PharmaSUG 2024 - Paper AP- 212

R Shiny and SAS Integration: Execute SAS Procs from Shiny Application
Samiul Haque and Jim Box, SAS Institute

ABSTRACT

The integration of different programming languages and tools is pivotal for translational data science. R
Shiny® is the most popular tool for building web applications in R. However, biostatisticians and data
scientists often prefer to leverage SAS®. Procs or macros for clinical decision making. The world of R
Shiny and SAS does not need to be decoupled. R Shiny applications can incorporate SAS procs and
analytics. In this work, we present mechanisms for integrating R Shiny and SAS®. We demonstrate how
SAS Procs and macros can be executed from R Shiny front end and SAS logs and results can be printed
within Shiny App.

INTRODUCTION

R Shiny has emerged as a favored tool for developing dashboards and web applications within the life
sciences industry. In teams with diverse programming backgrounds, there arises a need to execute
validated SAS macros on study datasets and seamlessly incorporate the results into Shiny applications.
For instance, users may wish to initiate an SDTM automation process, crafted with SAS Macros, directly
from R Shiny applications. Another scenario involves generating ggplot2 figures based on outputs from a
SAS macro. SAS Viya ® offers various avenues to establish connectivity between R and SAS sessions.
In this paper, we demonstrate a method for integrating R Shiny applications with SAS, paving the way for
seamless interaction between the two computes.

INTEGRATION MECHANISMS

Various methods exist for submitting SAS code from the R interface. Table 1 provides a summary of
several available integration methods for SAS and R. All of these mechanisms are available as open
source.

Integration Mechanism | Developed By Link to Documentation
SWAT: SAS Wrapper for | SAS
Analytics Transfers. https://github.com/sassoftware/R-swat

SWAT allows R wrappers for
connecting to SAS Viya in
memory processing engine,
also known as Cloud Analytics
Services (CAS)

REST API: SAS Viya SAS https://developer.sas.com/quides/restapis/viya-
provides public API rest.html

endpoints to all modules.
Public REST APIs can
be used to execute and
submit SAS programs,
consume SAS
resources, create, and
manage SAS sessions
from any external tools

https://github.com/sassoftware/R-swat
https://developer.sas.com/guides/restapis/viya-rest.html
https://developer.sas.com/guides/restapis/viya-rest.html

Integration Mechanism | Developed By Link to Documentation

SASPy + Reticulate: SAS + Third Party [1] https://support.sas.com/en/software/saspy.html

SASPy is a python https://rstudio.github.io/reticulate/index.html
wrapper for executing

SAS method from
Python. SASPy works
with SAS9 and Viya.
Though this is a python
wrapper it can be called
from R using the
reticulate package.
Reticulate provides a
mechanism for
interoperability between
R and Python.

SASR: Third Party [2] https://github.com/insightsengineering/sasr

SASR is a standalone
open source package
that provides interface to
SAS through SASPy and
Reticulate

Table 1. Different mechanisms for integrating R and SAS

EXAMPLE — EXECUTING SAS PROCS FRM R SHINY APPLICATION

In this paper, we present an example of R Shiny and SAS integration, showcasing two methods outlined
in Table 1: SWAT and SASR. We utilized the SWAT package to expose SAS in-memory tables to Shiny
App users, enabling them to access live data from the SAS platform. Additionally, we utilized SASR to
execute a proc on a selected dataset, retrieving the results and SAS log.

PREREQUISITES

The Shiny app was developed using the RStudio IDE, requiring the R-SWAT and sasr packages. For
visualization, ggplot2 was utilized. sasr relies on SASPy for connecting to the SAS session, with
modifications made to the SASPy configuration file to include the necessary connection strings. Detailed
instructions can be accessed in the SASPy documentation (refer to Table 1). To connect to SAS Viya
from SWAT, we provided the username and password through the R interface. For a secured connection
to the SAS Viya platform, we installed the security certificate provided by the SAS Admin on our
workstations.

https://support.sas.com/en/software/saspy.html
https://rstudio.github.io/reticulate/index.html
https://github.com/insightsengineering/sasr

SHINY APP FRONT-END

The Figure below shows the Shiny front end.

SAS Data Viewer

Selecta CASLIB

Public

Select a Table

CARS

Select a Column

EngineSize

Number of bins:

T F F
["

(] Show Data
snesze
Scatterpiot @
5 : Y []
X L]
Engnesize -

¥:

Harsepower -

Run PROC FREQ o

5
L S
=
-
-

Figure 1. Shiny App Front-End
Different components in Figure 2 are numbered for clarity:
1. Dropdown element for selecting SAS in-memory library (CASLIB)
Table selector.
Column selector.
Slider: Adjusts the number of bins in the ggplot histogram (Circle 8).
Checkbox, Allows users to view detailed data.
Checkbox: Shows Scatterplot.
Circle: "Run PROC FREQ" button, enabling users to execute PROC FREQ on the selected table

N o g bk~ D

PROC RESULTS AND LOGS

Run PROC FREQ

Figure 2. SAS Log is Printed on the Shiny Front-End after Completion of PROC

Result:
The SAS System
The FREQ Procedure
Cumulative Cumulative
Make Frequency Percent Frequency Percent
Acura 7 1.64 1.64
Audi 19 4.44 26 6.07
BMW 20 467 46 10.7
Buick 9 210 55 12.85
Cadillac 8 1.87 63 147
Chevrolet 27 6.31 90 21.0
Chrysler 15 3.50 105 24.5,
Dodge 13 3.04 18 27
Ford 23 5.37 41 3294
GMC 8 1.87 149 348

Figure 3 SAS System Output is Surfaced on the Shiny Front-End

CODE

The complete codebase of the application is available on GitHub at the following link:
https://github.com/samiulhg/RShiny SASViya While we provide some example snippets in this paper for
understanding the overall integration mechanisms, we highly encourage readers to refer to the GitHub
repository for implementing their own use cases..

Establishing a SAS Session
The following R code snippet demonstrates how to establish a connection to a SAS compute session:

https://github.com/samiulhq/RShiny_SASViya

library(sasr)
my sas_session <- get sas session()

Executing SAS Code

The following R code snippet demonstrates how to execute SAS code in the SAS compute session. The
resulting object is a list that contains the log and result of the run.

result <- run sas("
proc freqg data = sashelp.heart;
tables sex / out=FreqgCount;
run;
") #See Log
cat (resultS$LOG)

#See Result
cat (result$LST)

Fetching data from SAS session

We can retrieve a table from the SAS session into R as a dataframe. In the following example, we fetch
the FreqCount table from the work library into the R session.

freq count <- my sas session$sd2df ('FreqCount', libref='WORK")
print (freq count)

Uploading data to SAS session

Data can be uploaded to SAS from R session using the following method:

upload <- my sas_session$df2sd(mtcars,table ='mt df',libref='WORK')

List available tables in a SAS Library

my sas_sessionS$datasets (libref="WORK")

End a SAS Compute Session

my sas_sessionSendsas ()

Connection to CAS
Cloud Analytics Services (CAS) is the in-memory high-performance engine on SAS Viya. You can
establish a connection to CAS from your R session using the SWAT package:

cassess<-CAS ("<url to CAS server>",<port
number>, username=<userid>, password=<password>)

using the CAS session, all in memory operations and actions can be performed from the R native
interface. The following examples demonstrates how to list all in-memory libraries in the cassess object
available to the user:

list caslibs<-cas.table.caslibInfo (cassess)

CONCLUSION

In conclusion, we have demonstrated an easily implementable approach for integrating R and SAS.
Leveraging a combination of SWAT, SASR, and SASPy, developers can create sophisticated web
applications on a validated SAS Viya platform. This integration facilitates seamless collaboration between
R and SAS environments, opening up new possibilities for data-driven applications in translational data
science.

REFERENCES

Ushey K, Allaire J, Tang Y (2024). reticulate: Interface to 'Python'. R package version 1.35.0,
https://github.com/rstudio/reticulate.

Roche./Genentech — Insights Engineering sasr , https://github.com/insightsengineering/sasr

SAS Software R-swat, https://github.com/sassoftware/R-swat

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Samiul Haque Jim Box
Samiul.Haque @sas.com Jim.Box@sas.com
https://www.linkedin.com/in/samiulhaque/ https://www.linkedin.com/in/jwbox/

https://www.linkedin.com/in/samiulhaque/
https://www.linkedin.com/in/jwbox/

