
1

PharmaSUG 2018 - Paper SS-09

define.xml (noun): Fear Inducing Task for SAS Programmers

Kjersten Offenbecker; Kirsty Lauderdale, Covance, Inc.;
Antonio Cardozo, Spaulding Clinical

ABSTRACT

Faced with creating the define.xml, whether for SDTM or ADaM, programmers tend to shudder with fear.
Why is that? Maybe because it tends to be tedious, manual and is not ‘defined’ very well. What needs to
be included, what should it look like and how on earth do you create it? We all know it’s a vital piece of
any submission and most sponsor companies now require it, even if they have no idea what it is or why
they need it. Many companies have a ‘home-grown’ system (a.k.a. macro) which they use to generate
this, but did you know that there is a better way. In our paper, we will show you how to take the fear out
of the define.xml creation process.

INTRODUCTION (NOUN): WHERE WE ARE AND WHERE WE ARE GOING TO
TAKE YOU

Historically the creation of a define.xml document has been something we programmers absolutely dread,
its generally a time-consuming, complicated process and comes when we have very little ‘free’ time to
complete.

Clients tend to think that creating the define.xml is as easy as pressing a button, not really grasping all the
ins and outs and involved complexities – value level meta-data, bookmarking and hyperlinking to name a
few. Then there is always the knowledge gap – do we need to include every possible value in the code
lists, or only the ones that were present in the data? Who do we turn to for advice, and to answer these
questions? Does our company have a macro or a tool, or some ‘magical’ process we should be following?

Surprisingly there actually is a tool we can use, and although it’s not as marvelous as ‘just press a button’,
it does pose a nice, simple solution, and because its free, yes - you read that right, your company should
not object to you using it!

Pinnacle 21 allows you to create a complaint free – oops we mean, compliant version 2.0 define.xml and
define.pdf, and we all know how difficult that usually is! With some minimal user input, some basic
information, and a little know-how the process is fast and pretty painless, and this paper will help guide
you through this process without your hair turning grey.

We intend to show how to do this using SDTM as our base, however these same principles apply to
ADaM as well, so it’s like a BOGO deal.

PROGRAMMING SPECIFICATIONS (NOUN): KEY TO A ROBUST DEFINE.XML FILE

The programming specifications tab created by Pinnacle 21, henceforth referenced as P21, can be rather
overwhelming the first (and second) time you look at it. There are a huge numbers of tab sheets and
each has its own vast array of columns, most of which we have likely never previously entertained
thoughts of.

So, to get started we will do a quick overview of each one and guide you in how to populate the
applicable information.

2

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

et

STUDY TAB

The study tab is a nice easy one to get started with, you should have this information down pat - simply
enter the basic information describing your study.

Example – Study Tab

Attribute Value

StudyName Protocol Name

StudyDescription Protocol Title

ProtocolName Protocol Number

StandardName SDTM-IG

StandardVersion 3.2

Language en

DATASETS TAB

This tab contains the high-level overview of each dataset, the name, description, class, structure purpose,
key variables, as well as other basic information in the define. Most of this information can be located in
the SDTM-IG, as well as in your data.

We cannot stress enough how important it is to ensure that you cross reference the key variables with
your data, these keys must identify a unique record within your data and they should be the exact same
as the sort order in your dataset.

Example – Datasets Tab (zoom in to see better)
Referenc

Datas Description Class Structure Purpose Key Variables Repeating e Data Comment

AE Adverse Events EVENTS One record per adverse eventpersubject Tabulation STUDYID,USUBJID,AEDECOD,AESTDTC Yes No

CM Concomitant Medications INTERVENTIONS One record per recorded medication
occurrence or constant-dosing interval

Tabulation STUDYID,USUBJID,CMTRT,CMSTDTC Yes No

CO Comments SPECIAL PURPOSE One record per comment per subject Tabulation STUDYID,RDOMAIN,USUBJID,COSEQ Yes No

DA Drug Accountability FINDINGS One record per drug accountability
finding per subject

Tabulation STUDYID,USUBJID,DATESTCD,DADTC Yes No

DM Demographics SPECIAL PURPOSE One record per subject Tabulation STUDYID,USUBJID No No

DS Disposition EVENTS
One record per disposition status or
protocol milestone per subject Tabulation STUDYID,USUBJID,DSDECOD,DSSTDTC Yes No

VARIABLES TAB

This tab is the beating heart of the specifications. It outlines each variable for every dataset your team
will be creating and contains all the information we use in programming specifications every day, it’s just
presented a little differently. A lot of the content is straight-forward, but there are a few sections you want
to pay extra attention to. Below is an overview of each column and a couple of pointers on what to watch
for.

Example – Populated rows in the Variables tab.
this is the same row connect the picture from origin column

Order Dataset Variable Label Data Type Length Significant Digits Format Mandatory Codelist Origin
1 VS STUDYID Study Identifier text 11 Yes Assigned

2 VS DOMAIN Domain Abbreviation text 2 Yes DOMAIN Assigned

3 VS USUBJID Unique Subject Identifier text 20 Yes Assigned

4 VS VSSEQ Sequence Number integer 2 Yes Derived

5 VS VSTESTCD Vital Signs Test Short Name text 6 Yes VSTESTCD CRF

6 VS VSTEST Vital Signs Test Name text 24 Yes VSTEST CRF

7 VS VSCAT Category for Vital Signs text 24 Yes VSCAT CRF

8 VS VSORRES Result or Finding in Original Units text 5 No CRF

9 VS VSORRESU Original Units text 9 No VSORRESU CRF

10 VS VSSTRESC Character Result/Finding in Std Format text 5 No Assigned

11 VS VSSTRESN Numeric Result/Finding in Standard Units float 5 2 No Assigned

3

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

Origin Pages Method Predecessor Role Comment

Assigned Identifier

Assigned Identifier

Assigned Identifier

Derived MT.VS.VSSEQ Identifier

CRF 14 15 Topic

CRF 14 15 Synonym Qualifier

CRF 14 15 Grouping Qualifier

CRF 14 15 Result Qualifier

CRF 14 15 Variable Qualifier

Assigned Result Qualifier VS.VSSTRESC

Assigned Result Qualifier VS.VSSTRESN

 Order: This represents the order the variables appear in the dataset, starting at 1, by domain, and
should continue sequentially. For SDTM, the variables should appear in the order specified in the
SDTM-IG.

 Dataset: This is the name of the dataset each variable is present in.

 Variable: This shows the name of the variable, this must match the SDTM-IG and your data.

 Label: This is the label for each variable; this also must match the SDTM-IG and your data.

 Data Type: This indicates the possible values that you may see – you may the following three
criteria; ‘text’, ‘integer’, or ‘float’, any other value will result in a finding in the P21 compliance report.

 Length: This must match the data exactly (this can be done programmatically in many niftyways).

 Significant Digits: For variables with a data type of ‘float’ you want to specify the numberof
significant figures represented in your data.

 Format: This is most commonly used to specify date formats within ADaM, but can also be usedto
further explain any format needed. Please note - do not define code lists here; we will get to that
section further down.

 Mandatory: This is where we set whether the variable is needed. If so, set to ‘Yes’, otherwise set to
‘No’. This needs to be completed for every variable.

 Codelist: This section links directly, using a reference name, to the CODELISTS tab, whereeach
code list is detailed out. It is a best practice to use the SDTM code list name as a reference
whenever possible, for example UNIT, RACE, etc.

Every variable contains a finite number of possible results and should have a code list referenced,
both character and numeric (i.e. VISITNUM). Fields that are ‘free text’ and, typically,‘result’ variables
will not have a code list, but this is not always true. Run a check on your data, look at it and see if it
makes sense to have a code list.

 Origin: Where did the data come from? The CRF, electronic data (eDT) or did you derive it or
assign a value to it? You should use one of the 6 pre-defined criteria here; ‘CRF’, ‘eDT’, ‘Assigned’,
‘Protocol’, ‘Derived’ and ‘Predecessor’. If you specify something other than one of these values, the
P21 compliance report will flag it.

There are cases when more than one of these values is applicable, especially true in supplemental
data, in these instances specify all origins separated by a space. Having more than one origin will
result in a P21 compliance report issue since P21 does not currently allow for more than one origin.

 Pages: If you set your origin to ‘CRF’ then you should specify the pages from the annotated CRF
(aCRF) in this section. If the variable appears on more than one page, separate the page numbers
with a space. This piece can be populated programmatically, if you wish.

 Method: This is often what programmers refer to as the “Derivation”, it’s basically the how-to guide
on creating a specific variable. This column works much like the Codelist column where it is a
reference name that links to the METHODS tab, where the actual derivation lives. When creatingthe

4

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

ts at y st

reference name, it is a best practice to create as MT.<DATASET NAME>.<VARIABLE NAME>, for
example MT.VS.VSBLFL.

In general, the method column will be empty for variables where the origin is populated with ‘CRF’,
‘eDT’ or ‘Assigned’. There will be exceptions to this, but for the most part this should only be
populated when the origin is set to ‘Derived’.

 Predecessor: This is rarely used in SDTM but will definitely show up in ADaM. If a variable is
directly populated from an SDTM variable, you will specify the origin as ‘Predecessor’ andpopulate
the variable in this column, for example, AE.AESTDTC. This also works great for core variables in
ADaM, such as ADSL.TRT01P.

 Role: This should match the role for each variable from the SDTM-IG.

 Comment: The is similar to the Codelist and Method columns where it uses a reference to link to
information found on the COMMENTS tab sheet. This is typically additional information that will help
a reviewer understand what was done outside of the derivation. When creating the reference name, it
is a best practice to create as COM.<DATASET NAME>.<VARIABLE NAME), for example
COM.VS.VSBLFL.

VALUELEVEL TAB

This tab is used for any dataset which contains xxTESTCD, QNAM or PARAMCD, to further explain how
these values are created and used within the domain. Each value of xxTESTCD, QNAM or PARAMCD
will have a row within this tab.

Example – Populated rows in the ValueLevel tab.
this is the same row connect the picture from origin column

Order Dataset Variable Where Clause Description Data Type Length Significant Form Mandator Codeli Origin
1 DA DAORRES DA.DATESTCD.EQ.DISPAMT Dispensed Amount integer 2 Yes CRF

2 DA DAORRES DA.DATESTCD.EQ.RETAMT Returned Amount integer 1 Yes CRF

1 EG EGORRES EG.EGTESTCD.EQ.INTP Interpretation text 8 Yes CRF

2 EG EGORRES EG.EGTESTCD.EQ.EGHRMN ECG Mean Heart Rate integer 3 Yes CRF

3 EG EGORRES EG.EGTESTCD.EQ.PRMEAN Summary (Mean) PR Interval integer 3 Yes CRF

4 EG EGORRES EG.EGTESTCD.EQ.PWAVEDUR Summary (Mean) P Wave Duratio integer 3 Yes CRF

5 EG EGORRES EG.EGTESTCD.EQ.QRSDUR Summary (Mean) QRS Duration integer 3 Yes CRF

6 EG EGORRES EG.EGTESTCD.EQ.QTMEAN Summary (Mean) QT Interval integer 3 Yes CRF

7 EG EGORRES EG.EGTESTCD.EQ.HRMEAN ECG Mean Heart Rate integer 3 Yes CRF

Origin Pages Method Predecessor Comment
CRF 25

CRF 25

CRF 17

CRF 17

CRF 17

CRF 18

CRF 18

CRF 18

CRF 17

 Order: This represents the order the variables appear in the dataset, starting at 1, by domain, and
should continue sequentially.

 Dataset: This should be populated with the dataset name.

 Variable: This should be populated with the result variable name (usuallyxxORRES/xxSTRESC,
QVAL or AVAL/AVALC).

 Where clause: This should be completed using the following structure; <dataset
name>.<(xxTESTCD/QNAM/PARAMCD)>.EQ.<variable name>, for example
VS.VSTESTCD.EQ.HEIGHT. This will match with the ID column on the WHERECLAUSES tab.

 Data type: Please refer to the data type on the VARIABLES tab sheet and insert that value intothis
section.

5

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

 Length: This should be a direct copy from the length populated on the VARIABLES tab sheet.

 Significant digit: Lookup the significant digit values on the VARIABLES tab sheet and insertthat
value into this section.

 Format: This is most commonly used to specify date formats within ADaM but can also be used to
further explain any format needed. Please do not define code lists here – we will get to that section
further down.

 Mandatory: Typically, this is set to “No” for this tab.

 Codelist: This is exactly like the Codelist column on the VARIABLES tab sheet.

 Origin: This is a direct copy from the Origin column on the VARIABLES tab sheet and shouldmatch
the value present on xxORRES/xxSTRESC, QVAL or AVAL/AVALC. If they are not the same, the
P21 compliance report will generate an issue.

 Pages: If your origin is CRF then you should specify the pages from the annotated CRF(aCRF) here.
If the variable appears on more than one page, separate the page numbers with a space. This
section can be populated programmatically.

 Method: This is exactly like the Method column on the VARIABLES tab sheet.

 Predecessor: This is exactly like the Predecessor column on the VARIABLES tab sheet.

 Comment: This is exactly like the Comment column on the VARIABLES tab sheet.

WHERECLAUSES TAB

For each value level in the VALUELEVEL tab sheet, there is a corresponding where clause in the
WHERECLAUSES tab.

Example – WhereClauses Tab
ID Dataset Variable Comparator Value
DA.DATESTCD.EQ.DISPAM DA DATESTCD EQ DISPAMT

DA.DATESTCD.EQ.RETAMT DA DATESTCD EQ RETAMT

EG.EGTESTCD.EQ.INTP EG EGTESTCD EQ INTP

EG.EGTESTCD.EQ.EGHRMN EG EGTESTCD EQ EGHRMN

EG.EGTESTCD.EQ.PRMEAN EG EGTESTCD EQ PRMEAN

EG.EGTESTCD.EQ.PWAVED EG EGTESTCD EQ PWAVEDUR

EG.EGTESTCD.EQ.QRSDUR EG EGTESTCD EQ QRSDUR

EG.EGTESTCD.EQ.QTMEAN EG EGTESTCD EQ QTMEAN

EG.EGTESTCD.EQ.HRMEAN EG EGTESTCD EQ HRMEAN

 ID: This is populated from the where clause column of the VALUELEVEL tab sheet. These must
match exactly.

 Dataset: This is completed with the dataset name insertion.

 Variable: Set this to the result variable name, generally xxTESTCD, QNAM or PARAMCD.

 Comparator: Populate this with the way that the value needs to be compared, usually this is setto
“EQ” for equals.

 Value: This should be populated with the actual results value that corresponds to the variable, for
example xxORRES/xxSTRESC, QVAL or AVAL/AVALC.

CODELISTS TAB

The codelists tab sheet is used to show the reviewer all the codelists, and the values of each,
represented in your data. For variables with predefined codelists on the CRFs you must present all
possible values listed on the CRF even if they do not appear within your data.

6

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

e

Although a large portion of this task can be completed programmatically, you must double check this part
since not all expected values may be represented in your data. For those values that are not in the data,
you will need to add them manually to the lists.

The most efficient way to start this process is by checking if the code list exists from the CDISC
Controlled Terminology SDTM/ ADaM spec, and then copying those values into the code list tab.

Example – Codelists Tab

AEACN ActionTakenwithStudyTrea C66767 text 1 DOSE NOT CHANGED C49504

AEACN ActionTakenwithStudyTrea C66767 text 2 DRUG WITHDRAWN C49502

AEACN ActionTakenwithStudyTrea C66767 text 3 NOT APPLICABLE C48660

AEACN ActionTakenwithStudyTrea C66767 text 4 DRUG INTERRUPTED C49501

AEREL Causality text 1 No

AEREL Causality text 2 Yes

AERELNST Relationship to Non-Study Treatment text 1 No

AESEV Severity/Intensity Scale forA C66769 text 1 MILD C41338

AESEV Severity/Intensity Scale forA C66769 text 2 MODERATE C41339

AESEV Severity/Intensity Scale forA C66769 text 3 SEVERE C41340

AGEU Age Unit C66781 text 1 YEARS C29848

 ID: Populate this from the code list column on the VARIABLES or VALUELEVEL tab sheet.The
values must match exactly.

 Name: Populate similar to the labels for the codelist, for example “Units”, “Race Codes”, etc.

 NCI Code List Code: For code lists from the CDISC Controlled Terminology, you should ensureyou
use the value from the Code list code column on the SDTM/ADaM Terminology spreadsheet
(referencing Column B). This will be the same for all values for a given code list.

Please note: if the code list is not from CDISC Controlled Terminology spreadsheet, this field should
be left blank.

 Data Type: This is set depending on the variable that is using the code list. It should be set to one of
the three expected criteria; “integer”, “float” or “text”.

 Order: This represents the order the values willappear in the dataset, it should start at 1 for each
code list and run sequentially.

 Term: This will contain the value of the variable that requires the decode, it will come directly from the
data or is represented on the CRF.

 NCI Term Code: For code lists from the CDISC Controlled Terminology, please enter the valuefrom
the Code column on the SDTM/ADaM Terminology spreadsheet (reference Column A). This will be
unique for each value for a given code list.

It is important to note that if there is not a value in the CDISC Controlled Terminology spreadsheet,
this field should be left blank.

 Decoded Value: This will be set to actual value corresponding to the code list. This can becreated
programmatically and may be blank if not applicable.

DICTIONARIES TAB

This tab is very similar to the CODELIST tab sheet, but it outlines all the dictionaries used in the study.
The two most commonly used dictionaries are MedDRA and WHO Drug, but you should also include the
ISO dictionaries, and/or the dictionaries referenced in TS domain, for example the ISO8601 and/or NDF-
RT.

7

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

xt de

Example – Dictionaries Tab

DRGDICT Concomitant Medication Dictionary text DRGDICT 2017-03

ISO8601 Date Dictionary text ISO8601

MedDRA Adverse Event Dictionary text MedDRA 20.1

NDF-RT Pharmacological Class Dictionary text NDF-RT 2017-06-14

SNOMED Trial Indication Dictionary text SNOMED 2017-03-01

UNII Treatment Dictionary text UNII 2017-04-28

 ID: This should be populated from the code list column on the VARIABLES or VALUELEVELtab
sheet. The values must match exactly.

 Name: Populate with a description of the dictionary.

 Data Type: Type of the data. Usually text.

 Dictionary: What dictionary is it.

 Version: The version of the dictionary.

METHODS TAB

This tab is where all the meat is located; it tells the reviewer how variables are derived and/or assigned.
This section should be crafted without using SAS code, to ensure we still allow independent validation
processes to be followed, however using pseudo-code is acceptable. The ultimate goal is to have a
derivation that is clear and descriptive.

Example – Methods Tab
ID Name Type Description Expression Conte Expression Co Document Pages

MT.CM.CMENDY Algorithm to derive MT.CM.CMENDY Computation Set to(CMENDTC-DM.RFSTDTC) +(CMENDTC>=DM.RFSTDTC).

MT.CM.CMSEQ Algorithm to derive MT.CM.CMSEQ Computation Sort by key variables and assign sequential integer by USUBJID.

MT.CM.CMSTDY Algorithm to derive MT.CM.CMSTDY Computation Set to (CMSTDTC-DM.RFSTDTC) + (CMSTDTC >= DM.RFSTDTC).

MT.CM.EPOCH Algorithm to derive MT.CM.EPOCH Computation

Set to 'SCREENING' when CMSTDTC <= SE.SESTDTC when

SE.ELEMENT='SCREENING'.

Set to 'OPEN LABEL TREATMENT' when SE.SESTDTC <= CMSTDTC <=

SE.SEENDTC when SE.ELEMENT = 'OPEN LABEL TREATMENT'.

Set to 'BLINDED TREATMENT' when SE.SESTDTC <= CMSTDTC <=

SE.SEENDTC when SE.ELEMENT = 'BLINDED TREATMENT'.

Set to 'FOLLOW-UP' when SE.SESTDTC <= CMSTDTC <= SE.SEENDTC
when SE.ELEMENT = 'FOLLOW-UP'.

 ID: This should be populated from the Methods column on the VARIABLES or VALUELEVELtab
sheet. The values must match exactly.

 Name: This needs to be populated following the set criteria; “Algorithm to derive: <ID value>”, for
example “Algorithm to derive: MT.CM.CMENDY”

 Type: This represents what type of algorithm this is. Generally, this is set to “Computation”, however
it also can be set to “Imputation”.

 Description: This is the derivation part, the part that enables us to create the specified variable. For
SDTM ensure that you are not referencing any raw variables that are not present in the SDTM
anywhere. For ADaM if you are using an SDTM variable, please be sure to include the domain when
referencing, for example AE.AESEV=’MILD’.

 Expression Content: This can be left blank

ID Name Data Type Dictionary Version

8

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

 Expression Code: This can be left blank

 Document: This is used to when the derivation is very complicated and needs more explanation. For
these, you add the extra detail to a separate document and reference that document in this section.
This field will then be an identifier that is also referenced on the DOCUMENTS tab sheet, in the form
of COM.VS.VSBLFL, for example. This typically comes into play with ADaM datasets since some of
those derivations can be very lengthy.

 Pages: Please ensure any page numbers references are separated by a space.

COMMENTS TAB

This tab is used to add additional information that may be useful for a reviewer.

Example – Comments Tab

ID Description Document Pages

CO.COEVAL 'INVESTIGATOR'.

CO.IDVAR

Set to one of the following based on the identifying variable: 'S_ODAE',

'DASEQ', 'LBSEQ'.

CO.IDVARVAL

Set to AE.AESPID when IDVAR='S_ODAE' raw data. Set to DA.DASEQ

when IDVAR='DASEQ'. Set to LB.LBSEQ when IDVAR='LBSEQ'.

CO.RDOMAIN Set to one of the following based on related domain: 'EX', 'DA', 'LB'.

 ID: This should be populated from the comments column on the VARIABLES or VALUELEVELtab
sheet. The values must match exactly

 Description: This is just like the Methods column on the METHODS tab sheet.

 Document: If you need to reference a separate document in order to explain an item in greater detail,
create an ID here following the same guidelines as the Documents column in the METHODS tab
sheet.

 Pages: If your origin is set to ‘CRF’ then specify the pages from the annotated CRF (aCRF) inthis
section. If the variable appears on more than one page separate the page numbers with a space.
This piece can be populated programmatically.

DOCUMENTS TAB

This tab is where all the external documents are referenced. These will be linked to the define file for
easy access by the reviewer.

Example – Documents Tab

ID Title Href

acrf Annotated Case Report Form acrf.pdf

sdrg Study Data Reviewer’s Guide sdrg.pdf

 ID: You should create a unique identifier for each external document. You should keep it simple for
this.

 Title: Create a document title that clearly depicts what the document is, this test will appear onthe
define file, so make this meaningful.

 Href: You will populate this as the name of the document, but in file reference format. The file needs
to reside in the same location as the data and the define, otherwise P21 will not be able to find it but it
will still create a link.

9

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

SPECIFICATION AUTOMATION (VERB): HOW TO MAKE SPECIFICATION
CREATION EASIER

As noted previously, there are a lot of i's to dot and t's to cross in the specifications. P21 does a wonderful
job of telling you when you’ve missed something, however it’s not the most transparent in what that
something is. By adding in some automation and programmatic cross checks, we can minimize those
risks. Applying automation can help populate areas of the specifications, such as the CODELISTS,
VALUELEVEL and WHERECLAUSES tab sheet, and using programmatic cross checks can verify some
variable aspects.

AUTOMATION EXAMPLE: CODELISTS TAB POPULATION

Populating the CODELISTS tab sheet can be a beast of a task. Finding all the values in the data, finding
the NCI Codelist and NCI Term Code, populating all the xxTESTCD/VISITNUM decoded values is
definitely a mind numbing and time-consuming process. If we automate this process, our programming
scripts take on the brunt of the hard work for us.

Please note: the following code assumes the Codelist column of the VARIABLES tab sheet has correct
NCI Codelist names (if NCI mapping is needed).

Step One - Bring in the Variables tab sheet of the specifications

proc import out= study_variables(rename=(codelist=ct))
datafile= "file_path\ddt_name"
dbms=xlsx replace;
sheet="Variables";
getnames=yes;

run;

After import, drop any records where CT is null or contains ‘EXTERNALCODELIST’ or ‘ISO8601’ since
they are not going to have records in the CodeLists tab sheet.

Step Two – Create Macro Variables for Dataset, Variable, CT and Type

data _null_;
set study_variables end=eof;
length varnm $30;

varnm = 'ds' || left(put(_n_,5.));
call symput(strip(varnm), upcase(dataset));

varnm = 'var' || left(put(_n_,5.));
call symput(strip(varnm), upcase(variable));

varnm = 'ct' || left(put(_n_,5.));
call symput(strip(varnm), upcase(ct));

varnm = 'type' || left(put(_n_,5.));

if Data_Type ne 'text' then type_chk=1;
else type_chk=0;

call symputx(strip(varnm), type_chk);

if eof then call symput('variable_total',trim(left(put(_n_,5.))));
run;

This is done for each unique record in the study_variables dataset, and at the same time we create a
macro variable representing the total number of records and variable type.

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

10

Step Three – Determine Variable Pairs for all values in the data

%macro get_codelist(ds, dsout, var, type, ct);
/* Make a temporary dataset containing only unique values for the variable passed in */
proc sort data=&ds out=_temp(keep=&var) nodupkey;

by &var;
run;

data temp (keep=variable term ct);
length variable term ct $200;
set _temp;

/* Set the Variable name and Codelist name to merge back onto the specifications later */
variable=upcase("&var");
ct=upcase("&ct");

/* Set the value of Term using the correct numeric or character format */
%if &type %then

%do;
term=strip(put(&var,best.));

%end;
%else

%do;
term=&var;

%end;

if term not in('.' '');
run;

/* Append all records together to use after looping is complete */
proc append base=&dsout data= _temp force;
run;

%mend;

%macro get_cts();
%do i=1 %to &variable_total;

%get_codelist(data.&&ds&i, all_ct, &&var&i, &&type&i , &&ct&i);
%end;

%mend get_cts;

%get_cts();

Call the macro so that it loops through each record until it reaches the defined number of total possible
records (&variable_total). The appended dataset will contain all possible data values for each codelist.

Step Four – 2 Part Process to get the NCI Codelist and Term Codes

For our example, we’ll be using the SDTM Terminology 2016-06-24 version, make sure to import the
correct SDTM Terminology document needed for your study, you can use the same code as depicted in
step one for importing.

NCI STEP ONE – Import, Sort and Keep Specified Variables

proc sort data=SDTM_Terminology_file (where=(Codelist_Code = '')
keep=Codelist_Code code extensible CDISC_Submission_Value)

out=ig_ct (rename=(CDISC_Submission_Value=_ct));
by CDISC_Submission_Value;

run;

We rename CDISC_Submission_Value to CT to merge onto the dataset created in step one. After
merging by CT, you’ll have the correct NCI CodeList code associated with each record in the specs.

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

11

NCI STEP TWO – Merge on the NCI Codelist Term Code

proc sort data=ctlib.ct (where=(Codelist_Code ne '')
keep=Codelist_Code code CDISC_Submission_Value CDISC_Synonym_s_)

out=ig_ct (rename=(CDISC_Submission_Value=term));
by Codelist_Code CDISC_Submission_Value;

run;

We rename CDISC_Submission_Value to Term to match the variable name created in step 3, then sort
both datasets by Codelist_Code (from step: NCI Step One) All_CT (from Step 3) by Codelist_Code and
Term we can merge. Once merged, we’ll have both NCI Codelist Codes and Term Codes for all the
applicable values.

STEP FIVE – MERGE ON THE DECODE VALUES

1. Define variables where decode values are needed, for example xxTESTCD and VISITNUM

2. Loop through data to get unique values of variable, such as unique values of xxTEST per xxTESTCD.

3. Merge on decode values.

Once all the merging is done and you have renamed a few variables, you’ll have everything you need to
populate the Codelist tab. The only manual entry will be any additional codelist values that were collected
on the CRF, but are not in the data.

CROSS CHECK EXAMPLE: VERIFYING DATESETS TAB KEY VARIABLES

P21 does not check that all the variables listed in the Key Variables column of the DATASETS tab are in
the data. As a study progresses or if a specification template is used, it’s possible that some key variables
were listed in error, you can manually check all the listed key variables per domain to ensure they are
present, or parse the column and compare the values against the data programmatically.

/*Import the specification */

proc import out= ddt(where=(dataset ne ''))
datafile= "file_path\ddt_name"
dbms=xlsx replace;
sheet="Datasets";
getnames=yes;

run;

data ddt (keep=dataset variable);
length dataset $7 variable $8;
set ddt;

/* Determine the number of key variables listed per record by counting the commas */
num_keys=countw(key_variables,',');

do i=1 to num_keys;
/*split each key var into its own variable and output, one record per dataset per key var */

variable=strip(scan(key_variables, i,','));
output;

end;
run;

/* get a list off all datasets and variable names in the target library*/
proc contents data=data._all_ out=dataset_meta(keep=memname name)noprint;
run;

data dataset_meta (keep=dataset variable);
length dataset $7 variable $8;
set dataset_meta;
/* Map memname to dataset and name to variable to match the structure of the dataset in step 3 */
dataset=strip(memname);

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

12

variable=strip(name);
run;

/* Sort both datasets by Dataset and Variable*/

proc sort data=ddt; by dataset variable; run;
proc sort data=dataset_meta; by dataset variable; run;

/*Merge datasets by Dataset and Variable, output if in key variables dataset (step 3) but not step 5 */
data need_to_delete;

merge ddt (in=a) dataset_meta(in=b);
by dataset variable;
if a and not b;

run;

The same logic can be used to determine if a dataset listed in the DATASETS tab sheet is not in the data.
This logic is helpful when a specification template is used as a starting point.

This programmatic approach can also be used to; populate the lengths on the Variables tab sheet, ensure
the Origin column values are consistent with supporting attributes, match data types across tabs, confirm
defined roles are consistent with CDISC IG roles, and confirm all required methods (per the Variable tab
sheet) are present in the Methods tab sheet..

DEFINE GENERATION (VERB): MOVING FROM SCARY TO EASY PEASY

So why have we been afraid all this time? We have a great tool that once you set the specs up makes
define generation as easy as 1, 2, 3. We have created a nice wee guide to follow, depicted below, with
screenshots, to show you just how simple this whole process can be.

STEP ONE

Open Pinnacle 21 and locate where you placed your specification spreadsheet.

Navigate to the Define.xml section on the left hand side menu, and following the screenshots below select
generate.

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

13

STEP TWO

Click to open and view the define 2.0 file, or if you prefer you can navigate to find the .xml file at the
following location on your hard drive: pinnacle21-community\components\reports. Please note that the
file will be named with the project name.xml – you will need to rename it to “define.xml” for submission.

STEP THREE

The last step is to validate your new creation. This is the most involved part after specification creation,
but it is not difficult. There are two last parts to follow, and after you complete those you will have a fully
compliant define file that your sponsor/team will love, not to mention the FDA really likes these too!

Part One - Standard option pick = “Define.xml”

First we need to validate the define itself, to ensure it is compliant. To do this, navigate to the screen, as
shown, below and change any settings as needed.

 Pick Define.xml for the Standard – this will only check the define itself
 Pick the correct configuration for your study
 Click browse and locate the define 2.0 generated above
 Pick the correct CDISC CT version used for your study
 Pick SDTM or ADaM for CT Standard

 Click validate

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

14

Once the P21 validator completes its check, it will generate a report that should look like this. You will
need to review this file carefully, and address as the noted findings as much as possible. We will talk
about some of the issues to look out for in this report in the next section.

Part Two - Standard option pick = “SDTM”/”ADaM”

Secondly, we want to validate the define along with the data. This step will cross check the two and tell
us if we missed anything vital. To do this navigate to the screenshot below and change any settings as fit.

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

15

 Pick either SDTM or ADaM for the Standard
 Pick the correct configuration for your study
 For the Source Data option, click browse and navigate to the datasets that were used forthis

define and select them all.
 For the Define.xml option, click browse and locate the define 2.0 generated above
 Pick the correct CDISC CT version used for your study
 Click validate

The resulting report should look very familiar to you, it is the same report you get when you validate the
data using P21. You will want to review it in the same way you do when just checking the data, but make
sure you pay special attention to any issues that reference the define.xml. These are the issues that tell
you something doesn’t jive between the data and the define.

We will talk about some of the issues to look out for in this report in the next section.

ISSUES (NOUN): AREAS NEEDING A LITTLE MORE ATTENTION AND/OR
EXPLANATION

It does have to be mentioned here, that P21 compliance reports are often not the most straight-forward or
easy to understand or reports, and,at times, the compliance messages just leave us scratching our
heads. In order to get you moving in the right direction, we have summarized some of the most common
messages the report will throw at you and given you some pointers to keep you on track.

This is, by no means, a complete list but in our experience these are the that ones seem to pop up most
often. For those of you who want to review all the compliance messages you could ever receive, there is
a full list on the Pinnacle 21 website.

DEFINE.XML- ALL BY IT’S LONESOME

P21 Message Resolution

Missing required <attribute> value
for <object>

You are missing a required attribute in the define.

Attribute <attribute> is not allowed
to appear in element <element>

You specified an attribute that is not allowed, for example -
char/character rather than text

Element in wrong position within
Define.xml

A variable is out of order - this might only be in the specs/define, but you
should check both specs/define and data to be sure

Element occurs more than once You have duplicated a variable within a domain/dataset, this is likely an
issue in the specs/define

Duplicate Document ID Typically, this means you duplicated a variable in the define

Duplicate Method OID Typically, this means you duplicated a variable in the define

Duplicate ValueListDef OID Typically, this means you duplicated a variable in the define

Referenced Document is missing You referenced a document but it is not in the same location as the
define

Referenced Method is missing You created a method on the VARIABLES/VALUELEVEL tab but did not
define it on the METHODS tab

Referenced Value Level metadata
is missing

Typically, means that something does not line up between the
VALUELEVEL tab and the WHERECLAUSES tab

Invalid Term in Codelist <codelist> This is applicable primarily to non-extensible code lists. You likely
added a code list when you are not allowed to.

Invalid MedDRA Version
<version>

MedDRA version must have a decimal representation

Term/NCI Code mismatch in
Codelist <codelist>

You probably entered the wrong Term/NCI Code on the CODELIST tab

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

16

P21 Message Resolution

Missing NCI Code for Codelist
<codelist>

You did not enter a NCI Code for a code list that is present in CDISC CT

Unknown NCI Code value for
Codelist <codelist>

You probably entered the wrong Term/NCI Code on the CODELIST tab

Missing Pages value You specified the origin as “CRF” but did not enter the page number(s)
Missing Key Variables value You did not specify the Key variables on the DATASETS tab
Duplicate KeySequence You specified the same variable more than once in your key variables

Missing Method reference You created a method on the METHODS tab sheet but have not
referenced it anywhere on the VARIABLE/VALUELEVEL tab sheet

Invalid use of Length The Length attribute must be empty when DataType is not “integer”,
“float”, or “text”.

Invalid use of Significant Digits
The Significant Digits attribute must be empty when DataType is not set
to “float”.

Missing Origin You did not specify an Origin for a variable

Invalid Origin Type value
The Origin Type attribute must have a value of 'CRF', 'Derived',
'Assigned', 'Protocol', 'eDT', or 'Predecessor'.

Codelist <codelist> is not
referenced

You specified a Code list on the CODELIST tab but did not reference it
on the VARIABLE/VALUELEVEL tab

Missing Define XSL
Stylesheet (".xsl") file referenced in Define.xml must exist in the same
location as the define file

DEFINE.XML ALONG WITH THE DATA

P21 Message Resolution

Value for variable not found in
user-defined codelist

Your Code list is missing a value that is found in the data

Variable in define.xml is not
present in the dataset

You have a variable in your specs that is not in the resulting data

Variable in dataset is not present
in define.xml

The opposite of the item above.

Define.xml/dataset variable type Your data has the type as one thing but the define says it is something
mismatch else,

for example - in the data the field is a text but in define it is an integer
Typically the data is correct.

Domain referenced in define.xml
but dataset is missing

You have a domain/dataset in the define but no dataset - this often
occurs when you don't have data for something that is on the CRF (i.e.
IE), in this case do not include it in the define

Dataset is not present in
define.xml

You have a domain/dataset but nothing in the define to explain it. You
need to add the domain/dataset to your specs and the define.

CONCLUSION (NOUN): WHY WE THINK P21 IS A GREAT TOOL, MAKING
DEFINE.XML GENERATION SOMETHING TO EMBRACE RATHER THAN DREAD

P21 gives us a great tool to create our define.xml and define.pdf files, while making the process straight-
forward and relatively pain-free. You can quickly and accurately create compliant files, and reduce the
tension headaches/late nights that frequently occur at final deliverable stages.

Our recommendation is to use the functionality of P21 to do your study specifications, and garner those
efficiencies through the entire study. If you have already created your specifications, you can retro-fit
them, and still use the P21 tool to complete your required files.

In summation, P21 is free, its efficient and effective, it gives you a compliant file, what’s not to love?

define.xml (noun): Fear Inducing Task for SAS Programmers, continued

17

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Kjersten Offenbecker
Director, Clinical Analytics
Covance, Inc.
Kjersten.Offenbecker@Chiltern.com
Covance.com

Kirsty Lauderdale
Senior Manager, Statistical Programming
Covance, Inc.
Kirsty.Lauderdale@Chiltern.com
Covance.com

Tony Cardozo
Director of Biometrics
Spaulding Clinical
Antonio.Cardozo@SpauldingClinical.com
SpauldingClinical.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:Kjersten.Offenbecker@Chiltern.com
mailto:Kirsty.Lauderdale@Chiltern.com
mailto:Antonio.Cardozo@SpauldingClinical.com

