
1

PharmaSUG 2018 - Paper QT-17

IF there is a Better Way than IF-THEN
Bob Tian, Anni Weng, KMK Consulting Inc.

ABSTRACT
In this paper, the author compares different methods for implementing piecewise constant functions (step
functions) in SAS®. The author uses a simulated approach to measure the efficiencies of different
methods in terms of CPU resource usage.

INTRODUCTION
Many SAS® programmers routinely find themselves facing the task of implementing piecewise functions
such as classifying BMI scores, or grouping blood sugar levels.

While adopting an IF-THEN logic seems intuitive and effortless, as the size of real world data multitudes
and the complexity of assignment increases, will this be the most efficient method? Is there a better way
to achieve such tasks in SAS® environment? While there are a few papers discussing different methods
of implementing piecewise classification [1] [2], little reference can be found evaluating the efficiencies of
different approaches.

To find the best approach, we evaluate the performance of 2 different IF-THEN implementations, an
implicit IF logic application, an IFC/IFN function, 2 different WHEN implementations, and a bespoke
format method, in terms of computation time. A large simulated dataset was generated to approximate
real word data. Each method was applied to the dataset for hundreds of cycles under similar CPU load.
The average statistics will be used for the comparison.

The authors were genuinely surprised by their findings, and would like to share the results with the
readers.

INPUT DATA
To simulate real world data, we have randomly generated two beta-distributions from 0 to 100 as the
input datasets. We have chosen a bell shaped distribution (α = 2, β = 3), as well as a bimodal distribution
(α = 0.5, β = 0.5). The histogram plot for the two input datasets are shown below in Figure 1 and Figure
2.

IF there is a better way than IF-THEN, continued

2

Figure 1. Histogram Plot of Input Distribution 1 Beta(2, 3)

Figure 2. Histogram Plot of Input Distribution 2 Beta(0.5, 0.5)

IF there is a better way than IF-THEN, continued

3

These two datasets closely mirror many of the natural occurring data the authors have to deal with. We
have chosen a sample size big enough for each calculation to take approximately 30 seconds.

METHODS
We used two different piecewise functions to compare the performance of different methods. One is a
simple binary classification; the other has 6 mutually exclusive categories. These two classifications
resemble some of the most common classifications the authors have to implement on a daily basis.

1. Function 1, 2 categories

𝑦 = �0, 𝑥 < 50
1, 𝑥 ≥ 50

2. Function 2, 6 categories

𝑦 =

⎩
⎪
⎨

⎪
⎧

1, 𝑥 < 10
2, 10 ≤ 𝑥 < 20
3, 20 ≤ 𝑥 < 50
4, 50 ≤ 𝑥 < 80
5, 80 ≤ 𝑥 < 90
6, 𝑥 ≥ 90

A total of 7 different methods were tested by the author. We will illustrate them using the second
classification.

METHOD 1, A SIMPLE IF-THEN LOGIC
This is the most straight forward logic, most likely one of the first programs anyone learned to write:

DATA Method_1;
 SET inData;
 IF x < 10 THEN y = 1;
 IF 10 <= x < 20 THEN y = 2;
 IF 20 <= x < 50 THEN y = 3;
 IF 50 <= x < 80 THEN y = 4;
 IF 80 <= x < 90 THEN y = 5;
 IF 90 <= x THEN y = 6;
RUN;

METHOD 2, IF-THEN, ELSE -THEN LOGIC
Textbooks taught us using ELSE IF for mutually exclusive situations would be fast than only IF-THEN. We
should now test this statement:

DATA Method_2;
 SET inData;

IF there is a better way than IF-THEN, continued

4

 IF x < 10 THEN y = 1;
 ELSE IF 10 <= x < 20 THEN y = 2;
 ELSE IF 20 <= x < 50 THEN y = 3;
 ELSE IF 50 <= x < 80 THEN y = 4;
 ELSE IF 80 <= x < 90 THEN y = 5;
 ELSE y = 6;
RUN;

METHOD 3, AN IMPLICIT IF LOGIC
We can also use an implicit function to achieve the same IF logic. In fact, this is the author’s favorite
method, as the code is very neat:

DATA Method_3;
 SET inData;
 y = 1 * (x < 10)

+ 2 * (10 <= x < 20)
+ 3 * (20 <= x < 50)
+ 4 * (50 <= x < 80)
+ 5 * (80 <= x < 90)
+ 6 * (90 <= x);

RUN;

METHOD 4, NESTED IFN/IFC FUNCTIONS
A nested IFN/IFC function can also be used. However, it can be sometimes difficult to read:

DATA Method_4;
 SET inData;
 y = ifn(x < 10, 1

 , ifn(10 <= x < 20, 2
 , ifn(20 <= x < 50, 3

 , ifn(50 <= x < 80, 4
 , ifn(80 <= x < 90, 5
 , 6)))));
RUN;

METHOD 5, SELECT-WHEN
SELECT-WHEN method is another favorite of the author’s:

DATA Method_5;
 SET inData;
 SELECT;
 when (x < 10) y = 1;
 when (10 <= x < 20) y = 2;
 when (20 <= x < 50) y = 3;
 when (50 <= x < 80) y = 4;
 when (80 <= x < 90) y = 5;
 when (90 <= x) y = 6;
 otherwise y =.;
 END;
RUN;

IF there is a better way than IF-THEN, continued

5

METHOD 6, CASE-WHEN IN PROC SQL®
A similar logic can be implemented in PROC SQL®:

PROC SQL;
 CREATE table Method_6 as
 SELECT *, case
 when (x<10) then 1
 when (10 <= x < 20) then 2
 when (20 <= x < 50) then 3
 when (50 <= x < 80) then 4
 when (80 <= x < 90) then 5
 when (90 <= x) then 6
 else .
 end as y
 from inData;
QUIT;

METHOD 7, USING A BESPOKE FORMAT
Using a customized format will results in some very neat coding:

PROC FORMAT;
VALUE pwfmt

 low - <10 = 1
 10 - <20 = 2
 20 - <50 = 3
 50 - <80 = 4
 80 - <90 = 5
 90 - high = 6
 other =.;
RUN;

DATA Method_7;
 SET inData;
 y = put(x, pwfmt.);
RUN;

To minimize the variation due to global CPU load and memory usage of our SAS® server, we packaged
each method into a macro, and have them executed sequentially in a loop. This loop was then executed
100 times on each input dataset. For the format method, the format was only created once. We used the
method described by McCartney and Hu[3] to exact the run time information from the log. We will discuss
the results in the following section.

RESULTS DISCUSSION
The results were not quite what the author had expected. For the bell shaped distribution (α = 2, β = 3),
we have the results summarized in the following two tables.

IF there is a better way than IF-THEN, continued

6

Method Note Mean (s) Std_Dev
Method 1 IF THEN 28.71 0.45

Method 2 IF ELSE THEN 28.41 0.41

Method 3 Implicit 30.16 0.59

Method 4 Ifn() 28.12 0.53

Method 5 SELECT WHEN 28.25 0.50

Method 6 SQL CASE 38.97 0.58
Method 7 Format 36.66 0.51

Table 2. Results on Beta(2, 3) distribution with 2 categories

Method Note Mean (s) Std_Dev
Method 1 IF THEN 30.28 0.60

Method 2 IF ELSE THEN 29.43 0.60

Method 3 Implicit 36.74 0.79

Method 4 Ifn() 39.21 0.87

Method 5 SELECT WHEN 31.55 0.68

Method 6 SQL CASE 42.14 0.85

Method 7 Format 38.15 0.48

Table 2. Results on Beta(2, 3) distribution with 6 categories

The first thing we did not anticipate was that the format method did not perform very well. Using a
customized format is a very efficient way to merge two datasets, and the code is very elegant. It also can
potentially save a lot code space when the same categorizing has to be applied multiple times. However,
it simply lags behind the other methods in terms of performance in this case.

Despite of being a very neat ‘looking’ method, the author’s favorite (Method 3) did not perform either. This
is due to the fact that, when coded as an arithmetic operation with implicit IF operations, all cases have to
be evaluated before a final value can be assigned. This will hinder the performance especially when a
large number of categories are applied. The reason holds true for Method 4.

The biggest surprise is that, Method 1 and Method 2 are on par in terms of performance with the other
methods. When the complexity of the categorization increases, they even outperform the others. Even
more surprisingly, using mutually exclusively logic ELSE IF does not improve the calculation speed by a
huge margin. This is probably due to some internal code optimization at the compiler step.

Lastly, it should not be a surprise that the SQL method does not perform as well as any of the DATA
STEP methods.

Similar results were observed for the bimodal distribution (α = 0.5, β = 0.5), and are presented in Table 3
and Table 4.

IF there is a better way than IF-THEN, continued

7

Method Note Mean (s) Std_Dev
Method 1 IF THEN 28.31 0.48

Method 2 IF ELSE THEN 28.44 0.50

Method 3 Implicit 28.58 0.53

Method 4 Ifn() 28.38 0.48

Method 5 SELECT WHEN 28.48 0.46

Method 6 SQL CASE 39.84 0.51

Method 7 Format 37.14 0.62

Table 3. Results on Beta(0.5, 0.5) distribution with 2 categories

Method Note Mean (s) Std_Dev
Method 1 IF THEN 31.29 0.79

Method 2 IF ELSE THEN 30.53 0.66

Method 3 Implicit 36.02 0.77

Method 4 Ifn() 38.49 0.86

Method 5 SELECT WHEN 32.65 0.83

Method 6 SQL CASE 42.74 0.76

Method 7 Format 39.49 0.79

Table 4. Results on Beta(0.5, 0.5) distribution with 6 categories

CONCLUSION
In doing this experiment, the authors have learned that SAS® has a highly optimized compiler. When
dealing with a categorizing problem, it is hard to beat the good old IF-THEN logic, although other methods
might appear to be more elegant.

IF there is a better way than IF-THEN, continued

8

REFERENCES
1. Hortsman, Joshua M., “Beyond IF THEN ELSE: Techniques for Conditional Execution of SAS®

Code”, Proceedings of PharmaSUG 2016, Paper TT16,
http://support.sas.com/resources/papers/proceedings17/0326-2017.pdf

2. Billings, Thomas E., “IFC and IFN Functions: Alternatives to Simple DATA Step IF-THEN-ELSE,
SELECT-END Code and PROC SQL CASE Statements”, Proceedings of Western Users of SAS
Software 2012, https://www.lexjansen.com/wuss/2012/28.pdf

3. McCartney, Jeff; Hu, Raymond, “SAS® Shorts: Valuable Tips for Everyday Programming”,
Proceedings of NorthEast SAS Users Group 2011,
https://www.lexjansen.com/nesug/nesug01/at/at1013.pdf

ACKNOWLEDGMENTS
The authors would like to thank Huanxue Zhou of KMK Consulting Inc, for valuable suggestions and
discussion of this paper. Any mistakes herein are the responsibility of the author.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Anni Weng
KMK Consulting Inc.
anni.weng@kmkconsultinginc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/resources/papers/proceedings17/0326-2017.pdf
https://www.lexjansen.com/wuss/2012/28.pdf
https://www.lexjansen.com/nesug/nesug01/at/at1013.pdf

	Abstract
	Introduction
	Input DATA
	METHODS
	METHOD 1, a simple IF-THEN logic
	METHOD 2, IF-then, else -THEN LOGIC
	METHOD 3, an implicit if logic
	METHOD 4, nested ifn/ifc functions
	METHOD 5, select-when
	METHOD 6, CASE-WHEN in PRoc sql®
	METHOD 7, using a bespoke FORMAT

	RESULTS DISCUSSION
	Conclusion
	References
	Acknowledgments
	Contact Information

