

 

 

 

 

 

 

 

Figure 5. An abbreviation macro to quickly filter out mismatching records 

 

PROC SQL FOR DATA CHECKS 

There are many tools available in SAS
®
 for doing data checks, including the DATA STEP.  Sometimes 

multiple DATA STEPs are needed to solve one task.  PROC SQL has the power of subqueries to perform 
a multitude of tricky tasks. 

This example uses a subquery to select all records from one data set for subjects that meet a criteria in 
another data set.  The subquery selects the unique USUBJID values from HADURTN where HADURHR 
> 168.  Then the outer query subsets ADAM.ADHACHE using that list of subjects: 

proc sql ; 

  create table cklong as 

    select usubjid, adt, haid, hadur, hadur / 60 as hadurhr 

      from adam.adhache 

        where usubjid in ( 

          select distinct usubjid 

            from hadurtn 

              where hadurhr > 168 

        ) 

        order by usubjid, adt, haid 

  ; 

quit ; 

 



SAS®sy Data Checks, continued 
 

4 

CONCLUSION 

Programming data sets and checking that data throughout the process can be time consuming.  A few 
quick tips were presented to help you program more efficiently and quickly get the results you need. 
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