

1

PharmaSUG 2024 - Paper AP-268

A New Approach to Automating the Creation of the Subject Visits (SV)
Domain

Xiangchen (Bob) Cui, Jessie Wang, and Min Chen, CRISPR Therapeutics AG, Boston, MA

ABSTRACT

The creation of the subject visits (SV) domain is one of the most challenging tasks of SDTM
programming. Aside from the small portion of mapping from raw dataset variables to SV variables, SV
programming mainly consists of a more complex derivation process, which is totally different from that of
other SDTM domains. The dynamic parts of the SV programming process, such as identifying raw
datasets and their variables with both date/time and clinical visits, cause manual development of a SAS
program to be time-consuming and error prone. Hence, automating its code generation would achieve
and enhance efficiency and accuracy.

This paper will present a new approach for SV automation based on the SDTM automation done in our
previous paper, which leveraged CRF specifications from an EDC database and SDTM standards [1]. It
will introduce the standard SV programming logic flow with 10 sequential steps, which leads us to develop
an additional SAS-based macro named %SV_Code_Generator as an expansion to the macro introduced
in [1]. The output of this macro (SV.sas) achieves 100% automation of SV domain for the raw data
collected per CRFs in a clinical study.

This new approach guarantees all raw dataset variables related to subject visits are accounted for in SV
programming thanks to the sequential programming automations. This automation allows for the
generation of SV dataset to occur very early in the programming development cycle and makes
developing programmatic quality checks for clinical data review and data cleaning more efficient and
economically feasible.

INTRODUCTION

A data-driven approach utilizing SASHELP views and CALL EXECUTE statements to bring in dates
programmatically and dynamically while building the SV domain is believed to be more robust than
manual identification and typical data step programming [2]. However, it still is a manual process, instead
of an automation through a metadata-driven method.

In our previous paper, we introduced a new approach in automatic SAS code generation to achieve
SDTM automation by a metadata-driven method leveraging both CRF specifications from an EDC
database and SDTM standards [1]. The macro named %SDTM_Code_Generator generates a SDTM
mapping SAS program after each call. However, since SV is a special purpose domain that requires
complex derivations, more work is warranted to automate SV programming.

This paper will present our thought process in developing %SV_Code_Generator and provide details on
the standard SV programming logic flow with 10 sequential steps and the rationale of the automatic
generation of SV domain. A deep understanding of SV programming has led us to develop two steps for
the automatic SV programming process as follows:

1. Call %SDTM_Code_Generator to generate SAS code for mapping visit-related raw data to the
SV domain.

2. Call %SV_Code_Generator to generate SAS code for complex derivations and combine it with
the SAS code from Step 1 to automatically output a SAS program for the SV domain (SV.sas).

This paper will illustrate how the two macros work together to implement the 10 sequential steps of the
SV programming process. It will identify which parts of the process are “dynamic” and which parts are
“standard” and provide snippets of SAS code to demonstrate how to process these parts. It will also show
how all variables collected for the SV domain are accounted for in SV programming through the
sequential programming automations built into the programming process. Finally, it will introduce how to

2

handle external data and how to validate the SV dataset generated by %SV_Code_Generator to achieve
both high quality and efficiency.

Samples of _SV.sas generated from %SDTM_Code_Generator and SV.sas generated from
%SV_Code_Generator are included in Appendix 2 and 3, respectively, for the illustration of the new
approach throughout this paper and for easy reference.

IMPORTANCE OF THE SV DOMAIN’S COMPLIANCE WITH CDISC STANDARDS
AND FDA VALIDATOR RULES

The CDISC SDTM Implementation Guide Version 3.4 (SDTMIG v3.4) states that Subject Visits (SV) is “[a]
special purpose domain that contains information for each subject’s actual and planned visits. The
Subject Visits domain consolidates information about the timing of subject visits that is otherwise spread
over domains that include the visit variables […] Unless the beginning and end of each visit is collected,
populating the SV dataset will involve derivations. In a simple case, where, for each subject visit, exactly
1 date appears in every such domain, the SV dataset can be created easily by populating both SVSTDTC
and SVENDTC with the single date for a visit. When there are multiple dates and/or date/times for a visit
for a particular subject, the derivation of values for SVSTDTC and SVENDTC may be more complex.”
[3]

The FDA has published FDA Validator Rules and periodically updated them since March 2017. For the
SV domain, Validator Rule SD0065 states that “[all] Unique Subject Identifier (USUBJID) + Visit Name
(VISIT) + Visit Number (VISITNUM) combination values in data should be present in the Subject Visits
(SV) domain” [4]. The FDA uses the Study Data Technical Conformance Guide to express the
expectation that sponsors should comply with these rules (as well as the SDTMIG) when submitting
SDTM datasets for regulatory review and analysis [5].

Thus, it is crucial for sponsors to carefully identify which dates should be included in derivations for
SVSTDTC and SVENDTC, determine the logic flow for those derivations, and ensure that all visits are
properly accounted for in the SV domain. This can be a tedious process as those numerous dates and
visits come from multiple sources, and accidental omissions of data can occur. There are two different
approaches to programming SV to comply with these rules.

TWO APPROACHES TO PROGRAMMING THE SV DOMAIN

The two approaches to programming SV are: 1) generate SV once all other SDTM domains with visit
information are available as inputs and 2) generate SV with raw data as inputs. Table 1 summarizes the
pros and cons of these two approaches.

Approach The Input of
Programming
/Derivation

Pros Cons

Approach 1 SDTM Datasets Straightforward and simple for
deriving SV

Circularity: Must go back to each SDTM
domain with visits to update VISIT and
VISITNUM for unscheduled visits to comply
with FDA Validator Rule: SD0065

Approach 2 Raw Datasets Avoiding circularity in the entire
SDTM programming and easily
complying with FDA Validator
Rule: SD0065

Prone to human errors and time consuming in
identifying raw datasets and their variables to
be used

Table 1. The Summary of Pros and Cons of Two Approaches to Programming SV Domain

[6] strongly recommends that SV should be populated first from raw data to avoid circularity in SDTM
programming and to comply with FDA Validator Rule: SD0065. We agree with that recommendation and
have chosen approach 2 for our SV programming process.

3

INTRODUCTION TO STANDARD SV PROGRAMMING LOGIC FLOW

Before starting to program the SV domain, one should first understand the general SV programming logic
flow before trying to standardize and further automate the process.

Display 1 below shows 10 sequential steps followed in SAS SV programming, and Figure 1 below depicts
the overall logic and data flow of these 10 steps.

1. Identify raw datasets with both dates/times and clinical visits.

2. Separate them into two data blocks: one with dates only, another with both dates and times.

3. For each data block, stack the raw datasets and standardize their date variable names into a
common name (SVDTC). If needed, do preprocessing for variables used in Step 9.

4. Combine these two data blocks to derive VISIT and VISITNUM for scheduled visits and derive SV
variables describing visit-related information: SVPRESP, SVOCCUR, SVREASOC per SDTMIG
v3.4.

4.5 Import external datasets (if available) and combine them with the above two data blocks.

5. Separate the combined data into two data blocks: one with scheduled visits only, another with
unscheduled visits only.

6. For each scheduled visit, derive SVSTDTC from the earliest date/time and derive SVENDTC from
the latest date/time. For each unscheduled visit, set both SVSTDTC and SVENDTC equal to
SVDTC.

7. Combine the scheduled visit and unscheduled visit blocks and derive VISIT and VISITNUM for
unscheduled visits.

8. Derive SVSTDY and SVENDY.

9. Map other raw dataset variables into SUPPSV.

10. Output permanent datasets: SV and SUPPSV.

Display 1. 10 Sequential Steps in SAS SV programming.

4

Figure 1. General SV Programming Logic Flow

RATIONALE FOR THE AUTOMATIC CREATION OF THE SV DOMAIN

The advantages and benefits of a macro for SDTM automation over SDTM mapping template SAS
programs have been fully explained and demonstrated in [1]. Furthermore, from Figure 1 above, one can
easily identify that Steps 4, 5, 6, 7, 8, and 10 are “standard” SV programming, which means that they do
not change on a study-by-study basis. However, Steps 1, 2, 3, and 9 are “dynamic”; they’re study-

Step 6:

Step 3:

Separate into Two Data Blocks

Step 1: Identify Raw Datasets with Both Dates/Times and
Clinical Visits

One Block with Raw Datasets With Dates Only
Along With Clinical Visits

One Block with Raw Datasets With Both Dates and Times
Along With Clinical Visits

Stack the Raw Datasets and Standardize Date
Variable Names Into a Common Name (SVDTC)

and Preprocess Variables Used in Step 9

Combine Two Data Blocks

Step 4: Derive the VISIT and VISITNUM for Scheduled Visit
Derive SV Variables Describing Visit-Related Information: SVPRESP, SVOCCUR, SVREASOC

Step 2:

Stack the Raw Datasets and Standardize Date/Time
Variable Names Into a Common Name (SVDTC)

Separate into Two Data Blocks

A Dataset With Scheduled Visits ONLY

A Dataset With Unscheduled Visits ONLY

Step 5:

For Each Scheduled Visit,
Derive SVSTDTC From the Earliest Date/Time and

Derive SVENDTC From the Latest Date/Time

Combine the Scheduled Visits and Unscheduled Visits Blocks

For Each Unscheduled Visit,
Set Both SVSTDTC and SVENDTC Equal to SVDTC

Step 7: Derive VISIT and VISITNUM for Unscheduled Visits

Step 8: Derive SVSTDY and SVENDY

Step 9: Map Other Raw Dataset Variables Into SUPPSV

Step 10: Output Permanent Datasets: SV and SUPPSV

If External Datasets Available

Step 4.5: Import External Datasets and Combine Them with the Above Two Data Blocks

5

dependent because different studies could have different CRF/EDC designs and raw dataset variable
names. Manually developing SAS code for Steps 1, 2, 3, and 9 is a time-consuming and labor-intensive
process, which is prone to human errors. If the generation of SAS code for Steps 1, 2, 3, and 9 could be
automated, the accuracy and efficiency of SV domain programming could be improved and enhanced.
The following example illustrates it!

In one of our studies, there are 80 raw datasets with over 900 variables. Of those datasets, 75 datasets
contain a total of 143 date/time variables. Among those datasets, 66 are associated with clinical visits: 57
with only dates and 9 with both dates and times. The "select” statement in Display 2 below shows an
example of the 66 CRFs/raw datasets with both dates/times and visits along with a 67th dataset (NV),
which does not contain any dates but does contain visit-related data that should be mapped to a
supplemental qualifier. These datasets are the inputs for SV programming. Please refer to the block “Step
1: Identify Raw Datasets with Both Date/Time and Clinical Visits” in Appendix 3 to see the full context of
this code.

Display 2. SAS Code from SV.sas Selecting 67 Raw Datasets to be Included in SV

Manually identifying and including all these forms in SV programming for every study is inefficient and
prone to human errors. Furthermore, any EDC database changes to these raw dataset names and their
date-related variables would require corresponding updates within SAS programs. A macro, on the other
hand, could automatically account for these changes. Information on how to generate this SAS code will
be provided in the later sections detailing the automation for Steps 1, 2, 3, and 9.

Furthermore, automation allows for SV to be generated early in the programming development cycle. In
contrast, manual SV generation would typically occur later in the development cycle (e.g., closer to
database lock or before FDA submission) as it’s better to wait for more complete data before manually
working on SV SAS programming. This earlier automatically generated SV dataset can then be used to
develop programmatic quality checks to support clinical data review and data cleaning efforts.

INTRODUCTION TO %SDTM_CODE_GENERATOR AND ITS FUNCTION IN SV
PROGRAMMING AUTOMATION

[1] introduced our %SDTM_Code_Generator macro, which uses the master-annotation spreadsheet and
SDTM domain specifications as inputs to automatically generate SAS code for SDTM datasets. The
generated SAS code is saved to both output datasets and SAS program files. Please refer to [1] for the
rationale behind developing the macro, the new SDTM programming workflow, its programming validation
process, the master-annotation, and the scalability of this SDTM automation, etc.

For the SV domain, %SDTM_Code_Generator can be used to automatically generate code to map raw
datasets that specifically collect visit-related data. However, it does not have the functionality for
automatically deriving SVSTDTC, SVENDTC, VISITNUM, and VISIT. Thus, we created an additional
macro named %SV_Code_Generator to handle the additional derivations. The rationale for creating a
separate macro is quoted as follows:

“The SUBJECT VISITS (SV) domain is a special purpose domain that requires more complex derivations,
many of which are different from ones of macro %SDTM_Code_Generator. To simplify the development
of the macro and reduce the length of SAS code needed, we developed an additional macro named
%SV_Code_Generator, which leverages the output from the call of %SDTM_Code_Generator and
extends it further” [1].

6

Appendix 2 shows an example of the SAS program _SV.sas which is generated from the calling of
%SDTM_Code_Generator(domain_=SV). Certain sections of _SV.sas (labeled as “Block 1”, “Block 2”,
“Block 3”, “Block 4”, and “Block 5”) are used by the new macro %SV_Code_Generator to generate and
output SV.sas, which is shown in Appendix 3. Annotations in SV.sas (Appendix 3) indicate which sections
came from the various blocks in _SV.sas (Appendix 2). SV.sas (Appendix 3) is then used to generate the
SV domain dataset.

The following sections will introduce the master-annotation (in particular, the section dedicated to the SV
domain), the SV domain specification, and the new macro %SV_Code_Generator.

INTRODUCTION TO OUR MASTER-ANNOTATION SPREADSHEET AS RELATED
TO THE SV DOMAIN

As discussed in our other paper, the master-annotation spreadsheet is one of the inputs for
%SDTM_Code_Generator [1]. With CRF specifications as its foundation, this spreadsheet contains all
raw dataset names, variable attributes (variable names, labels, types, etc.), and annotations for mapping
these raw dataset variables to specific SDTM domains. We also added additional columns to the
spreadsheet to aid %SDTM_Code_Generator in automating SAS code generation. Please see Table 2
below for key columns of the master-annotation and Table 3 for a portion of key variables in the master-
annotation for the SV domain. Appendix 1 contains the corresponding annotated CRFs for these visit-
related forms: Subject Visit (SV), Unscheduled Subject Visit (UV), and Next Visit (NV). Raw dataset
variable names are annotated in blue text while SDTM mappings are annotated in red text.

EDC
DATASET
NAME

EDC
DATASET
LABEL

ORD.
VARIABLE
TYPE

VARIABLE NAME VARIABLE LABEL
SDTM
DOMAIN

SDTM VARIABLE QLABEL QORIG
TRT
ASSIGN

NV Next Visit 1 char NVYN_STD
Subject Be Advancing to
the Next Visit

SV
NXTVISYN in
SUPPSV

Subject Advancing to
Next Visit?

CRF

SV Subject Visit 1 char VISYN_STD Was visit performed? SV [NOT SUBMITTED]

SV Subject Visit 2 Date VISDAT Date of Visit SV VISDTC in SUPPSV Visit Date CRF

SV Subject Visit 3 char VISREASOC_STD Reason Visit not Performed SV SVREASOC

SV Subject Visit 4 char VISREASOC_AE Adverse Event, Specify SV VISMAEID in SUPPSV
Missed Visit: Adverse
Event, Specify

CRF

SV Subject Visit 5 char VISREASOC_O Other Reason, Specify SV
VISMOTHS in
SUPPSV

Missed Visit: Other
Reason, Specify

CRF

SV Subject Visit 6 Type of Visit check all that
apply

SV

SV Subject Visit 7 Numeric VISCNTMDINC In-Clinic SV SVCNTMOD

SV Subject Visit 8 Numeric VISCNTMDINH In-Home SV SVCNTMOD

SV Subject Visit 9 Numeric VISCNTMDR Remote SV SVCNTMOD

SV Subject Visit 10 Numeric VISCNTMDOT Other SV SVCNTMOD

SV Subject Visit 11 char VISCNTMD_O Type of Visit, Other SV
VISTYPOS in
SUPPSV

Type of Visit: Other,
Specify

CRF

SV Subject Visit 12 char VISEPCHGI_STD
Epidemic/Pandemic
Related Change

SV SVEPCHGI

UV
Unscheduled
Subject Visit

1 Date UVDAT Date of Visit SV SVSTDTC

UV
Unscheduled
Subject Visit

2 char UVREAS_STD
Reason for Unscheduled
Visit

SV SVUPDES

UV
Unscheduled
Subject Visit

3 char UVREAS_O Other, Specify SV
UNSREASO in
SUPPSV

Unscheduled Visit:
Other Reason, Specify

CRF

UV
Unscheduled
Subject Visit

4
Unscheduled Assessments
Performed

SV

UV
Unscheduled
Subject Visit

7 Numeric BS Binet Staging SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

10 Numeric MRI Brain MRI SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

14 Numeric CY Cytokines SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

15 Numeric EG ECG SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

17 Numeric EQ5D5L EQ-5D-5L SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

25 Numeric NL
Lesion Assessment - New
Lesion

SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

27 Numeric TL1
Lesion Assessment - Target
Lesions - Baseline

SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

29 Numeric TL2
Lesion Assessment - Target
Lesions - Post-Baseline

SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

From CRF Specifications, e.g., ALS

Assisting the Macro to
Automate the SAS
Code Generation

From CRF Annotation

7

EDC
DATASET
NAME

EDC
DATASET
LABEL

ORD.
VARIABLE
TYPE

VARIABLE NAME VARIABLE LABEL
SDTM
DOMAIN

SDTM VARIABLE QLABEL QORIG
TRT
ASSIGN

UV
Unscheduled
Subject Visit

32 Numeric CHEM Local Lab Chemistry SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

35 Numeric HEM Local Lab Hematology SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

47 Numeric IWCLL
Response Assessment
iwCLL

SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

48 Numeric LUGANO
Response Assessment
Lugano

SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

50 Numeric TB
Tumor Biopsy /Cytology/
Pathology

SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

UV
Unscheduled
Subject Visit

51 Numeric VS Vital Signs SV
UNSAPERF in
SUPPSV

Unscheduled
Assessments Performed

CRF COMBINE

Table 2. Key Columns of the Master-Annotation Dedicated to the SV Domain (With Raw Datasets:
NV, SV, and UV)

Column Column Content Origin Manual?

EDC DATASET NAME Raw Dataset Name ALS

EDC DATASET LABEL Raw Dataset Label ALS

ORDER The Order of Variables specified in CRFs, and One of Keys to Sort Intermediate
Datasets for Writing SAS Programs from the Macro Calls

ALS

VARIABLE TYPE Variable Type in Raw Dataset, Numeric, char, Date, Time, or Date & Time ALS Derived

VARIABLE NAME Variable Name in Raw Dataset ALS

VARIABLE LABEL Variable Label in Raw Dataset ALS

SDTM VARIABLE SDTM Variable Name, SDTM Variable Name for A Specific Test, QNAM in
Supplemental Domain, or Not Submitted

CRF Annotation Y

QLABEL Assign QLABEL in Supplemental Domains Triplet to Help
Mapping Raw
Dataset
Variables in
Supplemental
Domains

Assisting Macro
to Generate SAS
codes for SDTM
generation

Y

QORIG Assign QORIG in Supplemental Domains, with Values: CRF,
Derived, or Assigned.

QEVAL Assign QEVAL in Supplemental Domains, e.g., ‘CLINICAL
STUDY SPONSOR’

TRT ASSIGN Column to aid automation, indicating extra coding is needed for the mapping of
the variables, Applicable to all finding domains, and DS

Table 3. A Portion of the Key Variables in the Master-Annotation Dedicated to the SV Domain [1]

Of note, the column TRT ASSIGN is used to indicate that additional coding is needed for a specific
variable. In particular, the SV domain uses TRT ASSIGN = “COMBINE” to concatenate the values of
multiple raw dataset variables before mapping them into a supplemental qualifier with QNAM =
“UNSAPERF”. The following section titled “Automation Step 9: Map Other Raw Dataset Variables Into
SUPPSV” provides a detailed explanation of the rationale and how it is handled by the new macro.

INTRODUCTION TO OUR STANDARD SDTM SV DOMAIN SPECIFICATION

[1] also introduced our standard format for SDTM specifications [7], which is based on CDISC standards.
See Table 4 below for an example of the SV domain specification. Its first six columns: Variable, Label,
Type, Controlled Terminology, and Core come directly from the SDTMIG v3.4. Per SDTMIG [3], the
sources of SDTM variables are categorized by the origin of the data source in the Define-XML document
file as “CRF”, “Protocol”, “Assigned”, or “Derived”. The last column Derivation/Assigned is added to
facilitate Define-XML generation and customize our code for SDTM automation. When one line of
customization code is sufficient, %SDTM_Code_Generator directly writes that line of code to _SV.sas
(e.g., SVPRESP and SVCNTMOD). However, when variables require more complicated code (e.g.,
EPOCH and SVSTDY), %SDTM_Code_Generator retrieves the macro calls and writes a line of code to
_SV.sas for each macro call (e.g., %get_epoch and %get_dy). Please refer to [1] for the detailed
introduction to SAS utility macros dedicated to the automation of SDTM programs. Display 3 shows the
generated macro calls for _SV.sas along with the programming comments. This code can also be found
in Block 3 of Appendix 2, which contains the full _SV.sas.

*** Programming Note: SDTM Variable: SVSTDY Needs the Derivation by the Macro Call: %get_dy;

%get_dy(_DATEVAR=SVSTDTC, _DAYVAR=SVSTDY);

*** Programming Note: SDTM Variable: SVENDY Needs the Derivation by the Macro Call: %get_dy;

%get_dy(_DATEVAR=SVENDTC, _DAYVAR=SVENDY);

Display 3. SAS Code Generated by %SDTM_Code_Generator for the Macro Calls of the SV Domain

8

Variable Label Type Controlled
Terminology

Origin Core Derivation/Assigned

STUDYID Study Identifier Char

Protocol Req STUDYID = 'Project-Study-101';

DOMAIN Domain Abbreviation Char DOMAIN Assigned Req DOMAIN = 'SV';

USUBJID Unique Subject Identifier Char Derived Exp USUBJID = strip(STUDYID)
||strip(substr(SUBJECT,4));

VISITNUM Visit Number Num Assigned Req visitnum = input(visit, ??visitnum.);

VISIT Visit Name Char Assigned Perm visit = strip(put(folder, $visit.));

SVPRESP Pre-specified Char NY Assigned Exp if VISIT ^= 'Unscheduled' then SVPRESP = 'Y';

SVOCCUR Occurrence Char NY Assigned Exp

SVREASOC Reason for Occur Value Char

CRF Page Perm

SVCNTMOD Contact Mode Char CNTMODE Derived Perm SVCNTMOD = strip(coalescec(
put(VISCNTMDINC, CNTMDINC.),
put(VISCNTMDINH, CNTMDINH.),
put(VISCNTMDR, CNTMDR.),
put(VISCNTMDOT, CNTMDOT.)));

SVEPCHGI Epi/Pandemic Related
Change Indicator

Char NY CRF Page Perm

VISITDY Planned Study Day of Visit Num Protocol Perm visitdy = input(visit, ??visitdy.);

TAETORD Planned Order of Element
within Arm

Num Assigned Perm %get_epoch

EPOCH Epoch Char EPOCH Assigned Perm %get_epoch

SVSTDTC Start Date/Time of Visit Char ISO 8601 CRF Page Exp

SVENDTC End Date/Time of Visit Char ISO 8601 CRF Page Exp

SVSTDY Study Day of Start of Visit Num Derived Perm %get_dy

SVENDY Study Day of End of Visit Num Derived Perm %get_dy

SVUPDES Description of Unplanned
Visit

Char CRF Page Perm

Table 4. An Example of SV Specification

INTRODUCTION TO %SV_CODE_GENERATOR FOR SV DOMAIN AUTOMATION

A deep understanding of SV programming leads us to develop two steps for the automatic SV
programming process. The first step focuses on mapping visit-related raw data and calls
%SDTM_Code_Generator. The second step focuses on the derivation identified in Steps 1, 2, 3, 5, 6, 7,
and 9 of Display 1 and is handled by an additional SAS-based macro named %SV_Code_Generator,
which also combines the SAS code from the mapping step and the derivation step to automatically
generate SV.sas. This process uses the master-annotation spreadsheet in Table 2 and SV domain
specification in Table 4 and follows the 10 sequential steps from Display 1 and Figure 1.

The following sections will explain in detail the automations for Steps 1, 2, 3, and 9 only. Steps 5, 6, and 7
are “standard” programming, which means that they do not change from study to study. Steps 4, 8, and
10 come from the output of %SDTM_Code_Generator. Appendix 3 contains the generated code and
corresponding annotations for all the steps. Figure 2 below shows the schematic diagram of how the two
macros work together to implement the 10 sequential steps of the SV programming process from Display
1 and Figure 1.

Figure 2. Schematic Diagram of %SDTM_Code_Generator and %SV_Code_Generator

Step 5, 6, 7 Step 1, 2, 3, 9

Dynamic Programming Standard Programming

Derivation

%SDTM_Code_Generator

Step 4, 8, 10

Mapping

%SV_Code_Generator

Combining

9

AUTOMATION STEP 1: IDENTIFY RAW DATASETS WITH BOTH DATES/TIMES
AND CLINICAL VISITS

%SV_Code_Generator automatically identifies which raw datasets should be used as the inputs for
deriving SVSTDTC and SVENDTC in Step 1.

As introduced in an earlier section (“Rationale for the Automatic Creation of the SV Domain”), one of our
studies has 75 raw datasets with 143 total date/time variables. Table 5 shows a sample of these raw
datasets and their date/time variables. Of note, the last column VARIABLE NAME 2 is derived from
SDTM VARIABLE and facilitates the derivation inside the macro.

EDC
DATASET
NAME

EDC DATASET LABEL VARIABLE
NAME

VARIABLE LABEL VARIABLE
TYPE

SDTM
DOMAIN

SDTM VARIABLE VARIABLE
NAME 2

AE Adverse Events AEENDAT End Date Date AE AEENDTC AEEN

AE Adverse Events AEENTIM End Time Time AE AEENDTC AEEN

AE Adverse Events AESTDAT Start Date Date AE AESTDTC AEST

AE Adverse Events AESTTIM Start Time Time AE AESTDTC AEST

EG 12- Lead ECG - Single Timepoint EGDAT Date of the ECG Date EG EGDTC EG

EG 12- Lead ECG - Single Timepoint EGTIM Time of ECG Time EG EGDTC EG

CLLSLL Genetic Abnormalities - CLL/SLL CLLSLLADAT Assessment Date Date FA FADTC CLLSLLA

CLLSLL Genetic Abnormalities - CLL/SLL CLLSLLCDAT Collection Date Date FA FADTC CLLSLLC

CLLSLL Genetic Abnormalities - CLL/SLL CLLSLLDAT Assessment Date Date FA FADTC CLLSLL

LBBC Local Lab - B-Cell LBDAT Date of Collection Date LB LBDTC LB

LBCHEM Local Lab - Chemistry LBDAT Date of Collection Date LB LBDTC LB

LBCOAG Local Lab - Coagulation LBDAT Date of Collection Date LB LBDTC LB

SV Subject Visit VISDAT Date of Visit Date SV VISDTC in SUPPSV VIS

VS Vital Signs VSDAT Date of Collection Date VS VSDTC VS

Table 5. Sample of Raw Datasets With Date/Time Variables From Master-Annotation

From SDTM specifications, %SV_Code_Generator automatically identifies 15 domains (EG, EX, FA, IE,
LB, PC, PE, PR, QS, RS, SS, SV, TR, TU, VS) that contain the variable VISIT.

After restricting the 75 raw datasets to only those who are mapped to the identified 15 SDTM domains
above, 66 raw datasets with dates/times and visits (shown in the “select” statement in Display 2) are
included in the derivation of SVSTDTC and SVENDTC while 9 raw datasets (shown in Table 6) are
excluded as they are mapped to SDTM domains that do not contain VISIT.

EDC DATASET
NAME

EDC DATASET LABEL VARIABLE NAME VARIABLE LABEL SDTM
DOMAIN

SDTM
VARIABLE

AE Adverse Events AEENDAT End Date AE AEENDTC

CE Clinical Events - Signs and Symptoms CEENDAT End Date CE CEENDTC

CM Concomitant/Prior Medications CMENDAT End Date CM CMENDTC

EN Enrollment ENRDAT Enrollment Date DS DSSTDTC

EOS End of Study EOSDEADT Death Date DM DTHDTC

HOSP Healthcare Encounters HOSPENDAT Utilization End Date HO HOENDTC

IC Informed Consent ICDAT Date of Informed Consent DM RFICDTC

MH Medical History MHENDAT End Date MH MHENDTC

PRM Public Record Mortality PRMDAT Date of subject death per public records DM DTHDTC

Table 6. Raw Datasets That Contain Dates But Not Clinical Visits

The following SAS code in Display 4 illustrates how the macro automatically selects raw datasets with
both dates/times and clinical visits. It uses both the master-annotation in Table 2 and the SDTM
specifications as the inputs. The SAS dataset named as edc_for_sv contains the identified raw dataset
names and their date/time variable names. The SAS dataset named as namelist contains the names of
all unique raw datasets with both dates/times and clinical visits as well as other raw datasets mapped to
the SV domain (e.g., NV: “Next Visit”). %SV_Code_Generator then does simple data manipulations to
namelist and generates the SAS dataset for the PROC DATASETS step shown in Display 2.

10

Display 4. SAS Code Identifying Raw Datasets With Both Dates/Times and Clinical Visits

AUTOMATION STEP 2: SEPARATE THEM INTO TWO DATA BLOCKS: ONE WITH
DATES ONLY, ANOTHER WITH BOTH DATES AND TIMES

%SV_Code_Generator automatically separates the raw datasets with dates/times and visits into two
data blocks: one containing only date variables and another containing both date and time variables.

The following SAS code in Display 5 illustrates this separation utilizing VARIABLE_TYPE from the
master-annotation spreadsheet in Table 2.

Display 5. SAS Code Identifying Raw Datasets With Only Date Variables and Raw Datasets With
Both Date and Time Variables

Table 7 below shows the 9 raw datasets with both date and time variables mapped into SDTM domains
that contain VISIT as identified by the macro.

11

EDC
DATASET
NAME

EDC DATASET LABEL VARIABLE
NAME (DATE)

VARIABLE NAME
(TIME)

VARIABLE
NAME 2

SDTM
VARIABLE

SDTM
DOMAIN

BIO Exploratory Biomarkers - Infusion Day BIOPOSTDAT BIOPOSTTIM BIOPOST LBDTC LB

BIO Exploratory Biomarkers - Infusion Day BIOPREDAT BIOPRETIM BIOPRE LBDTC LB

BIONON Exploratory Biomarkers NONBIODAT NONBIOTIM NONBIO LBDTC LB

CY Cytokines CYKDAT CYKTIM CYK LBDTC LB

EG 12- Lead ECG - Single Timepoint EGDAT EGTIM EG EGDTC EG

EX1 Lymphodepleting Chemotherapy:
Fludarabine

EX1ENDAT EX1ENTIM EX1EN EXENDTC EX

EX1 Lymphodepleting Chemotherapy:
Fludarabine

EX1STDAT EX1STTIM EX1ST EXSTDTC EX

EX2 Lymphodepleting Chemotherapy:
Cyclophosphamide

EX2ENDAT EX2ENTIM EX2EN EXENDTC EX

EX2 Lymphodepleting Chemotherapy:
Cyclophosphamide

EX2STDAT EX2STTIM EX2ST EXSTDTC EX

EX3 Treatment Dosing EX3ENDAT EX3ENTIM EX3EN EXENDTC EX

EX3 Treatment Dosing EX3STDAT EX3STTIM EX3ST EXSTDTC EX

PK Treatment PK PKDAT PKTIM PK PCDTC PC

PKINF Treatment PK-Infusion Day PKPREDAT PKPRETIM PKPRE PCDTC PC

Table 7. An Example of 9 Raw Datasets With Both Date and Time Variables Mapped into SDTM
Domains That Contain VISIT

AUTOMATION STEP 3: FOR EACH DATA BLOCK, STACK EACH DATASET AND
STANDARDIZE ITS DATE VARIABLE NAME INTO A COMMON NAME: SVDTC

Following Step 2, %SV_Code_Generator automatically generates SAS code for the first part of two data
steps (“data try1” and “data try2” blocks in Appendix 3), which stack all raw datasets with date variables
only and all raw datasets with both date and time variables, respectively, standardize their variable names
into common names: SVDT and SVTM, and convert them to SVDTC.

Display 6 shows the SAS code for using the dataset EDCNM_WOTM from Step 2 to generate macro
variables for the raw dataset names with dates only. Macro variables are created for each raw dataset
name, variable name, and the total number of raw datasets. These macro variables are then used inside
a macro %doit1() shown in Display 7.

Display 6. SAS Code Creating Macro Variables for Raw Dataset Names, Variable Names, and the
Total Number of Raw Datasets From EDCNM_WOTM in Step 2

Display 7 below shows a macro generating a SAS dataset named as _try1head, which stacks all raw
datasets with dates only and renames their date variable names to SVDT. It uses a macro %DO loop to
stack the datasets and Lines 178 and 182 standardize these date variable names to a common name:
SVDT.

The data step “data try1;” in Appendix 3 shows the SAS code generated from the macro call of %doit1()
to stack 57 raw datasets and rename their date variable names to SVDT. SVDT has a numeric date
format and is then converted to SVDTC, which has a character ISO 8601 format.

12

Display 7. A SAS Macro Generating a SAS Dataset (_try1head) to Stack Raw Datasets and Rename
Their Date Variable Names to SVDT

Similarly, Displays 8 and 9 show the same programming logic for using dataset EDCNM_WTM from Step
2 to stack all raw datasets with both date and time variables and rename their date variable names to
SVDT and time variable names to SVTM. The SAS dataset is named as _try2head.

Display 8. SAS Code Creating Macro Variables for Raw Dataset Names, Variable Names, and the
Total Number of Raw Datasets From EDCNM_WTM in Step 2

Display 9. A SAS Macro Generating a SAS Dataset (_try2head) to Stack Raw Datasets and Rename
Their Date Variable Names to SVDT and Time Variable Names to SVTM

The data step “data try2;” in Appendix 3 shows SAS code generated from the macro call of %doit2() to
stack 9 raw datasets with both date and time variables and rename their date variable names to SVDT
and time variable names to SVTM. SVDT and SVTM are then combined into a single SVDTC, which has
a character ISO 8601 format.

13

From the example above in Appendix 3, the manual development of SAS codes to stack all raw datasets
and standardize their date/time variable names to SVDTC is time-consuming and error prone. The raw
data with dates/times and clinical visits collected in a study change from study to study, which has a
negative impact on developing SAS codes for SV domain. The changes of date variable and/or time
variable names of these raw datasets from the EDC database build make it even worse. Steps 1-3
automate the programming to achieve huge time saving and efficiency along with the guarantee of high
quality. It is the main contribution to SV domain automation!

AUTOMATION STEP 9: MAP OTHER RAW DATASET VARIABLES INTO SUPPSV

SUPPSV is automatically generated by two steps. The first step involves calling
%SDTM_Code_Generator(domain_=SV), which generates SAS code that contains the data step for
SUPPSV. Please refer to Block 4 in Appendix 2 as an example. Among these 7 blocks of SAS codes for
each QNAM, one block (QNAM = “UNSAPERF”) requires preprocessing before it can be included in
SUPPSV. The Unscheduled Subject Visit form (Appendix 1) has separate fields to indicate whether a
specific assessment was performed at an unscheduled visit. In the preprocessing, these separate raw
dataset variables (annotated in blue in Appendix 1) are concatenated into a single variable with a comma
as the delimiter and then mapped to QVAL with QNAM = “UNSAPERF” (annotated in red in Appendix 1).
Table 8 shows an example of what the final output looks like.

STUDYID RDOMAIN USUBJID IDVAR IDVARVAL QNAM QLABEL QVAL QORIG

Project-Study-101 SV Project-Study-101-101-002 VISITNUM 1.01 UNSAPERF Unscheduled Assessments Performed EG, VS CRF

Project-Study-101 SV Project-Study-101-101-002 VISITNUM 1.02 UNSAPERF Unscheduled Assessments Performed CHEM, HEM, VS CRF

Project-Study-101 SV Project-Study-101-101-002 VISITNUM 9.01 UNSAPERF Unscheduled Assessments Performed VS CRF

Table 8. An Example of SUPPSV.QVAL where QNAM = “UNSAPERF”

“_BLOCK A” in Appendix 3 shows the SAS code for concatenating 47 raw dataset variables into a single
variable UNSAPERF. The %SV_Code_Generator macro automatically retrieves these variable names
from the master-annotation (Table 2). Display 10 below shows the SAS code used to retrieve these
variable names. Lines 3 and 4 show that the master-annotation is the unique source of the programming
and TRT ASSIGN = “COMBINE” flags the variables for preprocessing at the start of the automation of the
SV domain.

Display 10. SAS Code to Retrieve the Variable Names for the Concatenation Specified in the
Master-Annotation for the SV Domain

Once the variable names are retrieved, the macro concatenates them with a comma as the delimiter.
Display 11 contains the SAS code that automates this step. The generated code is then output into
SV.sas and can be seen in “_BLOCK A” in Appendix 3. Afterwards, the macro retrieves the SAS code for
mapping the concatenated variable UNSAPERF to QVAL with QNAM = “UNSAPERF” in the data step for
SUPPSV (“_BLOCK C” in Appendix 3).

14

Display 11. SAS Code to Concatenate Variable Names Specified in the Master-Annotation for the
SV Domain

GENERATING SV.SAS

The last four sections above introduced how %SV_Code_Generator automatically generates the SAS
code for the derivations from Steps 1, 2, 3, and 9 of Display 1. For the derivations from Steps 5, 6, and 7,
the macro simply outputs each line of SAS code shown in _BLOCK B of Appendix 3. The remaining
Steps 4, 8, and 10 are from the output of %SDTM_Code_Generator. %SV_Code_Generator follows the
general SV programming logic flow to assemble these derivations and mappings into the final SAS code
for the SV domain, which is depicted by Figure 2. This generated code is then saved as a SAS dataset
prior to being output as SV.sas using a simple SAS data step as shown below in Display 12.

Display 12. SAS Data _NULL_ Step to Output a SAS Program: SV.sas

HOW TO GUARANTEE ALL RAW DATASET VARIABLES ARE MAPPED INTO THE
SV DOMAIN

[1] demonstrates how %SDTM_Code_Generator automatically detects any raw dataset variables
unmapped in SDTM. Once the errors from omissions of raw dataset variables for SDTM are detected,
they can be easily fixed. Hence, this step guarantees all raw dataset variables are accounted for in SDTM
programming.

The first six columns of the master-annotation in Table 2 are automatically created from the CRF
specification. For SV, these columns contain all raw dataset variables collected for both scheduled visits
and unscheduled visits. As these come directly from the CRF specification, there is no human error. The
first part of Table 2, where TRT ASSIGN = Blank, is covered by %SDTM_Code_Generator to guarantee
that these raw dataset variables are accounted for SV domain. The second part, where TRT ASSIGN =
“COMBINE”, contains the variables which require concatenation prior to mapping into QVAL. The SAS
code for processing and mapping these raw dataset variables are automatically generated by
%SDTM_Code_Generator and %SV_Code_Generator. Furthermore, as discussed in the section titled
“Automation Step 1: Identify Raw Datasets With Both Dates/Times and Clinical Visits”,
%SV_Code_Generator uses the master-annotation and SV domain specification to automatically identify
raw datasets and variables that should be used in the derivation of SVSTDTC and SVENDTC.

15

Hence, the sequential programming automations (e.g., automatic generation of the first six columns of the
master-annotation, automatic detection of raw dataset variable omissions for SDTM by
%SDTM_Code_Generator, and automatic preparations of Steps 1 and 9 by %SV_Code_Generator)
guarantees all raw dataset variables are accounted for in SV domain programming.

HOW TO HANDLE EXTERNAL DATASETS

The external datasets (such as central safety labs, biomarkers, etc.) are specified by data transfer
specifications from different vendors. Because they often contain visit-dependent data, they should also
be included in the derivation of the SV dataset.

Both %SDTM_Code_Generator and %SV_Code_Generator are developed to map the raw data
collected per CRFs to SDTM domains. The latter follows the same logic as the former in terms of handling
external datasets. The rationale is fully explained in [1]. The flexibility is built into the former, and it is
quoted as follows:

“When the external datasets are ready for inclusion, the team can decide if the new programming should
be added to either %SDTM_Code_Generator or the related individual SDTM SAS program. The decision
requires balancing the generalization of the macro for future use with the spending of more
time/resources in updating the macro and its potential impact of timelines” [1].

%SV_Code_Generator has been built to generate a SAS program comment to suggest adding extra
lines of SAS codes to handle the external data once they are ready to be included at a later time in the
programming development cycle (e.g., before FDA submission). Display 13 shows the message along
with the annotation for Step 4.5.

Display 13. A SAS Program Comment for Handling External Data in Step 4.5 of Appendix 3.

The team can make the decision on whether the macro should be updated or whether SV.sas should be
updated to account for the new external dataset(s). Due to the dissimilarity of external dataset(s) and their
metadata and the unpredictable timing of data availability, the later manual updating of SV.sas is probably
the better solution to meet timelines and achieve efficiency.

INTRODUCTION TO OUR VALIDATION PROCESS FOR SV PROGRAMMING

For SV domain validation, we follow the same process as the other SDTM domains [1], which is quoted
below along with Figure 3 for ease of access:

“Our SDTM programming validation consists of the following three steps: code reviewing, real data
testing, and developing independent mapping SAS programs to validate relatively complicated SDTM
datasets as needed per the team’s decision. This validation process validates both the macro and each
SDTM mapping SAS program. [Figure 3] below depicts the new validation process” [1].

The first two steps, code reviewing and real data testing, are strictly followed until the user ensures that
the SAS program is thoroughly tested and meets the requirements for the SV domain when no external
data are available. Once the external data are included, the team decides if code reviewing and real data
testing are sufficient and acceptable for fully validating the new standalone programming section added
for external dataset(s) inside SV.sas. If not, the validator should independently develop a SAS program to
fully validate the external data programming for SV.

16

Figure 3. The Logic Flow of Our SDTM Programming Validation Process [1]

CONCLUSION

This paper introduced a new approach to automatic SAS code generation for the Subject Visits (SV)
SDTM domain. Automation is achieved by using a metadata-driven method that leverages CRF
specifications and SDTM standards through our two macros: %SDTM_Code_Generator and
%SV_Code_Generator. Our SV programming process is an expansion of the SDTM automation we
developed with %SDTM_Code_Generator [1], and it inherits the same practicality, efficiency, flexibility,
transparency, and scalability. We also demonstrated how to process the “dynamic” parts of SV
programming, how to account for all relevant variables, how to deal with complex derivations, how to
handle the external datasets, and how to validate the SV dataset generated by the new automation
process.

The sharing of hands-on experience in this paper is to assist readers with applying this methodology to
generate the SV domain in the early stages of clinical reporting with the guarantee of technical accuracy,
in addition to cost-effectiveness and efficiency. These automations can also be used to expedite and
assist with clinical data review and data cleaning efforts efficiently and economically.

REFERENCES

[1] Xiangchen (Bob) Cui; Min Chen; Jessie Wang. A Practical Approach to Automating SDTM Using a
Metadata-Driven Method That Leverages CRF Specifications and SDTM Standards. PHUSE US Connect
2024 and PharmaSUG 2024

[2] Cleopatra DeLeon & Laura Bellamy. Dynamically harvesting study dates to construct & QC the SV
SDTM domain. PHUSE US Connect 2019

[3] CDISC Study Data Tabulation Model and SDTMIG v3.4 at http://www.cdisc.org/sdtm

[4] FDA Validator Rules. December 2022. Available at https://www.fda.gov/industry/fda-data-standards-
advisory-board/study-data-standards-resources

[5] [U.S. Department of Health and Human Services, Food and Drug Administration, Study Data
Technical Conformance Guide: Technical Specifications Document. June 2023. Available at
https://www.fda.gov/media/153632/download

[6] Henry B. Winsor, and Mario Widel, “CREATING SV AND SE FIRST”, PharmaSUG 2010

[7] Xiangchen (Bob) Cui; Scott Moseley; Min Chen. A Cost-Effective SDTM Conversion for NDA
Electronic Submission. Proceedings of the Pharmaceutical SAS® Users Group Conference, PharmaSUG
2011

Code Reviewing
 - Identify and fix bugs
 - Make sure each
 program meet the
 requirements logically

Real Data Testing
 - Make sure the execution of
 SAS code is expected &
 meets the requirements
 - Could repeat several times
 for the accumulating real
 data as the study is ongoing

Developing Independent
Mapping SAS Program
 - Identify relatively complicated
 domains per the team’s decision
 - Develop independent SAS
 programs to validate SDTM
 datasets by PROC COMPARE

Complete
Validation

Identify Domains
for Independent
Programming

Validation

Validator: Walk
Through Each

Data Block After
the Execution of

SAS Codes

Macro Developer
& Validator:

Review Each
SDTM SAS

Program

Finalize the
SDTM

Datasets

%SDTM_Code_Generator:

Generate Each SDTM
Mapping SAS

Program

As
Needed

Raw Data Available

http://www.cdisc.org/sdtm
https://www.fda.gov/industry/fda-data-standards-advisory-board/study-data-standards-resources
https://www.fda.gov/industry/fda-data-standards-advisory-board/study-data-standards-resources

17

ACKNOWLEDGMENTS

Appreciation goes to PK Morrow for her invaluable review and comments.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Xiangchen (Bob) Cui, Ph.D.
Enterprise: CRISPR Therapeutics AG
Address: 105 West 1st Street
City, State ZIP: Boston, MA 02127
Work Phone: 908-240-4086
E-mail: xiangchen.cui@crisprtx.com

Name: Jessie Wang
Enterprise: CRISPR Therapeutics AG
Address: 105 West 1st Street
City, State ZIP: Boston, MA 02127
Work Phone: 214-668-2107
E-mail: jessie.wang@crisprtx.com

Name: Min Chen
Enterprise: CRISPR Therapeutics AG
Address: 105 West 1st Street
City, State ZIP: Boston, MA 02127
Work Phone: 857-928-4347
E-mail: min.chen@crisprtx.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Any brand and product names are trademarks of their respective companies.

mailto:xiangchen.cui@crisprtx.com
mailto:jessie.wang@crisprtx.com
mailto:min.chen@crisprtx.com

18

APPENDIX 1. A SAMPLE OF THE ANNOTATED CRFS CONTAINING BOTH RAW
DATASET VARIABLE NAMES AND THEIR MAPPED SDTM VARIABLES AND
SUPPLEMENTAL QUALIFIERS FOR THE SUBJECT VISIT (SV), UNSCHEDULED
SUBJECT VISIT (UV), AND NEXT VISIT (NV) FORMS

19

APPENDIX 2. AN EXAMPLE OF _SV.SAS FROM CALLING
%SDTM_CODE_GENERATOR

data try;

 attrib &attrib.;

 set

 NV(drop=studyid siteid in=_NV)

 SV(drop=studyid siteid in=_SV)

 UV(drop=studyid siteid in=_UV);

 STUDYID = 'Project-Study-101';

 DOMAIN = 'SV';

 USUBJID = strip(STUDYID)||strip(substr(SUBJECT,4));

 visit = strip(put(folder, $visit.));

 visitnum = input(visit, ??visitnum.);

 if VISIT ^= 'Unscheduled' then SVPRESP = 'Y';

 visitdy = input(visit, ??visitdy.);

 if not missing(VISREASOC_STD) then SVREASOC=strip(VISREASOC_STD);

 SVCNTMOD = strip(coalescec(put(VISCNTMDINC, CNTMDINC.), put(VISCNTMDINH, CNTMDINH.),

 put(VISCNTMDR, CNTMDR.), put(VISCNTMDOT, CNTMDOT.)));

 if not missing(VISEPCHGI_STD) then SVEPCHGI=strip(VISEPCHGI_STD);

 if not missing(UVREAS_STD) then SVUPDES=strip(UVREAS_STD);

 if not missing(UVDAT) then SVSTDTC=strip(put(UVDAT/24/3600,yymmdd10.));

run;

********* Programming Note: SDTM Variable: SVSTDY Needs the Derivation by the Macro Call: %get_dy;

%get_dy(_DATEVAR=SVSTDTC,_DAYVAR=SVSTDY);

********* Programming Note: SDTM Variable: SVENDY Needs the Derivation by the Macro Call: %get_dy;

%get_dy(_DATEVAR=SVENDTC,_DAYVAR=SVENDY);

proc sort data=try;by studyid usubjid VISITNUM;run;

*** Output permanent datasets to: wsdtm ***;

data wsdtm.&domain.(keep=&keep label=&label);

 attrib &attrib.;

 set try;

 format _all_;

 informat _all_;

run;

data supp&domain.;

 attrib &attrib_supp.;

 set try;

 rdomain = "&domain.";

 idvar = 'VISITNUM';

 idvarval = strip(put(VISITNUM, best.));

 if not missing(NVYN_STD) then do;

 qnam='NXTVISYN';

 qlabel='Subject Advancing to Next Visit?';

 qval=strip(NVYN_STD);

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(VISDAT) then do;

 qnam='VISDTC';

 qlabel='Visit Date';

 qval=strip(put(VISDAT/24/3600,yymmdd10.));

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(UVREAS_O) then do;

 qnam='UNSREASO';

 qlabel='Unscheduled Visit: Other Reason, Specify';

 qval=strip(UVREAS_O);

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(VISREASOC_AE) then do;

 qnam='VISMAEID';

 qlabel='Missed Visit: Adverse Event, Specify';

 qval=strip(VISREASOC_AE);

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(UNSAPERF) then do;

 qnam='UNSAPERF';

 qlabel='Unscheduled Assessments Performed';

 qval=strip(UNSAPERF);

 qorig='CRF';

 qeval='';

 Block 2

 Block 1

 Block 4

Variable UNSAPERF is derived from extra
programming to concatenate the values of
multiple raw dataset variables by “,”.
This concatenation is done by
%SV_Code_Generator, and the output code is in
_BLOCK A of Appendix 3.

 Block 3

20

 output;

 end;

 if not missing(VISREASOC_O) then do;

 qnam='VISMOTHS';

 qlabel='Missed Visit: Other Reason, Specify';

 qval=strip(VISREASOC_O);

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(VISCNTMD_O) then do;

 qnam='VISTYPOS';

 qlabel='Type of Visit: Other, Specify';

 qval=strip(VISCNTMD_O);

 qorig='CRF';

 qeval='';

 output;

 end;

run;

proc sort data=&suppdomain.;by usubjid idvarval qnam;run;

data wsdtm.&suppdomain.(keep=&keep_supp label=&label_supp);

 attrib &attrib_supp.;

 set &suppdomain.;

 format _all_;

 informat _all_;

run;

APPENDIX 3. AN EXAMPLE OF SV.SAS FROM CALLING
%SV_CODE_GENERATOR

proc datasets lib=work kill nolist nowarn;

 copy in=raw out=work;

 select ANC BIO BIONON BS CLLSLL CONS CP CY DIA ECHO ECOG EG EQ5D5L EX1 EX2 EX3

 FACT FACTLEU ICE INL INTL1 INTL2 ITL1 ITL2 IWCLL LBBC LBBMCLL LBBMLYM LBCHEM LBCOAG LBCRS LBHM

 LBIMMU LBLYM LBPREG LBSER LP LS LUGANO MR MRD MRI NL NTL1 NTL2 NV ORG PE PET1 PET2

 PK PKINF PROG RADPOST RADPRE RETX SCTPOST SCTPRE SS SV TB THERPOST THERPRE TL1 TL2 UV VS;

 copy in=sdtm out=work;

 select dm;

quit;

*** Below is the SAS codes for the EDC datasets only with dates;

data try1;

 attrib &attrib.;

 length UNSAPERF $200. SVDTC $20.;

 set

 ANC(drop=studyid siteid rename=(ANCDAT=SVDT))

 BS(drop=studyid siteid rename=(BSDAT=SVDT))

 CLLSLL(drop=studyid siteid rename=(CLLSLLADAT=SVDT))

 CLLSLL(drop=studyid siteid rename=(CLLSLLCDAT=SVDT))

 CLLSLL(drop=studyid siteid rename=(CLLSLLDAT=SVDT))

 CONS(drop=studyid siteid rename=(CONSYMDAT=SVDT))

 CP(drop=studyid siteid rename=(CPENDAT=SVDT))

 CP(drop=studyid siteid rename=(CPSTDAT=SVDT))

 DIA(drop=studyid siteid rename=(DIADAT=SVDT))

 ECHO(drop=studyid siteid rename=(ECHODAT=SVDT))

 ECOG(drop=studyid siteid rename=(ECOGDAT=SVDT))

 EQ5D5L(drop=studyid siteid rename=(EQ5D5LDAT=SVDT))

 FACT(drop=studyid siteid rename=(FACTDAT=SVDT))

 FACTLEU(drop=studyid siteid rename=(FACTLDAT=SVDT))

 ICE(drop=studyid siteid rename=(IADAT=SVDT))

 INL(drop=studyid siteid rename=(INLMDAT=SVDT))

 INTL1(drop=studyid siteid rename=(INTL1DAT=SVDT))

 INTL2(drop=studyid siteid rename=(INTL2DAT=SVDT))

 ITL1(drop=studyid siteid rename=(ITL1DAT=SVDT))

 ITL2(drop=studyid siteid rename=(ITL2DAT=SVDT))

 IWCLL(drop=studyid siteid rename=(IWCLLDAT=SVDT))

 LBBC(drop=studyid siteid rename=(LBDAT=SVDT))

 LBBMCLL(drop=studyid siteid rename=(BMADAT_CLL=SVDT))

 LBBMCLL(drop=studyid siteid rename=(BMBDAT=SVDT))

 LBBMLYM(drop=studyid siteid rename=(BMADAT_LYM=SVDT))

 LBBMLYM(drop=studyid siteid rename=(BMBDAT=SVDT))

 LBCHEM(drop=studyid siteid rename=(LBDAT=SVDT))

 LBCOAG(drop=studyid siteid rename=(LBDAT=SVDT))

 LBCRS(drop=studyid siteid rename=(LBDAT=SVDT))

 LBHM(drop=studyid siteid rename=(LBDAT=SVDT))

 LBIMMU(drop=studyid siteid rename=(LBDAT=SVDT))

 LBLYM(drop=studyid siteid rename=(LBDAT=SVDT))

 LBPREG(drop=studyid siteid rename=(PGDAT=SVDT))

 LBSER(drop=studyid siteid rename=(LBDAT=SVDT))

 Block 4

 Block 5

Step 3.1: Stack Raw Datasets and
Standardize Their Date Variable Names Into a

Common Name (SVDTC)

Step 2: Identify Raw Datasets With Dates
Only Along With Clinical Visits

Step 1: Identify Raw Datasets with Both
Dates/Times and Clinical Visits

21

 LP(drop=studyid siteid rename=(LPDAT=SVDT))

 LS(drop=studyid siteid rename=(LSDAT=SVDT))

 LUGANO(drop=studyid siteid rename=(LUGDAT=SVDT))

 MR(drop=studyid siteid rename=(MRDAT=SVDT))

 MRD(drop=studyid siteid rename=(MRDDAT=SVDT))

 MRI(drop=studyid siteid rename=(MRIDAT=SVDT))

 NL(drop=studyid siteid rename=(NLMDAT=SVDT))

 NL(drop=studyid siteid rename=(NLUDAT=SVDT))

 NTL1(drop=studyid siteid rename=(NTL1MDAT=SVDT))

 NTL1(drop=studyid siteid rename=(NTL1UDAT=SVDT))

 NTL2(drop=studyid siteid rename=(NTL2DAT=SVDT))

 NTL2(drop=studyid siteid rename=(NTL2UDAT=SVDT))

 ORG(drop=studyid siteid rename=(OGLVDAT=SVDT))

 ORG(drop=studyid siteid rename=(OGSPDAT=SVDT))

 PE(drop=studyid siteid rename=(PEDAT=SVDT))

 PET1(drop=studyid siteid rename=(PET1DAT=SVDT))

 PET2(drop=studyid siteid rename=(PET2DAT=SVDT))

 PROG(drop=studyid siteid rename=(PROGDAT=SVDT))

 RADPOST(drop=studyid siteid rename=(RADPOSTENDAT=SVDT))

 RADPOST(drop=studyid siteid rename=(RADPOSTSTDAT=SVDT))

 RADPRE(drop=studyid siteid rename=(RADPREENDAT=SVDT))

 RADPRE(drop=studyid siteid rename=(RADPRESTDAT=SVDT))

 RETX(drop=studyid siteid rename=(RETXDAT=SVDT))

 SCTPOST(drop=studyid siteid rename=(SCTALLODAT=SVDT))

 SCTPOST(drop=studyid siteid rename=(SCTAUTODAT=SVDT))

 SCTPRE(drop=studyid siteid rename=(SCTAUTODAT=SVDT))

 SS(drop=studyid siteid rename=(SSDAT=SVDT))

 SV(drop=studyid siteid rename=(VISDAT=SVDT) in=_SV)

 TB(drop=studyid siteid rename=(TBDAT=SVDT))

 THERPOST(drop=studyid siteid rename=(THERPOSTENDDAT=SVDT))

 THERPOST(drop=studyid siteid rename=(THERPOSTSTDAT=SVDT))

 THERPRE(drop=studyid siteid rename=(THERENDDAT=SVDT))

 THERPRE(drop=studyid siteid rename=(THERSTDAT=SVDT))

 TL1(drop=studyid siteid rename=(TL1MDAT=SVDT))

 TL1(drop=studyid siteid rename=(TL1UDAT=SVDT))

 TL2(drop=studyid siteid rename=(TL2MDAT=SVDT))

 TL2(drop=studyid siteid rename=(TL2UDAT=SVDT))

 UV(drop=studyid siteid rename=(UVDAT=SVDT) in=_UV)

 VS(drop=studyid siteid rename=(VSDAT=SVDT));

 if folder in ('VI', 'DA') then delete;/* VI=Visit Independent, DA=Disease Assessment */

 SVCNTMOD = strip(coalescec(put(VISCNTMDINC, CNTMDINC.), put(VISCNTMDINH, CNTMDINH.),

 put(VISCNTMDR, CNTMDR.),put(VISCNTMDOT, CNTMDOT.)));

 if not missing(VISEPCHGI_STD) then SVEPCHGI=strip(VISEPCHGI_STD);

 if not missing(UVREAS_STD) then SVUPDES=strip(UVREAS_STD);

 if not missing(SVDT) then SVDTC=strip(put(SVDT/24/3600,yymmdd10.));

 if _SV then VISDAT = SVDT;

 call missing(UNSAPERF);

 if _UV and ANC=1 then UNSAPERF = catx(', ',UNSAPERF, 'ANC');

 if _UV and PROG=1 then UNSAPERF = catx(', ',UNSAPERF, 'PROG');

 if _UV and BS=1 then UNSAPERF = catx(', ',UNSAPERF, 'BS');

 if _UV and LBBMCLL=1 then UNSAPERF = catx(', ',UNSAPERF, 'LBBMCLL');

 if _UV and LBBMLYM=1 then UNSAPERF = catx(', ',UNSAPERF, 'LBBMLYM');

 if _UV and MRI=1 then UNSAPERF = catx(', ',UNSAPERF, 'MRI');

 if _UV and CONS=1 then UNSAPERF = catx(', ',UNSAPERF, 'CONS');

 if _UV and PK=1 then UNSAPERF = catx(', ',UNSAPERF, 'PK');

 if _UV and PKINF=1 then UNSAPERF = catx(', ',UNSAPERF, 'PKINF');

 if _UV and CY=1 then UNSAPERF = catx(', ',UNSAPERF, 'CY');

 if _UV and EG=1 then UNSAPERF = catx(', ',UNSAPERF, 'EG');

 if _UV and ECOG=1 then UNSAPERF = catx(', ',UNSAPERF, 'ECOG');

 if _UV and EQ5D5L=1 then UNSAPERF = catx(', ',UNSAPERF, 'EQ5D5L');

 if _UV and BIO=1 then UNSAPERF = catx(', ',UNSAPERF, 'BIO');

 if _UV and BIONON=1 then UNSAPERF = catx(', ',UNSAPERF, 'BIONON');

 if _UV and FACTLEU=1 then UNSAPERF = catx(', ',UNSAPERF, 'FACTLEU');

 if _UV and FACTLYM=1 then UNSAPERF = catx(', ',UNSAPERF, 'FACTLYM');

 if _UV and CLLSLL=1 then UNSAPERF = catx(', ',UNSAPERF, 'CLLSLL');

 if _UV and ICE=1 then UNSAPERF = catx(', ',UNSAPERF, 'ICE');

 if _UV and LBIMMU=1 then UNSAPERF = catx(', ',UNSAPERF, 'LBIMMU');

 if _UV and NL=1 then UNSAPERF = catx(', ',UNSAPERF, 'NL');

 if _UV and INL=1 then UNSAPERF = catx(', ',UNSAPERF, 'INL');

 if _UV and TL1=1 then UNSAPERF = catx(', ',UNSAPERF, 'TL1');

 if _UV and ITL1=1 then UNSAPERF = catx(', ',UNSAPERF, 'ITL1');

 if _UV and TL2=1 then UNSAPERF = catx(', ',UNSAPERF, 'TL2');

 if _UV and ITL2=1 then UNSAPERF = catx(', ',UNSAPERF, 'ITL2');

 if _UV and LBBC=1 then UNSAPERF = catx(', ',UNSAPERF, 'LBBC');

 if _UV and CHEM=1 then UNSAPERF = catx(', ',UNSAPERF, 'CHEM');

 if _UV and COAG=1 then UNSAPERF = catx(', ',UNSAPERF, 'COAG');

 if _UV and LBCRS=1 then UNSAPERF = catx(', ',UNSAPERF, 'LBCRS');

 _BLOCK A

Step 3.2: Concatenate the
Variable Names for QNAM =

“UNSAPERF” in Step 9

From Block 2
of _SV.SAS

In the UV (Unscheduled
Subject Visit) dataset,
concatenate these raw dataset
variables into a single
character variable UNSAPERF,
which will later be mapped into
a supplemental qualifier
(_BLOCK C).

22

 if _UV and HEM=1 then UNSAPERF = catx(', ',UNSAPERF, 'HEM');

 if _UV and LBLYM=1 then UNSAPERF = catx(', ',UNSAPERF, 'LBLYM');

 if _UV and PG=1 then UNSAPERF = catx(', ',UNSAPERF, 'PG');

 if _UV and SERO=1 then UNSAPERF = catx(', ',UNSAPERF, 'SERO');

 if _UV and LS=1 then UNSAPERF = catx(', ',UNSAPERF, 'LS');

 if _UV and LP=1 then UNSAPERF = catx(', ',UNSAPERF, 'LP');

 if _UV and MRD=1 then UNSAPERF = catx(', ',UNSAPERF, 'MRD');

 if _UV and MR=1 then UNSAPERF = catx(', ',UNSAPERF, 'MR');

 if _UV and ORG=1 then UNSAPERF = catx(', ',UNSAPERF, 'ORG');

 if _UV and PET1=1 then UNSAPERF = catx(', ',UNSAPERF, 'PET1');

 if _UV and PET2=1 then UNSAPERF = catx(', ',UNSAPERF, 'PET2');

 if _UV and PE=1 then UNSAPERF = catx(', ',UNSAPERF, 'PE');

 if _UV and IWCLL=1 then UNSAPERF = catx(', ',UNSAPERF, 'IWCLL');

 if _UV and LUGANO=1 then UNSAPERF = catx(', ',UNSAPERF, 'LUGANO');

 if _UV and SCTPOST=1 then UNSAPERF = catx(', ',UNSAPERF, 'SCTPOST');

 if _UV and TB=1 then UNSAPERF = catx(', ',UNSAPERF, 'TB');

 if _UV and VS=1 then UNSAPERF = catx(', ',UNSAPERF, 'VS');

 in_UV = _UV;

 in_SV = _SV;

 if _SV or not missing(SVDTC) then output;/** with missing date from scheduled visits **/

run;

*** Below is the SAS codes for the EDC datasets with date and time;

data try2;

 attrib &attrib.;

 length SVDTC $20.;

 set

 BIO(drop=studyid siteid rename=(BIOPOSTDAT=SVDT BIOPOSTTIM=SVTM))

 BIO(drop=studyid siteid rename=(BIOPREDAT=SVDT BIOPRETIM=SVTM))

 BIONON(drop=studyid siteid rename=(NONBIODAT=SVDT NONBIOTIM=SVTM))

 CY(drop=studyid siteid rename=(CYKDAT=SVDT CYKTIM=SVTM))

 EG(drop=studyid siteid rename=(EGDAT=SVDT EGTIM=SVTM))

 EX1(drop=studyid siteid rename=(EX1ENDAT=SVDT EX1ENTIM=SVTM))

 EX1(drop=studyid siteid rename=(EX1STDAT=SVDT EX1STTIM=SVTM))

 EX2(drop=studyid siteid rename=(EX2ENDAT=SVDT EX2ENTIM=SVTM))

 EX2(drop=studyid siteid rename=(EX2STDAT=SVDT EX2STTIM=SVTM))

 EX3(drop=studyid siteid rename=(EX3ENDAT=SVDT EX3ENTIM=SVTM))

 EX3(drop=studyid siteid rename=(EX3STDAT=SVDT EX3STTIM=SVTM))

 PK(drop=studyid siteid rename=(PKDAT=SVDT PKTIM=SVTM))

 PKINF(drop=studyid siteid rename=(PKPOSTDAT=SVDT PKPOSTIM=SVTM))

 PKINF(drop=studyid siteid rename=(PKPREDAT=SVDT PKPRETIM=SVTM));

 if folder in ('VI', 'DA') then delete;/* VI=Visit Independent, DA=Disease Assessment */

 if not missing(SVDT) then SVDTC=strip(put(SVDT/24/3600,yymmdd10.));

 if not missing(SVDTC) and not missing(SVTM) then SVDTC=cats(SVDTC, 'T',

 put(input(SVTM, TIME.), TOD5.));

 if not missing(SVDT) then output;

run;

*** Combine try1 and try2;

data try3;

 length SVREASOC $200.;

 set try1 try2;

 STUDYID = 'Project-Study-101';

 DOMAIN = 'SV';

 USUBJID = strip(STUDYID)||strip(substr(SUBJECT,4));

 visit = strip(put(folder, $visit.));

 visitnum = input(visit, ??visitnum.);

 visitdy = input(visit, ??visitdy.);

 if VISIT ^= 'Unscheduled' then SVPRESP = 'Y';

 if visit='Unscheduled' then unsched=1;

 if SVPRESP = 'Y' and not missing(SVDTC) then SVOCCUR = 'Y';

 if SVPRESP = 'Y' and missing(SVDTC) then SVOCCUR = 'N';

 if not missing(VISREASOC_STD) then SVREASOC=strip(VISREASOC_STD);

run;

/*read in external data, and combine with try3, eg., central tumor data, etc.*/

*** merge with DM and remove dates before informed consent date or first screening date from SV ***;

proc sort data=try3;by USUBJID SVDTC;run;

data sv0;

 set try3(where=(in_SV=1));

 by USUBJID SVDTC;

 if first.USUBJID;

run;

data try4 prescreen;

 merge try3(in=in1) sv0(keep=USUBJID SVDTC rename=(SVDTC=SVDTC1)) dm(keep=USUBJID RFICDTC in=in2);

 by USUBJID;

 if in1 and in2 and ((RFICDTC <= SVDTC) or (SVDTC1 <= SVDTC) or in_SV) then output try4;

 else if in1 and in2 then output prescreen;

run;

Step 3: Stack the Raw Datasets and
Standardize Date/Time Variable
Names Into a Common Name

(SVDTC)

Step 4: Combine Two Data Blocks to Derive
VISIT and VISITNUM for Scheduled Visits and
Derive SV Variables Describing Visit-Related

Information: SVPRESP, SVOCCUR, SVREASOC

Step 4.5: Import External
Datasets and Combine

Them with the Above Two
Data Blocks

From Block 1
of _SV.SAS

Step 2: Identify Raw Datasets With Both
Dates and Times Along With Clinical Visits

 _BLOCK A

_BLOCK B

23

*** separate into scheduled, unscheduled, and missed visits;

data try_sched

 try_unsched

 try_missed;

 set try4;

 if missing(SVDTC) then output try_missed;

 else if UNSCHED then output try_unsched;

 else output try_sched;

run;

*** process scheduled visits ***;

proc sort data=try_sched;by USUBJID VISITNUM VISIT SVDTC;run;

data try_sched2;

 length STARTDTC $20.;

 retain STARTDTC;

 set try_sched;

 by USUBJID VISITNUM VISIT SVDTC;

 if first.VISIT then STARTDTC = SVDTC;

 if last.VISIT then do;

 SVSTDTC = STARTDTC;

 SVENDTC = SVDTC;

 output;

 end;

run;

proc sort data=try_sched2;by USUBJID SVSTDTC UNSCHED SVENDTC;run;

*** process unscheduled visits ***;

proc sort data=try_unsched;by USUBJID SVDTC descending SVUPDES descending UNSAPERF descending UVREAS_O;run;

data try_unsched2;

 set try_unsched;

 by USUBJID SVDTC descending SVUPDES descending UNSAPERF descending UVREAS_O;

 SVSTDTC = SVDTC;

 SVENDTC = SVDTC;

 call missing(VISITNUM);

 if first.SVDTC then output;

run;

proc sort data=try_unsched2;by USUBJID SVSTDTC UNSCHED SVENDTC;run;

*** combine and calculate VISITNUM for unscheduled visits ***;

data try5;

 retain VISITNUM1;

 set try_sched2 try_unsched2;

 by USUBJID SVSTDTC UNSCHED SVENDTC;

 VISITNUM_OLD = VISITNUM;

 VISIT_OLD = VISIT;

 if first.USUBJID then VISITNUM1 = max(0.01, VISITNUM);

 else if not missing(VISITNUM) then VISITNUM1 = VISITNUM;

run;

proc sort data=try5;by USUBJID VISITNUM1 SVSTDTC UNSCHED SVENDTC;run;

data try6;

 retain VISITNUM2;

 set try5;

 by USUBJID VISITNUM1 SVSTDTC UNSCHED SVENDTC;

 if first.VISITNUM1 then VISITNUM2 = 0;

 if UNSCHED = 1 then VISITNUM2 + 0.01;

 if VISITNUM2 > 0 then do;

 VISITNUM = VISITNUM1 + VISITNUM2;

 VISIT = catx(" ", VISIT, put(VISITNUM, 8.2));

 end;

run;

*** combine with missed visits ***;

data try7; set try6 try_missed; run;

proc sort data=try7;by USUBJID VISITNUM SVSTDTC;run;

** bring in NV(Next Visit) to add NVYN_STD(Subject Be Advancing to the Next Visit) to be stored in SUPPSV;

data try0;

 set NV(drop=studyid siteid);

 STUDYID = 'Project-Study-101';

 DOMAIN = 'SV';

 USUBJID = strip(STUDYID)||strip(substr(SUBJECT,4));

 visit = strip(put(folder, $visit.));

 visitnum = input(visit, ??visitnum.);

 visitdy = input(visit, ??visitdy.);

run;

*** merge in variables from raw SV, NV *;

proc sort data=try0;by USUBJID VISITNUM;run;

proc sort data=try4;by USUBJID VISITNUM;run;

data try;

 merge try7

 try0(keep=USUBJID VISITNUM NVYN_STD in=in1)

 try4(where=(in_SV=1) keep=USUBJID VISITNUM VISDAT SVCNTMOD SVEPCHGI in_SV in=in2);

 by USUBJID VISITNUM;

run;

********* Programming Note: SDTM Variable: SVSTDY Needs the Derivation by the Macro Call: %get_dy;

_BLOCK B

Step 5: Separate the Combined Data into Two
Data Blocks: One With Scheduled Visits Only,

Another With Unscheduled Visits Only

Step 6: For Each Scheduled Visit, Derive
SVSTDTC From the Earliest Date/Time and Derive

SVENDTC From the Latest Date/Time

Step 6: For Each Unscheduled Visit, Set Both
SVSTDTC and SVENDTC Equal to SVDTC

Step 7: Combine the Scheduled Visits and
Unscheduled Visits Blocks and Derive VISIT and

VISITNUM for Unscheduled Visits

24

%get_dy(_DATEVAR=SVSTDTC,_DAYVAR=SVSTDY);

********* Programming Note: SDTM Variable: SVENDY Needs the Derivation by the Macro Call: %get_dy;

%get_dy(_DATEVAR=SVENDTC,_DAYVAR=SVENDY);

proc sort data=try;by studyid usubjid VISITNUM;run;

*** Output permanent datasets to: wsdtm ***;

data wsdtm.&domain.(keep=&keep label=&label);

 attrib &attrib.;

 set try;

 format _all_;

 informat _all_;

run;

data supp&domain.;

 attrib &attrib_supp.;

 set try;

 rdomain = "&domain.";

 idvar = 'VISITNUM';

 idvarval = strip(put(VISITNUM, best.));

 if not missing(NVYN_STD) then do;

 qnam='NXTVISYN';

 qlabel='Subject Advancing to Next Visit?';

 qval=strip(NVYN_STD);

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(VISDAT) then do;

 qnam='VISDTC';

 qlabel='Visit Date';

 qval=strip(put(VISDAT/24/3600,yymmdd10.));

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(UVREAS_O) then do;

 qnam='UNSREASO';

 qlabel='Unscheduled Visit: Other Reason, Specify';

 qval=strip(UVREAS_O);

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(VISREASOC_AE) then do;

 qnam='VISMAEID';

 qlabel='Missed Visit: Adverse Event, Specify';

 qval=strip(VISREASOC_AE);

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(UNSAPERF) then do;

 qnam='UNSAPERF';

 qlabel='Unscheduled Assessments Performed';

 qval=strip(UNSAPERF);

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(VISREASOC_O) then do;

 qnam='VISMOTHS';

 qlabel='Missed Visit: Other Reason, Specify';

 qval=strip(VISREASOC_O);

 qorig='CRF';

 qeval='';

 output;

 end;

 if not missing(VISCNTMD_O) then do;

 qnam='VISTYPOS';

 qlabel='Type of Visit: Other, Specify';

 qval=strip(VISCNTMD_O);

 qorig='CRF';

 qeval='';

 output;

 end;

run;

proc sort data=&suppdomain.;by usubjid idvarval qnam;run;

data wsdtm.&suppdomain.(keep=&keep_supp label=&label_supp);

 attrib &attrib_supp.;

 set &suppdomain.;

 format _all_;

 informat _all_;

run;

From Block 3
of _SV.SAS

From Block 5
of _SV.SAS

From Block 4
of _SV.SAS

Step 10: Output Permanent Dataset: SUPPSV

_BLOCK C
Variable UNSAPERF was derived in _BLOCK A.
Here it is output as QVAL for QNAM =
“UNSAPERF” for SUPPSV.

Step 8: Derive SVSTDY and SVENDY

Step 9: Map Other Raw Dataset Variables into SUPPSV

Step 10: Output Permanent Dataset: SV

