
1 

PharmaSUG 2018 - Paper SS-20 

 

Review programs used for submission and their input to the define-XML 2.0 

Ari Knoph, Bo S. Andersen, Morten H. Jensen, Novo Nordisk A/S 

ABSTRACT  

In recent years the regulatory authorities have been requiring programs for generation of ADaM data and 
programs for main endpoint analysis as part of the submission package. Generally in the pharmaceutical 
industry, analysis programs used for clinical trial reports make use of internal sponsor-defined metadata 
repositories and highly complex macros to facilitate e.g. the generation of several outputs. Therefore, it 
has become gradually clear, that the authorities demands high readability, more transparency and more 
traceability in analysis programs for submission as well as in the related analysis results metadata (ARM). 

This paper presents a novel approach where 1) main analysis programs are created using the metadata 
and programming tools available in order to have a faster deliverable for internal stakeholder interaction 
and the clinical trial report, and 2) where review programs are made submission-ready by reducing the 
use of metadata, enhancing readability and keeping the programs macro-free. In order to keep an end-to-
end traceability from the analysis program to the analysis results metadata included in the define-XML, in-
line tags are utilized as well as an ARM library. 

INTRODUCTION  

With the regulatory adoption of CDISC end-to-end standards the scope of submission deliverables has 
been re-defined by the concept of ‘e-data’ e.g. ADaM datasets, programs, analysis data reviewer’s guide 
and the define-XML. In the Technical Conformance Guides

1
 and from regulatory feedback, it is stressed 

that an important component of the regulatory review is to understand the relationship and thereby trace 
between the analysis results and the analysis datasets as well as the rationale for the analysis. This is 
facilitated by the submission of ‘transparent’ analysis programs and the use of the ‘Analysis Results 
Metadata v1.0 for Define-XML v2’ specification for define-XML 2.0.  

During the trial reporting phase, the generation of analysis results is often supported by complex macros 
that can create multiple analysis outputs in the same program. In such cases, regulatory authorities might 
allow that the macros are submitted, however those programs do not facilitate above-mentioned 
traceability necessary for the reviewer. 

In the following sections, the paper describes a proof-of-concept process on how to prepare analysis 
programs for submission as well as a structure for the programs and a method to enforce the end-to-end 
traceability from analysis program to the define-XML 2.0 and the analysis results. 

THE SETUP 

It should be noted that the paper assumes a structured output programming process where a 
programmer creates the program and a reviewer reviews the program according to a specified level of 
review. If this is not the case of the reader, the following could be read as a guidance on how to structure 
and setup submission programs as well as implement and enforce the end-to-end traceability requested 
by regulatory authorities. The paper also assumes that the reader has knowledge of CDISC standards 
such as ADaM, the define-XML 2.0 and Analysis Results Metadata (ARM). 

THE PROCESS FOR SUBMISSION PROGRAMS 

Before starting the programming and review of primary and secondary analyses, it is to be decided which 
analyses should be submitted, with the intent to use the review program as a submission program. We 

                                                           

1
 FDA and PMDA 



Review programs used for submission and their input to the define.xml 2.0, continued 
 

2 

will call this level of review ‘full parallel programming for submission’ or simply ‘FPPSUB’. Looking into the 
technical conformance guides from FDA and PMDA, FDA specifies that:  

‘Sponsors should provide the software programs used to create all ADaM datasets and generate tables 
and figures associated with primary and secondary efficacy analyses.’

2
 

While PMDA specifies that: 

‘…the programs used to create the ADaM datasets and programs used for analyses must be submitted.’
3
 

Depending on the trial and/or the requirements of a potential submission package, a good approach 
would be to choose the analyses related to the main outcome of the trial i.e. the primary analyses as well 
as the related sensitivity analyses. If a hierarchical testing procedure, or a similar procedure to adjust for 
Type I errors, is used, the analyses included in the hierarchy should also be reviewed with FPPSUB as 
the level of review. The analyses chosen here will most likely also be the ones where analysis results 
metadata are submitted for. 

Once the scope of the submission programs has been decided, the remaining prerequisites for starting 
the programming, are the output specifications and the statistical analysis plan. The main analysis 
program will produce the outputs included in the clinical trial report using the sponsor-defined metadata 
available such as titles, labels, footnotes, font size etc. as well as metadata driven tools for output 
generation, and the statistical macros available to create such outputs, as displayed in the left-hand side 
of Figure 1. The generation of these outputs by the original program will generally be faster than the 
outputs generated by the review programs and therefore earlier available for internal/external stakeholder 
exchange. 

 

                                                           

2
 FDA, ”Study Data Technicanl Conformance Guide”, p. 15, section 4.1.2.10. 

3
 PMDA, ”Technical Conformance Guide on Electronic Study Data Submissions”, p. 14, section 4.1.6.1. 

FPPSUB parallel programming

Original Program Full Parallel Program(s)

P
ro

g
ra

m
s 

a
n

d
 o

u
tp

u
t

Sp
ec

if
ic

a
ti

o
n

s

No macros

Metadata in 
program

Output specifications

Statistical Analysis 
Plan

Analysis 
program for 

primary 
endpoint 

parameter

Primary 
analysis

Sensitivity 
analysis

Sensitivity 
analysis

Sponsor 
defined 

metadata

Macro for 
statistical 
analysis

Primary 
analysis

Sensitivity 
analysis

Sensitivity 
analysis

Primary 
analysis 
FPPSUB 
program

Sensitivity 
analysis 
FPPSUB 
program

Sensitivity 
analysis 
FPPSUB 
program

Multiple FPPSUB 
programs can exist 

for the same analysis 
program



Review programs used for submission and their input to the define.xml 2.0, continued 
 

3 

Figure 1 - The FPPSUB process. Left-hand side displays the process of programming one main 
program which creates several output using sponsor-defined metadata and macros. Right-hand 
side displays the review programming process where one program is created for each analysis 
and doesn’t contain macros or retrieve metadata. 

The review program will reproduce the same analysis output but be self-contained in the way that, it will 
not retrieve any metadata during the generation of output nor will it make use of any statistical macros. 
Any metadata e.g. title, labels etc. will be available in the program itself. The structure of the program will 
be described in further details in the next section.  

When this parallel approach is chosen, one review program is created for each analysis output as 
opposed to the main program that might create several as seen in Figure 1. In this way it should be easier 
to locate and confirm the analysis algorithm as desired. 

THE SUBMISSION PROGRAM STRUCTURE 

The purpose of defining a general structure for the submission programs is to facilitate the regulatory 
review of not only one program but also across multiple programs. The aim is, that the reviewer, once 
familiar with the structure, will be able to locate and understand the analysis algorithm across multiple 
programs. Besides the structure, focus should also be given to the following: 

 Adequate header information 

 Well written code comments 

 Consistent naming convention of datasets and variables that are self-explanatory (to the extent possible) 
e.g. not ‘ds1’ but ‘adae_fas’ as below: 
 

data ds1;      data adae_fas; 

  set adam.adae;     set adam.adae; 

  where FASFL = "Y";    where FASFL = "Y"; 

run;       run; 

As we will see later on, the information specified in the header and the code in the program will be utilised 
in an automatic retrieval of input for the analysis results metadata in the define-XML. This is further 
explained in the Enforcing traceability from define-XML 2.0 section. 

THE HEADER INFORMATION 

The header included in the submission program will be more extensive than the header in the main 
program. The purpose of the submission header is to introduce the program and the statistical analysis to 
the regulatory reviewer. The introduction should, much like the analysis results metadata in the 
define.xml, give an overview of the parameter(s) and endpoint(s) handled in the program and the 
statistical method(s) applied. Additionally, the header should aid the regulatory reviewer in reading the 
program by giving an overview of the ADaM datasets and variables used, as well as any variables 
derived in the program as seen in Header Sample 1.  

The rationale behind including a table of variables used and derived, is also to aid the understanding of 
the analysis block of the program (further described below) when looking at the code isolated. In this way 
the regulatory reviewer doesn’t have to follow the entire logic of the preceding code in order to see what a 
derived variable expresses. 

When the statistical analysis plan has been created for the trial, it is recommended to include and align 
any text written about the specific analysis, in the program header. This will enforce the traceability from 
the statistical analysis plan to the submission program and the actual analysis.  

Note that creating the submission program header will be an iterative process as it assumes knowledge 
of the variables used and created in the program. 

 

 



Review programs used for submission and their input to the define.xml 2.0, continued 
 

4 

/********************************************************************** 

Description: Submission program for "Adverse events - treatment  

    emergent - statistical analysis - full analysis set" 

             Produces output <output_name>. 

 

Input      : adam.adae 

 

Parameters : AEDECOD 

 

Endpoints  : Number of treatment emergent adverse events 

 

Trial      : XXXX-YYYY 

 

Statistical Analysis :  

 

             Number of adverse events is analysed using a negative  

             binomial regression model with a log-link function and the  

             logarithm of the time period in which an adverse event  

             is considered treatment emergent as offset. 

 

Usage notes:  

 

             VARIABLES USED IN THIS PROGRAM 

             FASFL........: Full Analysis Set Population Flag 

   TRTEMFL......: Treatment emergent flag 

   TRTA.........: Actual treatment 

             TRTAN........: Actual Treatment (N) 

             AEDECOD......: Dictionary-Derived term 

   TRTDURY......: Total Treatment Duration (Yrs) 

 

             NEW VARIABLES CREATED IN THIS PROGRAM:            

             AE_COUNT.....: Number of adverse events per dictionary-derived  

    term and per treatment 

             LOG_TRTDURY..: Logarithm of total treatment duration in years 

             EXPESTIMATE..: Exponential of estimate 

             LOWEREXP.....: Exponential of lower confidence limit of estimate 

             UPPEREXP.....: Exponential of upper confidence limit of estimate 

             CI...........: Confidence interval of estimate 

             probz........: 2-sided p-value 

Header Sample 1 – An excerpt of the submission program header. Additional information 
regarding the statistical analysis, variables used and variables derived is included in the header to 
aid the regulatory reviewer. 

THE STRUCTURE 

For the structure of the submission program, five blocks besides the header are defined. These blocks 
will appear with their own header in the program to clearly distinguish between sections of the program. 
Code examples will be included below to display block headers and samples of the programming 
statements in that block. Please note that any examples included below is only to display the elements of 
each block and not necessarily a recommendation for the look of block headers or code. 

The first one will be the ‘DATA SELECTION’ block, where a selection of data is made from one or more 
main ADaM datasets with the appropriate ‘where clause’ applied: 

 /********************/ 

/** DATA SELECTION **/ 

/********************/ 

 



Review programs used for submission and their input to the define.xml 2.0, continued 
 

5 

  data adae_fas; 

   set adam.adae; 

where FASFL = "Y" and TRTEMFL = "Y"; 

  run; 

Code Sample 1 

The ‘where clause’ reference used in this DATA step should match the one displayed in the analysis 
results metadata for this analysis. When doing the data selection, one should consider using the KEEP 
statement to keep only the variables relevant to the analysis and variables that aids the understanding of 
the selected data. 

The second block is the ‘DATA PROCESSING’ block. This is where additional variables or analysis 
datasets are derived: 

/*********************/ 

/** DATA PROCESSING **/ 

/*********************/ 

 

  proc sql; 

   create table adae_fas_count as 

   select TRTA, TRTAN 

    , AEDECOD 

    , count(AEDECOD)   as AE_COUNT 

   from adae_fas 

   group by TRTA, AEDECOD; 

  quit; 

Code Sample 2 

Depending on the derivation of the variables included, a programmer would traditionally do the derivation 
of the variables, if applicable, in the DATA step in the previous block, or do the data selection in the 
sample SQL procedure above, as this would programmatically be most time- and space-saving. However, 
more complex derivations or data selections would be harder to locate when browsing through the 
program, and therefore, this split between selection and derivation is recommended. 

Block number three is the ‘DATA ANALYSIS’ block. This is where the analysis algorithm will be located 
for the reviewer to look at: 

/*******************/ 

/** DATA ANALYSIS **/ 

/*******************/ 

 

  proc genmod data=adae_fas_count; 

   class TRTAN; 

   model AE_COUNT = TRTAN / link=log dist=negbin 

 offset=LOG_TRTDURY alpha=0.05; 

   lsmestimate TRTAN 

    '<Treatment 1>' [1, 1], 

    '<Treatment 2>' [1, 2], 

    '<Treatment 1 / Treatment 2>' [1, 1][-1, 2]  

/ cl exp alpha=0.05 om; 

   ods output LSMestimates = estimates; 

  run; 

Code Sample 3 

In this block it is vital for the understanding of the model, that dataset and variable names are kept clear 
and self-explanatory to the extent possible. Depending on the derivation in the ‘DATA PROCESSING’ 
block, it is worth considering whether any additional variables derived there, actually should be included 
in the main ADaM dataset if possible. This would reduce the complexity of the submission program and 



Review programs used for submission and their input to the define.xml 2.0, continued 
 

6 

header. Also any variable included directly in the ‘DATA ANALYSIS’ block from the ADaM dataset could 
be identified in the define.xml as well. 

Fourth block is the ‘DATA COLLECTION AND ALIGNMENT’ block. This is where results created in the 
‘DATA ANALYSIS’ block is collected into a common structure and the variables arranged. Any 
arrangement to fit the layout specification is also done here, such as applying formats and collapsing 
variables: 

/***********************************/ 

/** DATA COLLECTION AND ALIGNMENT **/ 

/***********************************/ 

 

  data final_stats; 

   set estimates; 

 

  /*Apply formats and create a common variable (CI) to hold*/ 

  /*the confidence interval.*/ 

CI = "[ " || put(LowerExp,5.2) || "; " ||  

        put(UpperExp,5.2) || "]"; 

  run; 

Code Sample 4 

The fifth and last block is the ‘DATA OUTPUT’ block. This is where any output specific metadata that 
would be retrieved by the main program is setup e.g. output path, output title and footnotes. Please note 
that the following code sample contains pseudo-code(‘<pseudo-code>’) to ease the readability: 

/*****************/ 

/** DATA OUTPUT **/ 

/*****************/ 

 

 options orientation=portrait ls=96 ps=89; 

ods listing file= "/example_drive/trial/output/output_name.txt"; 

 title1 "Adverse events - treatment emergent – statistical 

   analysis - full analysis set"; 

 

 proc report data=final_stats nowd split='|' spacing=0; 

  column (string Expestimate CI probz); 

  define string  / display ""   <options>; 

  define Expestimate  / display "Estimate"  <options>;  

  define CI   / display "95% CI" <options>; 

  define probz  / display "p-value*" <options>; 

 

  compute before; 

   <output specific layout>; 

  endcomp; 

  

  compute after; 

   line @1 ""; 

   line @1 "*p-value is from the 2-sided test for  

    treatment difference evaluated at the 5% level."; 

  endcomp; 

 run; 

ods listing; 

Code Sample 5 

When creating the output from the submission program, the output specifications for the clinical study 
report output from the main program should be followed. As the submission program is created as part of 



Review programs used for submission and their input to the define.xml 2.0, continued 
 

7 

the formal internal sponsor review, it is recommended that any output created are compared through a 
text compare or a utility to compare figures. 

CODE COMMENTS 

When writing comments to the code in the submission program, the author should have the regulatory 
reviewer in mind. Any comment given should be there to aid the understanding of the proceeding code. 
The comments should preferably be written in plain text, without sponsor-specific lingo and abbreviations 
and be coherent as the reviewer might not be a programmer. 

The suggested guidelines for writing code comments are: 

 Describe data extractions in plain text and what that data should be used for. 

 Describe variable derivations in plain text and what their purposes are. A suggestion here is to 
include the derived variable name in the comment to link the plain text explanation with the 
variable. 

 If any derivation is done that directly links to the output, include in the comment that e.g. ‘the 
values in the “Estimate” column in the output is derived here’. 

 Depending on the complexity of the statistical method used, a minimal explanation of the method 
should be included in the program with the role of the variables in the model explained if possible. 
If the method is very complex a reference could be given to the statistical analysis plan and/or the 
analysis results metadata. 

Looking at Code Sample 2 again a comment for the derivation of ‘AE_COUNT’ could be: 

/*********************/ 

/** DATA PROCESSING **/ 

/*********************/ 

 

 /*In the following we create the counts of adverse events (AE_COUNT)*/ 

 /*grouped by the actual treatment (TRTA) and the dictionary-derived*/ 

 /*term (AEDECOD).*/ 

Code Sample 6 

Looking at Code Sample 3 again a comment for the statistical method could be: 

/*******************/ 

/** DATA ANALYSIS **/ 

/*******************/ 

 

/*The data is analysed using a negative binomial regression model*/ 

/*with the adverse event count (AE_COUNT) as the response and the*/ 

/*actual treatment as the effect (TRTAN). The logarithm of the */ 

/*treatment duration in years (LOG_TRTDURY) is used as offset.*/ 

/*"Estimate", "95% CI" and "p-value*" displayed in the*/ 

/*output is calculated here.*/ 

Code Sample 7 

ENFORCING TRACEABILITY FROM DEFINE-XML 2.0 

With the ARM extension to the define.xml 2.0, sponsors are now able to add and link additional 
information for statistical analyses to further add traceability from analysis dataset to analysis result. This 
includes: 

 The Analysis Parameter(s) and Variable(s) 

 Analysis Reason 

 Data References (incl. Selection Criteria) 



Review programs used for submission and their input to the define.xml 2.0, continued 
 

8 

 Documentation 

 Programming Statements 

In the following, an approach is shown, where the analysis results metadata are partly kept in an ARM 
repository and partly auto-populated from the submission program facilitated by the header and structure 
defined above. In this case, an Excel sheet forms the basis of the ARM repository and the later SAS 
dataset to be used as input for the generation of the define.xml through the Clinical Standards Toolkit, as 
seen in Figure 2 below. The sections of the ARM auto-populated are the two latter in the bullet list above: 
1) the Documentation section and 2) the Programming statements section. 

 

Figure 2 – The ‘source_analysisresults’ SAS dataset is created via input from the excel ARM 
repository and the information automatically retrieved from the submission program. SAS’ 
Clinical standards toolkit creates the define.xml. 

The ARM parameters needed to generate the define.xml are defined in the Excel sheet through written 
text, references to controlled terminology or through a keyword (shown in red boxes), as seen in Table 1 
below. The auto-population is activated through the keywords once the step to create the SAS dataset is 
initiated. 

 

Table 1 – Excerpt of the analysis results metadata working repository. The ‘Description’ cell and 
the ‘Code’ cell in the red boxes uses a keyword to specify that this will be automatically fetched 
from the submission program when creating the input datasets for the Clinical Standards Toolkit. 

Clinical Standards Toolkit

Program to convert excel 
sheet to SAS dataset and 
fetch information from 

the FPPSUB program

Source_analysisresults
source_analysisresults

Primary 
analysis 
FPPSUB 
program



Review programs used for submission and their input to the define.xml 2.0, continued 
 

9 

In the Header Sample 1 we included information about the statistical method in the ‘Statistical Analysis:’ 
section of the header. When the ‘FETCH_DESCRIPTION_FROM_PARPROG’ keyword is activated in the 
‘Description’ cell, a program will read this section of the header and populate it into the SAS dataset for 
define.xml generation. An automated comment is added to the documentation text to clarify that this 
section is auto-populated as seen in Figure 3. 

 

 

 

Figure 3 – The header information from the submission program populates the ‘Documentation’ 
section of the Analysis Results Metadata in the define.xml. 

Together with the statistical documentation reference defined in Table 1 this creates the ‘Documentation’ 
section of the ARM. 

In order to retrieve the programming statement for the define.xml we will need to look at Code Sample 3 
again and add the in-line tags ‘ARM_CODE_START’, to represent the beginning of the programming 
statement, and ‘ARM_CODE_STOP’, to represent the end of a programming statement as seen below:  

/*******************/ 

/** DATA ANALYSIS **/ 

/*******************/ 

 

/*ARM_CODE_START: Procedure is added to Analysis Results Metadata*/ 

  proc genmod data=adae_fas_count; 

   class TRTAN; 

   model AE_COUNT = TRTAN / link=log dist=negbin  

 offset=LOG_TRTDURY alpha=0.05; 

   lsmestimate TRTAN 

    '<Treatment 1>' [1, 1], 

    '<Treatment 2>' [1, 2], 

    '<Treatment 1 / Treatment 2>' [1, 1][-1, 2]  

/ cl exp alpha=0.05 om; 

   ods output LSMestimates = estimates; 

  run; 

/*ARM_CODE_STOP*/ 

Code Sample 8 

When the ‘FETCH_CODE_FROM_PARPROG’ keyword is activated in the ‘Code’ cell in Table 1 the same 
program will read the submission program top down to fetch the position of the in-line tags and the code 
in between. The in-line tags can in principle be added multiple times if e.g. the sorting order from the 
‘DATA PROCESSING’ block is desired in the programming statement. In that case the program should 
append the code statements in the same order as they appear in the program. The resulting 
programming statement can be seen in Figure 4. 



Review programs used for submission and their input to the define.xml 2.0, continued 
 

10 

 

Figure 4 – The results of the automatically retrieved code from the submission program using the 
in-line tags ‘ARM_CODE_START’ and ‘ARM_CODE_STOP’. 

As with the information retrieved from the program header, an automated comment is added, as well as a 
link to the submission program. With this, the traceability from the analysis program to the analysis results 
metadata in the define.xml is enforced by creating a direct link from program to display.  

CONCLUSION 

Although software programs are required in the ‘e-data’ submission package, no official regulatory 
guidance has been given on the content and structure of the programs other than it should be possible to 
locate and validate the analysis algorithm. Furthermore, the programs submitted are not yet required to 
be executable. 

The approach shown in this paper provides a common structure for the submission program that 
facilitates the review of the analysis algorithm. Also it provides the sponsor with a guarantee that the 
analysis algorithm shown in the ARM of the define-XML, is the actual analysis algorithm used to produce 
the output in the CSR. This makes the approach robust against any late changes in the program. Making 
the programs self-contained i.e. macro- and metadata-free also gives a reviewer the possibility to execute 
the program(s) directly on submitted analysis datasets to re-create CSR outputs or simply re-run each 
block of the program. 

As with all processes, there are some limitations to the setup described. Creating multiple submission 
programs for each main program can be time-consuming. When creating the program, the programmer 
should return multiple times to the header, making sure that the variables specified in the header are up-
to-date with the actual program. Also, a submission program of high complexity entails a lesson in 
moderation, balancing, on one hand, the overview and overall readability of the program, and on the other 
hand, not compromising on any information that aids the reviewer in understanding the analysis 
algorithm.  

Working with the above presented approach, one could expand the auto-population to include the 
analysis parameters, variables, datasets as well as the ‘where clause’ and the table join comment, 
making the ARM section of the define-XML almost fully automated. In a broader perspective, one could 
imagine that the variable hyperlinks in the define-XML could be developed to be shown in the 
‘Programming Statement’ of the ARM. Utilising the defined table of variables from the expanded header in 
Header Sample 1, one could also create a mouse-over view on each of the variables in the ‘Programming 
Statement’, also for the variables derived in the program, to aid the understanding of the analysis 
algorithm, when looking only at the define-XML. 

REFERENCES 

CDISC, “Analysis Results Metadata v1.0 for Define-XML v2”. Jan 2015. 

https://www.cdisc.org/standards/foundational/analysis-data-model-adam/analysis-results-metadata-arm-
v10-define-xml-v20 

FDA, “Study Data Technical Conformance Guide”. Oct. 2017. 

https://www.cdisc.org/standards/foundational/analysis-data-model-adam/analysis-results-metadata-arm-v10-define-xml-v20
https://www.cdisc.org/standards/foundational/analysis-data-model-adam/analysis-results-metadata-arm-v10-define-xml-v20


Review programs used for submission and their input to the define.xml 2.0, continued 
 

11 

https://www.fda.gov/downloads/ForIndustry/DataStandards/StudyDataStandards/UCM384744.pdf 

PMDA, “Technical Conformance Guide on Electronic Study Data Submissions”. April 2015. 
https://www.pmda.go.jp/files/000206449.pdf 

DISCLAIMER 

The views and opinions presented here represent those of the authors and should not be considered to 
represent the views of Novo Nordisk A/S. 

ACKNOWLEDGEMENTS  

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the authors at: 

 

 Ari Knoph 

 Novo Nordisk A/S 

 aikp@novonordisk.com 

 

 Bo S. Andersen 

 Novo Nordisk A/S 

 bsaa@novonordisk.com 

 

 Morten H. Jensen 

 Novo Nordisk A/S 

 mohj@novonordisk.com 

 

 

https://www.fda.gov/downloads/ForIndustry/DataStandards/StudyDataStandards/UCM384744.pdf
https://www.pmda.go.jp/files/000206449.pdf
mailto:aikp@novonordisk.com
mailto:bsaa@novonordisk.com
mailto:mohj@novonordisk.com

