PharmaSUG 2024 - Paper AP-268

A New Approach to Automating the Creation of the Subject Visits (SV)
Domain
Xiangchen (Bob) Cui, Jessie Wang, and Min Chen, CRISPR Therapeutics AG, Boston, MA

The creation of the subject visits (SV) domain is one of the most challenging tasks of SDTM
programming. Aside from the small portion of mapping from raw dataset variables to SV variables, SV
programming mainly consists of a more complex derivation process, which is totally different from that of
other SDTM domains. The dynamic parts of the SV programming process, such as identifying raw
datasets and their variables with both date/time and clinical visits, cause manual development of a SAS
program to be time-consuming and error prone. Hence, automating its code generation would achieve
and enhance efficiency and accuracy.

This paper will present a new approach for SV automation based on the SDTM automation done in our
previous paper, which leveraged CRF specifications from an EDC database and SDTM standards [1]. It
will introduce the standard SV programming logic flow with 10 sequential steps, which leads us to develop
an additional SAS-based macro named %SV_Code_Generator as an expansion to the macro introduced
in [1]. The output of this macro (SV.sas) achieves 100% automation of SV domain for the raw data
collected per CRFs in a clinical study.

This new approach guarantees all raw dataset variables related to subject visits are accounted for in SV
programming thanks to the sequential programming automations. This automation allows for the
generation of SV dataset to occur very early in the programming development cycle and makes
developing programmatic quality checks for clinical data review and data cleaning more efficient and
economically feasible.

A data-driven approach utilizing SASHELP views and CALL EXECUTE statements to bring in dates
programmatically and dynamically while building the SV domain is believed to be more robust than
manual identification and typical data step programming [2]. However, it still is a manual process, instead
of an automation through a metadata-driven method.

In our previous paper, we introduced a new approach in automatic SAS code generation to achieve
SDTM automation by a metadata-driven method leveraging both CRF specifications from an EDC
database and SDTM standards [1]. The macro named %SDTM_Code_Generator generates a SDTM
mapping SAS program after each call. However, since SV is a special purpose domain that requires
complex derivations, more work is warranted to automate SV programming.

This paper will present our thought process in developing %SV_Code_Generator and provide details on
the standard SV programming logic flow with 10 sequential steps and the rationale of the automatic
generation of SV domain. A deep understanding of SV programming has led us to develop two steps for
the automatic SV programming process as follows:

1. Call%SDTM_Code_Generator to generate SAS code for mapping visit-related raw data to the
SV domain.

2. Call%SV_Code_Generator to generate SAS code for complex derivations and combine it with
the SAS code from Step 1 to automatically output a SAS program for the SV domain (SV.sas).

This paper will illustrate how the two macros work together to implement the 10 sequential steps of the
SV programming process. It will identify which parts of the process are “dynamic” and which parts are
“standard” and provide snippets of SAS code to demonstrate how to process these parts. It will also show
how all variables collected for the SV domain are accounted for in SV programming through the
sequential programming automations built into the programming process. Finally, it will introduce how to

handle external data and how to validate the SV dataset generated by %SV_Code_Generator to achieve
both high quality and efficiency.

Samples of _SV.sas generated from %SDTM_Code_Generator and SV.sas generated from
%SV_Code_Generator are included in Appendix 2 and 3, respectively, for the illustration of the new
approach throughout this paper and for easy reference.

The CDISC SDTM Implementation Guide Version 3.4 (SDTMIG v3.4) states that Subject Visits (SV) is ‘[a]
special purpose domain that contains information for each subject’s actual and planned visits. The
Subject Visits domain consolidates information about the timing of subject visits that is otherwise spread
over domains that include the visit variables [...] Unless the beginning and end of each visit is collected,
populating the SV dataset will involve derivations. In a simple case, where, for each subject visit, exactly
1 date appears in every such domain, the SV dataset can be created easily by populating both SVSTDTC
and SVENDTC with the single date for a visit. When there are multiple dates and/or date/times for a visit
for a particular subject, the derivation of values for SYVSTDTC and SVENDTC may be more complex.”

3]

The FDA has published FDA Validator Rules and periodically updated them since March 2017. For the
SV domain, Validator Rule SD0065 states that “[all] Unique Subject Identifier (USUBJID) + Visit Name
(VISIT) + Visit Number (VISITNUM) combination values in data should be present in the Subject Visits
(SV) domain” [4]. The FDA uses the Study Data Technical Conformance Guide to express the
expectation that sponsors should comply with these rules (as well as the SDTMIG) when submitting
SDTM datasets for regulatory review and analysis [5].

Thus, it is crucial for sponsors to carefully identify which dates should be included in derivations for
SVSTDTC and SVENDTC, determine the logic flow for those derivations, and ensure that all visits are
properly accounted for in the SV domain. This can be a tedious process as those numerous dates and
visits come from multiple sources, and accidental omissions of data can occur. There are two different
approaches to programming SV to comply with these rules.

The two approaches to programming SV are: 1) generate SV once all other SDTM domains with visit
information are available as inputs and 2) generate SV with raw data as inputs. Table 1 summarizes the
pros and cons of these two approaches.

Approach The Input of Pros Cons
Programming
/Derivation
Approach 1 SDTM Datasets |Straightforward and simple for Circularity: Must go back to each SDTM
deriving SV domain with visits to update VISIT and

VISITNUM for unscheduled visits to comply
with FDA Validator Rule: SD0065

Approach 2 Raw Datasets Avoiding circularity in the entire |Prone to human errors and time consuming in
SDTM programming and easily |identifying raw datasets and their variables to
complying with FDA Validator be used

Rule: SD0065

Table 1. The Summary of Pros and Cons of Two Approaches to Programming SV Domain

[6] strongly recommends that SV should be populated first from raw data to avoid circularity in SDTM
programming and to comply with FDA Validator Rule: SD0065. We agree with that recommendation and
have chosen approach 2 for our SV programming process.

Before starting to program the SV domain, one should first understand the general SV programming logic
flow before trying to standardize and further automate the process.

Display 1 below shows 10 sequential steps followed in SAS SV programming, and Figure 1 below depicts
the overall logic and data flow of these 10 steps.

1.

8.
9.
10. Output permanent datasets: SV and SUPPSV.

Identify raw datasets with both dates/times and clinical visits.
Separate them into two data blocks: one with dates only, another with both dates and times.

For each data block, stack the raw datasets and standardize their date variable names into a
common name (SVDTC). If needed, do preprocessing for variables used in Step 9.

Combine these two data blocks to derive VISIT and VISITNUM for scheduled visits and derive SV
variables describing visit-related information: SVPRESP, SVOCCUR, SVREASOC per SDTMIG
v3.4.

4.5 Import external datasets (if available) and combine them with the above two data blocks.

Separate the combined data into two data blocks: one with scheduled visits only, another with
unscheduled visits only.

For each scheduled visit, derive SVSTDTC from the earliest date/time and derive SVENDTC from
the latest date/time. For each unscheduled visit, set both SVSTDTC and SVENDTC equal to
SVDTC.

Combine the scheduled visit and unscheduled visit blocks and derive VISIT and VISITNUM for
unscheduled visits.

Derive SVSTDY and SVENDY.
Map other raw dataset variables into SUPPSV.

Display 1. 10 Sequential Steps in SAS SV programming.

Step 1: Identify Raw Datasets with Both Dates/Times and
Clinical Visits

{ Step 2: Separate into Two Data Blocks \
I |
| One Block with Raw Datasets With Dates Only One Block with Raw Datasets With Both Dates and Times |
| Along With Clinical Visits Along With Clinical Visits |
D S Uy S
{_S_tep_?,:______ —— e o o o o e o = o ________..I
| Stack the Raw Datasets and Standardize Date . .
Variable Names Into a Common Name (SVDTC) St\a/u:k_ tg‘f RNaW Datlastets ?:nd Stand:}rdlze gstg{l'_l'(l:me |
| and Preprocess Variables Used in Step 9 ariable Names Into a Common Name () 1
N e e o o= == = — e e e -—em mm mm mm mm mm o=
{ Combine Two Data Blocks
Step 4: Derive the VISIT and VISIT for Scheduled Visit
Derive SV Variables Describing Visit-Related Informat SVPRESP, SVOCCUR, SVREASOC
If External Datasets Available
Step 4.5: Import External Datasets and Combine Them with the Above Two Data Blocks
(Step 5: Separate into Two Data Blocks
! v v
1 A Dataset With Scheduled Visits ONLY A Dataset With Unscheduled Visits ONLY

|

(

- -

- O O O O S S S S S S S S _— e - o . . .

e e RN FEEEEEEE

Step 6:

For Each Scheduled Visit,
Derive SVSTDTC From the Earliest Date/Time and
Derive SVENDTC From the Latest Date/Time

For Each Unscheduled Visit,
Set Both SVSTDTC and SVENDTC Equal to SVDTC

L ol S

* Combine the Scheduled Visits and Unscheduled Visits Blocks

Step 7: Derive VISIT and VISITNUM for Unscheduled Visits

Step 8: Derive SVSTDY and SVENDY

Step 9: Map Other Raw Dataset Variables Into SUPPSV

Step 10: Output Permanent Datasets: SV and SUPPSV

Figure 1. General SV Programming Logic Flow

RATIONALE FOR THE AUTOMATIC CREATION OF THE SV DOMAIN

The advantages and benefits of a macro for SDTM automation over SDTM mapping template SAS
programs have been fully explained and demonstrated in [1]. Furthermore, from Figure 1 above, one can
easily identify that Steps 4, 5, 6, 7, 8, and 10 are “standard” SV programming, which means that they do
not change on a study-by-study basis. However, Steps 1, 2, 3, and 9 are “dynamic”; they’re study-

4

-_— e -

- e -

dependent because different studies could have different CRF/EDC designs and raw dataset variable
names. Manually developing SAS code for Steps 1, 2, 3, and 9 is a time-consuming and labor-intensive
process, which is prone to human errors. If the generation of SAS code for Steps 1, 2, 3, and 9 could be
automated, the accuracy and efficiency of SV domain programming could be improved and enhanced.
The following example illustrates it!

In one of our studies, there are 80 raw datasets with over 900 variables. Of those datasets, 75 datasets
contain a total of 143 date/time variables. Among those datasets, 66 are associated with clinical visits: 57
with only dates and 9 with both dates and times. The "select” statement in Display 2 below shows an
example of the 66 CRFs/raw datasets with both dates/times and visits along with a 67" dataset (NV),
which does not contain any dates but does contain visit-related data that should be mapped to a
supplemental qualifier. These datasets are the inputs for SV programming. Please refer to the block “Step
1: Identify Raw Datasets with Both Date/Time and Clinical Visits” in Appendix 3 to see the full context of
this code.

proc datasets lib=work kill nolist nowarn;
copy in=raw out=work;
select ANC BIO BIOMON BS CLLSLL CONS CP CY DIA ECHO ECOG EG EQ5SD5L EX1 EX2 EX3
FACT FACTLEU ICE INL INTL1 INTL2 ITL1 ITL2 IWCLL LBBC LBBMCLL LBBMLYM LBCHEM LBCOAG LBCRS LBHM LBIMMU
LBELYM LBPREG LBSER LP LS LUGANO MR MRD MRI NL NTL1 NTL2 NV ORG PE PET1 PET2
PK PKINF PROG RADPOST RADPRE RETX SCTPOST SCTPRE 5SS SV TB THERPOST THERPRE TL1 TL2 UV VS;
copy in=sdtm out=work;
select dm;
quit;
Display 2. SAS Code from SV.sas Selecting 67 Raw Datasets to be Included in SV

Manually identifying and including all these forms in SV programming for every study is inefficient and
prone to human errors. Furthermore, any EDC database changes to these raw dataset names and their
date-related variables would require corresponding updates within SAS programs. A macro, on the other
hand, could automatically account for these changes. Information on how to generate this SAS code will
be provided in the later sections detailing the automation for Steps 1, 2, 3, and 9.

Furthermore, automation allows for SV to be generated early in the programming development cycle. In
contrast, manual SV generation would typically occur later in the development cycle (e.g., closer to
database lock or before FDA submission) as it's better to wait for more complete data before manually
working on SV SAS programming. This earlier automatically generated SV dataset can then be used to
develop programmatic quality checks to support clinical data review and data cleaning efforts.

[1] introduced our %SDTM_Code_Generator macro, which uses the master-annotation spreadsheet and
SDTM domain specifications as inputs to automatically generate SAS code for SDTM datasets. The
generated SAS code is saved to both output datasets and SAS program files. Please refer to [1] for the
rationale behind developing the macro, the new SDTM programming workflow, its programming validation
process, the master-annotation, and the scalability of this SDTM automation, etc.

For the SV domain, %SDTM_Code_Generator can be used to automatically generate code to map raw
datasets that specifically collect visit-related data. However, it does not have the functionality for
automatically deriving SVSTDTC, SVENDTC, VISITNUM, and VISIT. Thus, we created an additional
macro named %SV_Code_Generator to handle the additional derivations. The rationale for creating a
separate macro is quoted as follows:

“The SUBJECT VISITS (SV) domain is a special purpose domain that requires more complex derivations,
many of which are different from ones of macro %SDTM_Code_Generator. To simplify the development
of the macro and reduce the length of SAS code needed, we developed an additional macro named
%SV_Code_Generator, which leverages the output from the call of %SDTM_Code_Generator and
extends it further” [1].

Appendix 2 shows an example of the SAS program _SV.sas which is generated from the calling of
%SDTM_Code_Generator(domain_=SV). Certain sections of _SV.sas (labeled as “Block 1", “Block 27,
“Block 3”, “Block 4”, and “Block 5”) are used by the new macro %SV_Code_Generator to generate and
output SV.sas, which is shown in Appendix 3. Annotations in SV.sas (Appendix 3) indicate which sections
came from the various blocks in _SV.sas (Appendix 2). SV.sas (Appendix 3) is then used to generate the
SV domain dataset.

The following sections will introduce the master-annotation (in particular, the section dedicated to the SV
domain), the SV domain specification, and the new macro %SV_Code_Generator.

As discussed in our other paper, the master-annotation spreadsheet is one of the inputs for
%SDTM_Code_Generator [1]. With CRF specifications as its foundation, this spreadsheet contains all
raw dataset names, variable attributes (variable names, labels, types, etc.), and annotations for mapping
these raw dataset variables to specific SDTM domains. We also added additional columns to the
spreadsheet to aid %SDTM_Code_Generator in automating SAS code generation. Please see Table 2
below for key columns of the master-annotation and Table 3 for a portion of key variables in the master-
annotation for the SV domain. Appendix 1 contains the corresponding annotated CRFs for these visit-
related forms: Subject Visit (SV), Unscheduled Subject Visit (UV), and Next Visit (NV). Raw dataset
variable names are annotated in blue text while SDTM mappings are annotated in red text.

Assisting the Macro to

o From CRF Annotation Automate the SAS
From CRF Specifications, e.g., ALS Code Generation
A (_Aﬁ A
s \ f \
EDC EDC
DATASET [DATASET |oRD. [YORBLE [VARIABLE NAME [VARIABLE LABEL N [SDTM VARIABLE [QLABEL Qoric[TRT
OMAIN JASSIGN
NAME LABEL
- Subject Be Advancing to NXTVISYN in Subject Advancing to
NV Next Visit 1char NVYN_STD the Next Visit SV suPPSV Next Visit? CRF
SV Subject Visit 1|char VISYN_STD \Was visit performed? SV [NOT SUBMITTED]
SV Subject Visit 2|Date VISDAT Date of Visit SV ISDTC in SUPPSV__ |Visit Date CRF
SV Subject Visit 3|char VISREASOC_STD |Reason Visit not Performed |SV. [SVREASOC
. - . . Missed Visit: Adverse
SV Subject Visit 4fchar VISREASOC_AE |Adverse Event, Specify SV ISMAEID in SUPPSV Event, Specify CRF
. - . VISMOTHS in Missed Visit: Other
SV [Subject Visit 5|char VISREASOC_O (Other Reason, Specify SV SsUPPSV Reason, Specify CRF
sv Subject Visit 6 ;?)fzﬁlof Visit check all that sv
SV [Subject Visit 7|Numeric VISCNTMDINC In-Clinic SV [SVCNTMOD
SV [Subject Visit 8|Numeric VISCNTMDINH In-Home SV [SVCNTMOD
SV [Subject Visit 9|Numeric VISCNTMDR Remote SV [SVCNTMOD
SV [Subject Visit 10|Numeric VISCNTMDOT Other SV [SVCNTMOD
. . o VISTYPOS in Type of Visit: Other,
SV [Subject Visit 11|char VISCNTMD_O Type of Visit, Other SV SUPPSV Specify CRF
. - Epidemic/Pandemic
SV [Subject Visit 12|char VISEPCHGI_STD Related Change SV ISVEPCHGI
Unscheduled -
UV Subject Visit 1|Date UVDAT Date of Visit SV [SVSTDTC
uv (UiEEhEtEd 2lchar UVREAS STD |Reason for Unscheduled Jgi SVUPDES
Subject Visit — Visit
Unscheduled : UNSREASO in Unscheduled Visit:
LY Subject Visit | VYRR © fotiz, Sfpeetiy BY supPsv Other Reason, Specify |CRF
Unscheduled Unscheduled Assessments
- Subject Visit i Performed BY
Unscheduled q . A UNSAPERF in Unscheduled
i Subject Visit | ——— = [Pt SHEGE BY [SUPPSV Assessments Performed CRF | SeMENE
Unscheduled ; . UNSAPERF in Unscheduled
i Subject Visit A NS A EEn LA BY [SUPPSV Assessments Performed ORF | [SeiERE
Unscheduled .) UNSAPERF in Unscheduled
ud [Subject Visit 14]Numeric & [ehvietttnes BY SuPPSV Assessments Performed|CRF |COMBINE
Unscheduled : UNSAPERF in Unscheduled
1 [Subject Visit | M = e BY ISUPPSV Assessments Performed ORF | [SeiERE
Unscheduled q UNSAPERF in Unscheduled
1 Subject Visit iy i QDB L BY SUPPSV Assessments Performed|CRF |COMBINE
Unscheduled . Lesion Assessment - New UNSAPERF in Unscheduled
Y Subject Visit | el P Lesion BY [SUPPSV Assessments Performed ERF | SOmEE
Unscheduled . Lesion Assessment - Target| UNSAPERF in Unscheduled
i [Subject Visit 20 i et Lesions - Baseline BY [SUPPSV Assessments Performed [CRFE|[ceitlEiE
Unscheduled . Lesion Assessment - Target| UNSAPERF in Unscheduled
i Subject Visit 2 piz Lesions - Post-Baseline BY [SUPPSV Assessments Performed [CRFE|[ceitlEiE

PATASET[pATASET [oRD. VEARABLE [VARIABLE NAME [VARIABLE LABEL O [sPTM VARIABLE [oLABEL QORIG[}2L
NAME _ [LABEL

uv g;‘;jcehc‘:‘i;:';td 32[Numeric |cHEM Local Lab Chemistry SR i e erfomed|CRF [comBINE
UV gﬂ;fehc?[i/uilseitd 35|Numeric HEM Local Lab Hematology SV gsg:g\ERF in gg:gg:g‘élﬁg performed CRF |COMBINE
T I T il TR e
O e I e P il O = T P g
A I T R I i R T
il gﬂ;;?ehciifiz;ei?) PG VS PN SgE By g”ssg\ERF " ggsggssgﬁti Performed EIRE|[EomENE

Table 2. Key Columns of the Master-Annotation Dedicated to the SV Domain (With Raw Datasets:
NV, SV, and UV)

Column Column Content Origin Manual?
EDC DATASET NAME Raw Dataset Name ALS
EDC DATASET LABEL Raw Dataset Label ALS
ORDER The Order of Variables specified in CRFs, and One of Keys to Sort Intermediate ALS
Datasets for Writing SAS Programs from the Macro Calls
VARIABLE TYPE Variable Type in Raw Dataset, Numeric, char, Date, Time, or Date & Time ALS Derived
VARIABLE NAME Variable Name in Raw Dataset ALS
VARIABLE LABEL Variable Label in Raw Dataset ALS
SDTM VARIABLE SDTM Variable Name, SDTM Variable Name for A Specific Test, QNAM in CRF Annotation Y
Supplemental Domain, or Not Submitted
QLABEL Assign QLABEL in Supplemental Domains Triplet to Help | Assisting Macro Y
QORIG Assign QORIG in Supplemental Domains, with Values: CRF, gatpplntg Raw to C(fenferatSeDiAMS
Derived, or Assigned. ataset codes tor
Variables in generation
QEVAL Assign QEVAL in Supplemental Domains, e.g., ‘CLINICAL Supplemental
STUDY SPONSOR’ Domains
TRT ASSIGN Column to aid automation, indicating extra coding is needed for the mapping of
the variables, Applicable to all finding domains, and DS

Table 3. A Portion of the Key Variables in the Master-Annotation Dedicated to the SV Domain [1]

Of note, the column TRT ASSIGN is used to indicate that additional coding is needed for a specific
variable. In particular, the SV domain uses TRT ASSIGN = “COMBINE” to concatenate the values of
multiple raw dataset variables before mapping them into a supplemental qualifier with QNAM =
“‘UNSAPERF”. The following section titled “Automation Step 9: Map Other Raw Dataset Variables Into
SUPPSV” provides a detailed explanation of the rationale and how it is handled by the new macro.

[1] also introduced our standard format for SDTM specifications [7], which is based on CDISC standards.
See Table 4 below for an example of the SV domain specification. Its first six columns: Variable, Label,
Type, Controlled Terminology, and Core come directly from the SDTMIG v3.4. Per SDTMIG [3], the
sources of SDTM variables are categorized by the origin of the data source in the Define-XML document
file as “CRF”, “Protocol”, “Assigned”, or “Derived”. The last column Derivation/Assigned is added to
facilitate Define-XML generation and customize our code for SDTM automation. When one line of
customization code is sufficient, %SDTM_Code_Generator directly writes that line of code to _SV.sas
(e.g., SVPRESP and SVCNTMOD). However, when variables require more complicated code (e.g.,
EPOCH and SVSTDY), %SDTM_Code_Generator retrieves the macro calls and writes a line of code to
_SV.sas for each macro call (e.g., %get_epoch and %get_dy). Please refer to [1] for the detailed
introduction to SAS utility macros dedicated to the automation of SDTM programs. Display 3 shows the
generated macro calls for _SV.sas along with the programming comments. This code can also be found
in Block 3 of Appendix 2, which contains the full _SV.sas.

*** Programming Note: SDTM Variable: SVSTDY Needs the Derivation by the Macro Call: %get dy;
%get dy(DATEVAR=SVSTDTC, DAYVAR=SVSTDY) ;

*** Programming Note: SDTM Variable: SVENDY Needs the Derivation by the Macro Call: S%get dy;
%get_dy (_DATEVAR=SVENDTC, DAYVAR=SVENDY) ;

Display 3. SAS Code Generated by %SDTM_Code_Generator for the Macro Calls of the SV Domain

7

Variable Label Type Controlled Origin Core Derivation/Assigned
Terminology
STUDYID Study Identifier Char Protocol Req STUDYID = 'Project-Study-101";
DOMAIN Domain Abbreviation Char DOMAIN Assigned Req DOMAIN ="SV’;
USUBJID Unique Subject Identifier |Char Derived Exp USUBJID = strip(STUDYID)
||strip(substr(SUBJECT,4));
VISITNUM Visit Number Num Assigned Req visitnum = input(visit, ??visitnum.);
VISIT Visit Name Char Assigned Perm visit = strip(put(folder, $visit.));
SVPRESP Pre-specified Char NY Assigned Exp if VISIT A= '"Unscheduled' then SVPRESP ="Y";
SVOCCUR Occurrence Char NY Assigned Exp
SVREASOC Reason for Occur Value |Char CRF Page Perm
SVCNTMOD |Contact Mode Char CNTMODE Derived Perm SVCNTMOD = strip(coalescec(
put(VISCNTMDINC, CNTMDINC.),
put(VISCNTMDINH, CNTMDINH.),
put(VISCNTMDR, CNTMDR.),
put(VISCNTMDOT, CNTMDOT.)));
SVEPCHGI Epi/Pandemic Related Char NY CRF Page Perm
Change Indicator
VISITDY Planned Study Day of Visit|Num Protocol Perm visitdy = input(visit, ??visitdy.);
TAETORD Planned Order of Element |Num Assigned Perm %get_epoch
within Arm
EPOCH Epoch Char EPOCH Assigned Perm %get_epoch
SVSTDTC Start Date/Time of Visit Char 1ISO 8601 CRF Page Exp
SVENDTC End Date/Time of Visit Char 1ISO 8601 CRF Page Exp
SVSTDY Study Day of Start of Visit |Num Derived Perm %get_dy
SVENDY Study Day of End of Visit |Num Derived Perm %get_dy
SVUPDES Description of Unplanned |Char CRF Page Perm
Visit

Table 4. An Example of SV Specification

A deep understanding of SV programming leads us to develop two steps for the automatic SV
programming process. The first step focuses on mapping visit-related raw data and calls
%SDTM_Code_Generator. The second step focuses on the derivation identified in Steps 1, 2, 3, 5, 6, 7,
and 9 of Display 1 and is handled by an additional SAS-based macro named %SV_Code_Generator,
which also combines the SAS code from the mapping step and the derivation step to automatically
generate SV.sas. This process uses the master-annotation spreadsheet in Table 2 and SV domain
specification in Table 4 and follows the 10 sequential steps from Display 1 and Figure 1.

The following sections will explain in detail the automations for Steps 1, 2, 3, and 9 only. Steps 5, 6, and 7
are “standard” programming, which means that they do not change from study to study. Steps 4, 8, and
10 come from the output of %SDTM_Code_Generator. Appendix 3 contains the generated code and
corresponding annotations for all the steps. Figure 2 below shows the schematic diagram of how the two
macros work together to implement the 10 sequential steps of the SV programming process from Display
1 and Figure 1.

%SDTM_Code_Generator ~ %SV_Code_Generator

\ 4

| 1
Mapping i €=====] Combining [==== Derivation
A 1
s
Dynamic Programming Standard Programming

Figure 2. Schematic Diagram of %SDTM_Code_Generator and %SV_Code_Generator

%SV_Code_Generator automatically identifies which raw datasets should be used as the inputs for
deriving SVSTDTC and SVENDTC in Step 1.

As introduced in an earlier section (“Rationale for the Automatic Creation of the SV Domain”), one of our
studies has 75 raw datasets with 143 total date/time variables. Table 5 shows a sample of these raw
datasets and their date/time variables. Of note, the last column VARIABLE NAME 2 is derived from
SDTM VARIABLE and facilitates the derivation inside the macro.

EDC EDC DATASET LABEL VARIABLE VARIABLE LABEL | VARIABLE SDTM SDTM VARIABLE VARIABLE
DATASET NAME TYPE DOMAIN NAME 2
NAME

AE Adverse Events AEENDAT End Date Date AE AEENDTC AEEN
AE Adverse Events AEENTIM End Time Time AE AEENDTC AEEN
AE Adverse Events AESTDAT Start Date Date AE AESTDTC AEST
AE Adverse Events AESTTIM Start Time Time AE AESTDTC AEST
EG 12- Lead ECG - Single Timepoint | EGDAT Date of the ECG Date EG EGDTC EG

EG 12- Lead ECG - Single Timepoint | EGTIM Time of ECG Time EG EGDTC EG
CLLSLL Genetic Abnormalities - CLL/SLL CLLSLLADAT Assessment Date Date FA FADTC CLLSLLA
CLLSLL Genetic Abnormalities - CLL/SLL CLLSLLCDAT Collection Date Date FA FADTC CLLSLLC
CLLSLL Genetic Abnormalities - CLL/SLL CLLSLLDAT Assessment Date Date FA FADTC CLLSLL
LBBC Local Lab - B-Cell LBDAT Date of Collection Date LB LBDTC LB
LBCHEM Local Lab - Chemistry LBDAT Date of Collection Date LB LBDTC LB
LBCOAG Local Lab - Coagulation LBDAT Date of Collection Date LB LBDTC LB

SV Subject Visit VISDAT Date of Visit Date SV VISDTC in SUPPSV VIS

VS Vital Signs VSDAT Date of Collection Date VS VSDTC VS

Table 5. Sample of Raw Datasets With Date/Time Variables From Master-Annotation

From SDTM specifications, %SV_Code_Generator automatically identifies 15 domains (EG, EX, FA, IE,
LB, PC, PE, PR, QS, RS, SS, SV, TR, TU, VS) that contain the variable VISIT.

After restricting the 75 raw datasets to only those who are mapped to the identified 15 SDTM domains
above, 66 raw datasets with dates/times and visits (shown in the “select” statement in Display 2) are
included in the derivation of SVSTDTC and SVENDTC while 9 raw datasets (shown in Table 6) are
excluded as they are mapped to SDTM domains that do not contain VISIT.

EDC DATASET EDC DATASET LABEL VARIABLE NAME VARIABLE LABEL SDTM SDTM
NAME DOMAIN VARIABLE
AE Adverse Events AEENDAT End Date AE AEENDTC
CE Clinical Events - Signs and Symptoms | CEENDAT End Date CE CEENDTC
CM Concomitant/Prior Medications CMENDAT End Date CM CMENDTC
EN Enrollment ENRDAT Enrollment Date DS DSSTDTC
EOS End of Study EOSDEADT Death Date DM DTHDTC
HOSP Healthcare Encounters HOSPENDAT Utilization End Date HO HOENDTC
IC Informed Consent ICDAT Date of Informed Consent DM RFICDTC
MH Medical History MHENDAT End Date MH MHENDTC
PRM Public Record Mortality PRMDAT Date of subject death per public records DM DTHDTC

Table 6. Raw Datasets That Contain Dates But Not Clinical Visits

The following SAS code in Display 4 illustrates how the macro automatically selects raw datasets with
both dates/times and clinical visits. It uses both the master-annotation in Table 2 and the SDTM
specifications as the inputs. The SAS dataset named as edc_for_sv contains the identified raw dataset
names and their date/time variable names. The SAS dataset named as namelist contains the names of
all unique raw datasets with both dates/times and clinical visits as well as other raw datasets mapped to
the SV domain (e.g., NV: “Next Visit”). %SV_Code_Generator then does simple data manipulations to
namelist and generates the SAS dataset for the PROC DATASETS step shown in Display 2.

**% get the EDC dataset names with date variables from master-annotation;

proc sort data=other.master out=master_dtc;by sdtm_domain variable_name;
where strip(variable_type) in ('Date','Time') or strip(sdtm_domain)='SV"';

run;

**% from SDTM specs to get SDTM domains with VISIT;

proc sort data=sdtmspec.all vars out=spec_wvisit(rename=(domain=sdtm_domain)) nodupkeys;
by domain;
where strip(variable)="VISIT';

run;
**%* only select edc datasets mapped into SDTM domains with 'VISIT';

data edc_for_sv;
merge master_dtc(in=a) spec_wvisit(in=b keep=sdtm_domain);
by sdtm_domain;
if a and b;

run;

Display 4. SAS Code Identifying Raw Datasets With Both Dates/Times and Clinical Visits

AUTOMATION STEP 2: SEPARATE THEM INTO TWO DATA BLOCKS: ONE WITH
DATES ONLY, ANOTHER WITH BOTH DATES AND TIMES

%SV_Code_Generator automatically separates the raw datasets with dates/times and visits into two
data blocks: one containing only date variables and another containing both date and time variables.

The following SAS code in Display 5 illustrates this separation utilizing VARIABLE_TYPE from the
master-annotation spreadsheet in Table 2.

*** gat the edc names with variable type='Date’;

proc sort data=edc_for_sv out=edcnm_date nodupkeys;by edc_dataset_name var_nm2 variable_name;
where variable_type="Date';

run;

*** gat the edc names with variable type='Time';

proc sort data=edc_for_sv out=edcnm_time nodupkeys;by edc_dataset_name var_nm2 variable_name;
where variable_type in ('Time');

run;
%¥ separate them into two datasets: one with date only, another with both date and time;

data edcnm_wotm
edcnm_wtm;
merge edcnm_date(in=a) edcnm_time(in=b keep=edc_dataset_name var_nm2 variable_name
rename=(variable_name=variable_name_tm));

by edc_dataset_name var_nm2;

if a and not b then output edcnm_wotm;

else if a and b then output edcnm_wtm;
run;
Display 5. SAS Code Identifying Raw Datasets With Only Date Variables and Raw Datasets With
Both Date and Time Variables

Table 7 below shows the 9 raw datasets with both date and time variables mapped into SDTM domains
that contain VISIT as identified by the macro.

10

EDC EDC DATASET LABEL VARIABLE VARIABLE NAME VARIABLE SDTM SDTM

DATASET NAME (DATE) | (TIME) NAME 2 VARIABLE DOMAIN

NAME

BIO Exploratory Biomarkers - Infusion Day BIOPOSTDAT | BIOPOSTTIM BIOPOST LBDTC LB

BIO Exploratory Biomarkers - Infusion Day BIOPREDAT BIOPRETIM BIOPRE LBDTC LB

BIONON Exploratory Biomarkers NONBIODAT NONBIOTIM NONBIO LBDTC LB

CY Cytokines CYKDAT CYKTIM CYK LBDTC LB

EG 12- Lead ECG - Single Timepoint EGDAT EGTIM EG EGDTC EG

EX1 Lymphodepleting Chemotherapy: EX1ENDAT EX1ENTIM EX1EN EXENDTC EX
Fludarabine

EX1 Lymphodepleting Chemotherapy: EX1STDAT EX1STTIM EX1ST EXSTDTC EX
Fludarabine

EX2 Lymphodepleting Chemotherapy: EX2ENDAT EX2ENTIM EX2EN EXENDTC EX
Cyclophosphamide

EX2 Lymphodepleting Chemotherapy: EX2STDAT EX2STTIM EX2ST EXSTDTC EX
Cyclophosphamide

EX3 Treatment Dosing EX3ENDAT EX3ENTIM EX3EN EXENDTC EX

EX3 Treatment Dosing EX3STDAT EX3STTIM EX3ST EXSTDTC EX

PK Treatment PK PKDAT PKTIM PK PCDTC PC

PKINF Treatment PK-Infusion Day PKPREDAT PKPRETIM PKPRE PCDTC PC

Table 7. An Example of 9 Raw Datasets With Both Date and Time Variables Mapped into SDTM
Domains That Contain VISIT

Following Step 2, %SV_Code_Generator automatically generates SAS code for the first part of two data
steps (“data try1” and “data try2” blocks in Appendix 3), which stack all raw datasets with date variables
only and all raw datasets with both date and time variables, respectively, standardize their variable names
into common names: SVDT and SVTM, and convert them to SVDTC.

Display 6 shows the SAS code for using the dataset EDCNM_WOTM from Step 2 to generate macro
variables for the raw dataset names with dates only. Macro variables are created for each raw dataset
name, variable name, and the total number of raw datasets. These macro variables are then used inside
a macro %doit1() shown in Display 7.

** get each EDC dataset name and its variable name for date;
proc sort data=edcnm_wotm;by edc_dataset_name variable name;run;
%let noutsvl=e;
data _null_;
set edcnm_wotm end=eof;
by edc_dataset_name variable_name;
call symput('edcname'||strip(put(_n_,best.)),strip(edc_dataset_name));** each EDC dataset name;
** aach variable name of each EDC dataset name for 'date';
call symput('varname'||strip(put(_n_,best.)),strip(variable_name));
if eof then call symput('noutsvl’',strip(put(_n_,best.)));** number of EDC datasets;
run;

Display 6. SAS Code Creating Macro Variables for Raw Dataset Names, Variable Names, and the
Total Number of Raw Datasets From EDCNM_WOTM in Step 2

Display 7 below shows a macro generating a SAS dataset named as _trylhead, which stacks all raw
datasets with dates only and renames their date variable names to SVDT. It uses a macro %DO loop to
stack the datasets and Lines 178 and 182 standardize these date variable names to a common name:
SVDT.

The data step “data try1;” in Appendix 3 shows the SAS code generated from the macro call of %doit1()
to stack 57 raw datasets and rename their date variable names to SVDT. SVDT has a numeric date
format and is then converted to SVDTC, which has a character ISO 8601 format.

11

166 %macro doitl();
167 data _trylhead;

168 length lines $200.;

169 subseq=0.081;lines="'*** Below is the SAS codes for the EDC datasets only with dates;';output;

170 subseq=0.1;lines="data tryl;';output;

171 subseq=0.2;lines=" attrib "||"&"||"attrib.;";output;

172 subseq=0.25;1lines=" length UNSAPERF $200. SVDTC $20.;";output;

173 subseq=0.3;1lines=" set ';output;

174 %do i=1 %to &noutsvi;

175 subseq=%sysevalf(©.3+0.001*&1);

176 %if &i<&noutsvl %then %do;

177 %1f &&edcname&i=UV or &&edcname&i=SV %then %do;

178 lines=" '| | "&&edcname&i. (drop=studyid siteid rename=(&&varname&i.=SVDT) in=_&&edcname&i.)";%end;
179 %else %do;lines=' '| | "&&edcname&i. (drop=studyid siteid rename=(&&varname&i.=SVDT))";%end;

180 output;

181 %end;

182 %else %do;lines=' '| | "&&edcname&i. (drop=studyid siteid rename=(&&varname&i.=SVDT));";output;%end;
183 %end;

184 run;

185 %mend;

Display 7. A SAS Macro Generating a SAS Dataset (_trylhead) to Stack Raw Datasets and Rename
Their Date Variable Names to SVDT

Similarly, Displays 8 and 9 show the same programming logic for using dataset EDCNM_WTM from Step
2 to stack all raw datasets with both date and time variables and rename their date variable names to
SVDT and time variable names to SVTM. The SAS dataset is named as _try2head.

%let noutsv2=0;

data _null_;
set edcnm_wtm end=eof;
by edc_dataset_name variable_name;
call symput('_edcname'||strip(put(_n_,best.)),strip(edc_dataset_name));
call symput('_varname'||strip(put(_n_,best.)),strip(variable_name));
call symput('_varname2'||strip(put(_n_,best.)),strip(variable_name_tm));
if eof then call symput('noutsv2',strip(put(_n_,best.)));

run;

Display 8. SAS Code Creating Macro Variables for Raw Dataset Names, Variable Names, and the
Total Number of Raw Datasets From EDCNM_WTM in Step 2

329 %macro doit2();
330 data _try2head;

331 length lines $208.;

332 section=2;

333 subseq=0.01;1lines="*** Below is the SAS codes for the EDC datasets with date and time;';output;

334 subseq=0.1;lines="data try2;';output;

335 subseq=0.2;lines=" attrib "||"&"||"attrib.;";output;

336 subseg=0.25;1ines=" length SVDTC $20.;";output;

337 subseg=0.3;lines=" set ';output;

338 %do i=1 %to &noutsv2;

339 subseq=%sysevalf(@.3+8.001%8&1i);

340 %if &i<&noutsv2 %then %do;

341 lines=' '||"&&_edcname&i(drop=studyid siteid rename=(&&_varname&i=SVDT &&_ varname2&i.=SVTM))";
342 output;

343 %end;

344 %else %do;

345 lines=' "| | "&&_edcname&i(drop=studyid siteid rename=(&&_varname&i=SVDT &&_varname2&i.=SVTM));";
346 output;

347 %end;

348 %end;

349 run;

350 %mend;

Display 9. A SAS Macro Generating a SAS Dataset (_try2head) to Stack Raw Datasets and Rename
Their Date Variable Names to SVDT and Time Variable Names to SVTM

The data step “data try2;” in Appendix 3 shows SAS code generated from the macro call of %doit2() to
stack 9 raw datasets with both date and time variables and rename their date variable names to SVDT
and time variable names to SVTM. SVDT and SVTM are then combined into a single SVDTC, which has
a character ISO 8601 format.

12

From the example above in Appendix 3, the manual development of SAS codes to stack all raw datasets
and standardize their date/time variable names to SVDTC is time-consuming and error prone. The raw
data with dates/times and clinical visits collected in a study change from study to study, which has a
negative impact on developing SAS codes for SV domain. The changes of date variable and/or time
variable names of these raw datasets from the EDC database build make it even worse. Steps 1-3
automate the programming to achieve huge time saving and efficiency along with the guarantee of high
quality. It is the main contribution to SV domain automation!

SUPPSV is automatically generated by two steps. The first step involves calling
%SDTM_Code_Generator(domain_=SV), which generates SAS code that contains the data step for
SUPPSV. Please refer to Block 4 in Appendix 2 as an example. Among these 7 blocks of SAS codes for
each QNAM, one block (QNAM = “UNSAPERF”) requires preprocessing before it can be included in
SUPPSV. The Unscheduled Subject Visit form (Appendix 1) has separate fields to indicate whether a
specific assessment was performed at an unscheduled visit. In the preprocessing, these separate raw
dataset variables (annotated in blue in Appendix 1) are concatenated into a single variable with a comma
as the delimiter and then mapped to QVAL with QNAM = “UNSAPERF” (annotated in red in Appendix 1).
Table 8 shows an example of what the final output looks like.

STUDYID RDOMAIN USUBJID IDVAR IDVARVAL [QNAM QLABEL QVAL QORIG
Project-Study-101 SV Project-Study-101-101-002 |VISITNUM |1.01 UNSAPERE | Unscheduled Assessments Performed (EG, VS CRF
Project-Study-101 SV Project-Study-101-101-002 |VISITNUM |1.02 UNSAPERE | Unscheduled Assessments Performed |CHEM, HEM, VS |CRF
Project-Study-101 SV Project-Study-101-101-002 [VISITNUM [9.01 UNSAPERE | Unscheduled Assessments Performed |VS CRF

Table 8. An Example of SUPPSV.QVAL where QNAM = “UNSAPERF”

“ BLOCK A” in Appendix 3 shows the SAS code for concatenating 47 raw dataset variables into a single
variable UNSAPERF. The %SV_Code_Generator macro automatically retrieves these variable names
from the master-annotation (Table 2). Display 10 below shows the SAS code used to retrieve these
variable names. Lines 3 and 4 show that the master-annotation is the unique source of the programming
and TRT ASSIGN = “COMBINE” flags the variables for preprocessing at the start of the automation of the
SV domain.

1 data supp_

2 unspr;

3 set other.master(where=(strip(suppdomain)»="" and sdtm domain='SV'));
a it trt assign="COMBINE' and gnam='UNSAPERF' then output unspr;

5 else output supp ;

& run;

Display 10. SAS Code to Retrieve the Variable Names for the Concatenation Specified in the
Master-Annotation for the SV Domain

Once the variable names are retrieved, the macro concatenates them with a comma as the delimiter.
Display 11 contains the SAS code that automates this step. The generated code is then output into
SV.sas and can be seen in “* BLOCK A” in Appendix 3. Afterwards, the macro retrieves the SAS code for
mapping the concatenated variable UNSAPERF to QVAL with QNAM = “UNSAPERF” in the data step for
SUPPSV (*_BLOCK C” in Appendix 3).

13

1 data unspr2;

2 length lines $200.;

3 set unspr end=eof;

4 section=1;

5 subseg=2@+_n_/1@;

6 lines="' "I|"if _Uv and " || strip(variable_name) || "=1 then " || strip(gnam)
7 [l ™ = catx(", "," || strip(gnam) || ", '™ || strip(variable_name) || "');";

8 output;

9 if eof then do;

1@ subseg=36;lines=" ' ;output;

11 subseg=31;lines=" "1'in_Uv = _UV;';output;

12 subseq=32;lines=" "|]'in_SV = _SV;';output;

13 subseq=33;lines=" ' ;output;

14 subseg=34;

15 lines=" "|]|"if _SV or not missing(SVDTC) then output;/** with missing date from scheduled visits **/';
16 output;

17 subseq=35;lines="run; "' ;output;

18 subseq=36;lines=" ' ;output;

19 subseq=28;lines=" "]|'call missing(UNSAPERF);";output;

28 end;

21 run;

Display 11. SAS Code to Concatenate Variable Names Specified in the Master-Annotation for the
SV Domain

The last four sections above introduced how %SV_Code_Generator automatically generates the SAS
code for the derivations from Steps 1, 2, 3, and 9 of Display 1. For the derivations from Steps 5, 6, and 7,
the macro simply outputs each line of SAS code shown in _BLOCK B of Appendix 3. The remaining
Steps 4, 8, and 10 are from the output of %SDTM_Code_Generator. %SV_Code_Generator follows the
general SV programming logic flow to assemble these derivations and mappings into the final SAS code
for the SV domain, which is depicted by Figure 2. This generated code is then saved as a SAS dataset
prior to being output as SV.sas using a simple SAS data step as shown below in Display 12.

825 data _null_;

826 set mainf2;

827 file "&outdir./SV.sas";
828 put @1 lines $255.;
829 run;

Display 12. SAS Data NULL_ Step to Output a SAS Program: SV.sas

[1] demonstrates how %SDTM_Code_Generator automatically detects any raw dataset variables
unmapped in SDTM. Once the errors from omissions of raw dataset variables for SDTM are detected,
they can be easily fixed. Hence, this step guarantees all raw dataset variables are accounted for in SDTM
programming.

The first six columns of the master-annotation in Table 2 are automatically created from the CRF
specification. For SV, these columns contain all raw dataset variables collected for both scheduled visits
and unscheduled visits. As these come directly from the CRF specification, there is no human error. The
first part of Table 2, where TRT ASSIGN = Blank, is covered by %SDTM_Code_Generator to guarantee
that these raw dataset variables are accounted for SV domain. The second part, where TRT ASSIGN =
“COMBINE”, contains the variables which require concatenation prior to mapping into QVAL. The SAS
code for processing and mapping these raw dataset variables are automatically generated by
%SDTM_Code_Generator and %SV_Code_Generator. Furthermore, as discussed in the section titled
“Automation Step 1: Identify Raw Datasets With Both Dates/Times and Clinical Visits”,
%SV_Code_Generator uses the master-annotation and SV domain specification to automatically identify
raw datasets and variables that should be used in the derivation of SVSTDTC and SVENDTC.

14

Hence, the sequential programming automations (e.g., automatic generation of the first six columns of the
master-annotation, automatic detection of raw dataset variable omissions for SDTM by
%SDTM_Code_Generator, and automatic preparations of Steps 1 and 9 by %SV_Code_Generator)
guarantees all raw dataset variables are accounted for in SV domain programming.

The external datasets (such as central safety labs, biomarkers, etc.) are specified by data transfer
specifications from different vendors. Because they often contain visit-dependent data, they should also
be included in the derivation of the SV dataset.

Both %SDTM_Code_Generator and %SV_Code_Generator are developed to map the raw data
collected per CRFs to SDTM domains. The latter follows the same logic as the former in terms of handling
external datasets. The rationale is fully explained in [1]. The flexibility is built into the former, and it is
guoted as follows:

“When the external datasets are ready for inclusion, the team can decide if the new programming should
be added to either %SDTM_Code_Generator or the related individual SDTM SAS program. The decision
requires balancing the generalization of the macro for future use with the spending of more
time/resources in updating the macro and its potential impact of timelines” [1].

%SV_Code_Generator has been built to generate a SAS program comment to suggest adding extra
lines of SAS codes to handle the external data once they are ready to be included at a later time in the
programming development cycle (e.g., before FDA submission). Display 13 shows the message along
with the annotation for Step 4.5.

Step 4.5: Bring External Datasets and
Combine Them with These Two Data

/*read in external data, and combine with try3, =g., central tumor data, etc.*/

Blocks Above if There Exists Any

Display 13. A SAS Program Comment for Handling External Data in Step 4.5 of Appendix 3.

The team can make the decision on whether the macro should be updated or whether SV.sas should be
updated to account for the new external dataset(s). Due to the dissimilarity of external dataset(s) and their
metadata and the unpredictable timing of data availability, the later manual updating of SV.sas is probably
the better solution to meet timelines and achieve efficiency.

For SV domain validation, we follow the same process as the other SDTM domains [1], which is quoted
below along with Figure 3 for ease of access:

“Our SDTM programming validation consists of the following three steps: code reviewing, real data
testing, and developing independent mapping SAS programs to validate relatively complicated SDTM
datasets as needed per the team’s decision. This validation process validates both the macro and each
SDTM mapping SAS program. [Figure 3] below depicts the new validation process” [1].

The first two steps, code reviewing and real data testing, are strictly followed until the user ensures that
the SAS program is thoroughly tested and meets the requirements for the SV domain when no external
data are available. Once the external data are included, the team decides if code reviewing and real data
testing are sufficient and acceptable for fully validating the new standalone programming section added
for external dataset(s) inside SV.sas. If not, the validator should independently develop a SAS program to
fully validate the external data programming for SV.

15

Raw Data! Available

———

Macro Developer Validator: Walk
%SDTM_Code_Generator: . .
Generate Each SDTM & V_alldator. Through Each
Mapping SAS Review Each Data Block After
Pro SDTM SAS the Execution of
gram
Program SAS Codes

Complete

VEILEUNG] - Finalize the
SDTM
Datasets

Identify Domains
for Independent
Programming
Validation

Real Data Testing
- Make sure the execution of
SAS code is expected &
meets the requirements
- Could repeat several times
for the accumulating real
data as the study is ongoing

Developing Independent
Mapping SAS Program
- Identify relatively complicated
domains per the team’s decision
- Develop independent SAS
programs to validate SDTM
datasets by PROC COMPARE

Code Reviewing
- Identify and fix bugs
- Make sure each
program meet the
requirements logically

Figure 3. The Logic Flow of Our SDTM Programming Validation Process [1]

CONCLUSION

This paper introduced a new approach to automatic SAS code generation for the Subject Visits (SV)
SDTM domain. Automation is achieved by using a metadata-driven method that leverages CRF
specifications and SDTM standards through our two macros: %SDTM_Code_Generator and
%SV_Code_Generator. Our SV programming process is an expansion of the SDTM automation we
developed with %SDTM_Code_Generator [1], and it inherits the same practicality, efficiency, flexibility,
transparency, and scalability. We also demonstrated how to process the “dynamic” parts of SV
programming, how to account for all relevant variables, how to deal with complex derivations, how to
handle the external datasets, and how to validate the SV dataset generated by the new automation
process.

The sharing of hands-on experience in this paper is to assist readers with applying this methodology to
generate the SV domain in the early stages of clinical reporting with the guarantee of technical accuracy,
in addition to cost-effectiveness and efficiency. These automations can also be used to expedite and
assist with clinical data review and data cleaning efforts efficiently and economically.

REFERENCES

[1] Xiangchen (Bob) Cui; Min Chen; Jessie Wang. A Practical Approach to Automating SDTM Using a
Metadata-Driven Method That Leverages CRF Specifications and SDTM Standards. PHUSE US Connect
2024 and PharmaSUG 2024

[2] Cleopatra DeLeon & Laura Bellamy. Dynamically harvesting study dates to construct & QC the SV
SDTM domain. PHUSE US Connect 2019

[3] CDISC Study Data Tabulation Model and SDTMIG v3.4 at http://www.cdisc.org/sdtm

[4] FDA Validator Rules. December 2022. Available at https://www.fda.gov/industry/fda-data-standards-
advisory-board/study-data-standards-resources

[5] [U.S. Department of Health and Human Services, Food and Drug Administration, Study Data
Technical Conformance Guide: Technical Specifications Document. June 2023. Available at
https://www.fda.gov/media/153632/download

[6] Henry B. Winsor, and Mario Widel, “CREATING SV AND SE FIRST”, PharmaSUG 2010

[7] Xiangchen (Bob) Cui; Scott Moseley; Min Chen. A Cost-Effective SDTM Conversion for NDA
Electronic Submission. Proceedings of the Pharmaceutical SAS® Users Group Conference, PharmaSUG
2011

16

http://www.cdisc.org/sdtm
https://www.fda.gov/industry/fda-data-standards-advisory-board/study-data-standards-resources
https://www.fda.gov/industry/fda-data-standards-advisory-board/study-data-standards-resources

Appreciation goes to PK Morrow for her invaluable review and comments.

Your comments and questions are valued and encouraged. Contact the author at:

Name: Xiangchen (Bob) Cui, Ph.D.
Enterprise: CRISPR Therapeutics AG
Address: 105 West 15t Street

City, State ZIP: Boston, MA 02127
Work Phone: 908-240-4086

E-mail: xiangchen.cui@crisprtx.com

Name: Jessie Wang

Enterprise: CRISPR Therapeutics AG
Address: 105 West 15t Street

City, State ZIP: Boston, MA 02127
Work Phone: 214-668-2107

E-mail: jessie.wang@crisprtx.com

Name: Min Chen

Enterprise: CRISPR Therapeutics AG
Address: 105 West 1st Street

City, State ZIP: Boston, MA 02127
Work Phone: 857-928-4347

E-mail: min.chen@crisprtx.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Any brand and product names are trademarks of their respective companies.

17

mailto:xiangchen.cui@crisprtx.com
mailto:jessie.wang@crisprtx.com
mailto:min.chen@crisprtx.com

Form: Subject Visit |

SV = Subject Visits |

Was visit performed?

morsuemTTED]] 0
VISYN_STD N

°()

Date of Visit | VISDAT] [svsTDTC || VISDTC in SUPPSV__]
Reason Visit not Performed Subject Missed Viswto
[VISREASOC_STD | [SVREAsSOC] Subject

Withdrawn/Discontinued
Adverse EventO

Epidemic/Pandemic RelatedO

Othero

VISMAEID in SUPPSV__|

Adverse Event, Specify | VISREASOC_AE | |

Other Reason, Specify |_VISREASOC_O | [VISMOTHS in SUPPSV_ |

Form: Unscheduled Subject Visit |

SV = Subject Visits |

Date of Visit UVDAT SVSTDTC]

Reason for Unscheduled Visit SAFETYD
[UVREAS_STD | [SVUPDES | ADMINISTRATIVE

= DISEASE UNDER STUDYD

OTHERO

Other, Specify UVREAS_O

[UNSREASO in SUPPSV |

Unscheduled Assessments Performed

Anti-Study Product Ab

[UNSAPERF in SUPPSV |

BALL Prognostic Score PROG

Type of Visit check all that apply | SVCNTMOD |

Binet Staging
In-Clinic VISCNTMDINC

Bone Marrow Aspirate/Biopsy - CLL/SLL __LBBMCLL
In-Home VISCNTMDINH

Bone Marrow Aspirate/Biopsy - Lymphoma | LBBMLYM
Remote VISCNTMDR

Brain MRI
Other VISCNTMDOT \/ ran

Constitutional Symptoms | CONS

[vISTYPOS in SUPPSV_ |

Type of Visit, Other VISCNTMD_O

Epidemic/Pandemic Related Change
| VISEPCHGI_STD |

Veso
=0

Study Product PK

Study Product PK-Infusion Day

A\

Form: Next Visit

[SV =Subject Visits |

Will the subject be advancing to the next visit? Yes
NVYN_STD [NXTVISYNin SUPPSV] NOO

18

APPENDIX 2. AN EXAMPLE OF _SV.SAS FROM CALLING
%SDTM_CODE_GENERATOR

data try;
attrib &attrib.;
set
NV (drop=studyid siteid in=_NV)
SV (drop=studyid siteid in=_5V)
UV (drop=studyid siteid in=_UV);

STUDYID = 'Project-Study-101"';

DOMAIN = 'SV';

USUBJID = strip (STUDYID) | |strip (substr (SUBJECT,4));
visit = strip(put(folder, $visit.));

visitnum = input(visit, ??visitnum.);

if VISIT "= 'Unscheduled' then SVPRESP = 'Y';

visitdy = input(visit, ?°?visitdy.);
if i 1ng (VISRE =

put (VISCNTMDR, CNTMDR.), put(VISCNTMDOT, CNTMDOT.))):;
if not missing (VISEPCHGI_STD) then SVEPCHGI=strip (VISEPCHGI_ STD);
if not missing (UVREAS STD) then SVUPDES=strip (UVREAS STD) ;

Block 1

SVCNTMOD = strip (coalescec (put (VISCNTMDINC, CNTMDINC.), put (VISCNTMDINH, CNTMDINH.),

Block 2

if not missing (UVDAT) then SVSTDTC=strip (put (UVDAT/24/3600,yymmddl0.)) ;
run;

* kA xAkxKk*xk Programming Note: SDTM Variable: SVSTDY Needs the Derivation by the Macro Call: %get dy;

kget_dy (_DATEVAR=SVSTDTC, DAYVAR=SVSTDY) ;

kget_dy (_DATEVAR=SVENDTC, DAYVAR=SVENDY) ;
proc sort data=try;by studyid usubjid VISITNUM; run;
*** Qutput permanent datasets to: wsdtm ***;
data wsdtm.&domain. (keep=&keep label=&label) ;
attrib &attrib.;
set try;
format all ;
informat _all ;
n:

[k xxxxxxx* Programming Note: SDTM Variable: SVENDY Needs the Derivation by the Macro Call: %get_dy;

Block 3

data supp&domain.;

attrib &attrib_ supp.;

set try;

rdomain = "&domain.";

idvar = 'VISITNUM';

idvarval = strip(put (VISITNUM, best.));

if not missing (NVYN_STD) then do;
gnam="'NXTVISYN';
glabel="'Subject Advancing to Next Visit?';
gval=strip (NVYN_STD) ;
gorig='CRE';
geval="";
output;

end;

if not missing (VISDAT) then do;
gnam="'VISDTC';
glabel='Visit Date';
gval=strip (put (VISDAT/24/3600, yymmddl0.)) ;
gorig="CRF';
geval="";
output;

end;

if not missing (UVREAS_O) then do;
gnam="'UNSREASO"';
glabel='Unscheduled Visit: Other Reason, Specify';
gval=strip (UVREAS O);
gorig='CRE';
geval="";
output;

end;

if not missing (VISREASOC_AE) then do;
gnam='VISMAEID';
glabel='Missed Visit: Adverse Event, Specify';
qval=strip (VISREASOC_AE) ;
gorig='CRE';

Block 4

19

geval="";
output; . .

end; Variable UNSAPEREF is derived from extra

if not missing (UNSAPERF) then do; programming to concatenate the values of
gnam="UNSAPERF "' ; multiple raw dataset variables by “,”.
glabel='Unscheduled Assessments Performed'; This concatenation is done by
qva}:f?é;?f?NSAPERF) : %SV_Code_Generator, and the output code is in
dorigm R _BLOCK A of Appendix 3.
geval="";

output;

end;

if not missing (VISREASOC_O) then do;
gnam="'VISMOTHS';
glabel='Missed Visit: Other Reason, Specify';
qval=strip (VISREASOC O) ;
gorig='CRF';
geval="";
output;

end;

if not missing (VISCNTMD O) then do;
gnam='VISTYPOS';
glabel='Type of Visit: Other, Specify';
qval=strip (VISCNTMD O) ;
gorig='CRF';
geval="";
output;

end;

run;

Block 4

proc sorg aaga:&suppdomaln.;by usubjid 1avarvaI gnam; run;

data wsdtm.&suppdomain. (keep=&keep_ supp label=&label supp) ;
attrib &attrib_supp.;
set &suppdomain.;
format all ;
informat _all ;
run;

Block 5

APPENDIX 3. AN EXAMPLE OF SV.SAS FROM CALLING
%SV_CODE_GENERATOR

Step 1: ldentify Raw Datasets with Both

proc datasets lib=work kill nolist nowarn; Dates/Times and Clinical Visits

copy in=raw out=work;
select ANC BIO BIONON BS CLLSLL CONS CP CY DIA ECHO ECOG EG EQS5DS5L EX1 EX2 EX3

FACT FACTLEU ICE INL INTL1 INTL2 ITL1 ITL2 IWCLL LBBC LBBMCLL LBBMLYM LBCHEM LBCOAG LBCRS LBHM

LBIMMU LBLYM LBPREG LBSER LP LS LUGANO MR MRD MRI NL NTLl NTL2 NV ORG PE PET1 PET2

PK PKINF PROG RADPOST RADPRE RETX SCTPOST SCTPRE SS SV TB THERPOST THERPRE TL1l TL2 UV VS;

copy in=sdtm out=work;
select dm;
quit;

*** Below 1is the SAS codes for the EDC datasets only with dates;
data tryl;
attrib &attrib.;
length UNSAPERF $200. SVDTC $20.;
set
ANC (drop=studyid siteid rename= (ANCDAT=SVDT)
BS (drop=studyid siteid rename=(BSDAT=SVDT)

Step 2: ldentify Raw Datasets With Dates

CLLSLL (drop=studyid siteid rename=(CLLSLLADAT=SVDT)) Only Along With Clinical Visits

CLLSLL (drop=studyid siteid rename=(CLLSLLCDAT=SVDT))

CLLSLL (drop=studyid siteid rename=(CLLSLLDAT=SVDT))

CONS (drop=studyid siteid rename=(CONSYMDAT=SVDT)) Step 3.1: Stack Raw Datasets and

CP (drop=studyid siteid rename=(CPENDAT=SVDT)) Standardize Their Date Variable Names Into a

CP (drop=studyid siteid rename=(CPSTDAT=SVDT)) Common Name (SVDTC)

DIA (drop=studyid siteid rename=(DIADAT=SVDT))
ECHO (drop=studyid siteid rename= (ECHODAT=SVDT))

ECOG (drop=studyid siteid rename= (ECOGDAT=SVDT))
EQ5D5L (drop=studyid siteid rename=(EQ5D5LDAT=SVDT)
FACT (drop=studyid siteid rename=(FACTDAT=SVDT))
FACTLEU (drop=studyid siteid rename= (FACTLDAT=SVDT)
ICE (drop=studyid siteid rename=(IADAT=SVDT)

INL (drop=studyid siteid rename= (INLMDAT=SVDT)

INTL1 (drop=studyid siteid rename=(INTL1DAT=SVDT))
INTL2 (drop=studyid siteid rename= (INTL2DAT=SVDT)

ITL1 (drop=studyid siteid rename=(ITL1DAT=SVDT))

ITL2 (drop=studyid siteid rename=(ITL2DAT=SVDT))

IWCLL (drop=studyid siteid rename= (IWCLLDAT=SVDT)

LBBC (drop=studyid siteid rename= (LBDAT=SVDT))

LBBMCLL (drop=studyid siteid rename=(BMADAT CLL=SVDT)
LBBMCLL (drop=studyid siteid rename= (BMBDAT=SVDT)
LBBMLYM (drop=studyid siteid rename=(BMADAT LYM=SVDT)
LBBMLYM (drop=studyid siteid rename= (BMBDAT=SVDT))
LBCHEM (drop=studyid siteid rename= (LBDAT=SVDT))
LBCOAG (drop=studyid siteid rename= (LBDAT=SVDT))

LBCRS (drop=studyid siteid rename= (LBDAT=SVDT))

LBHM (drop=studyid siteid rename= (LBDAT=SVDT))
LBIMMU (drop=studyid siteid rename=(LBDAT=SVDT))
LBLYM (drop=studyid siteid rename= (LBDAT=SVDT))
LBPREG (drop=studyid siteid rename= (PGDAT=SVDT)
LBSER (drop=studyid siteid rename= (LBDAT=SVDT))

)

20

LP (drop=studyid siteid rename= (LPDAT=SVDT))

LS (drop=studyid siteid rename= (LSDAT=SVDT))

LUGANO (drop=studyid siteid rename= (LUGDAT=SVDT)

MR (drop=studyid siteid rename= (MRDAT=SVDT))

MRD (drop=studyid siteid rename= (MRDDAT=SVDT))

MRI (drop=studyid siteid rename= (MRIDAT=SVDT))

NL (drop=studyid siteid rename= (NLMDAT=SVDT))

NL (drop=studyid siteid rename= (NLUDAT=SVDT))

NTL1 (drop=studyid siteid rename= (NTL1MDAT=SVDT))

NTL1 (drop=studyid siteid rename= (NTL1UDAT=SVDT))

NTL2 (drop=studyid siteid rename= (NTL2DAT=SVDT))

NTL2 (drop=studyid siteid rename= (NTL2UDAT=SVDT))

ORG (drop=studyid siteid rename= (OGLVDAT=SVDT)

ORG (drop=studyid siteid rename= (OGSPDAT=SVDT)

PE (drop=studyid siteid rename= (PEDAT=SVDT))

PET1 (drop=studyid siteid rename=(PET1DAT=SVDT))

PET2 (drop=studyid siteid rename=(PET2DAT=SVDT))

PROG (drop=studyid siteid rename= (PROGDAT=SVDT)

RADPOST (drop=studyid siteid rename=(RADPOSTENDAT=SVDT)
RADPOST (drop=studyid siteid rename=(RADPOSTSTDAT=SVDT)
RADPRE (drop=studyid siteid rename= (RADPREENDAT=SVDT))
RADPRE (drop=studyid siteid rename= (RADPRESTDAT=SVDT))
RETX (drop=studyid siteid rename= (RETXDAT=SVDT))
SCTPOST (drop=studyid siteid rename=(SCTALLODAT=SVDT)
SCTPOST (drop=studyid siteid rename=(SCTAUTODAT=SVDT)
SCTPRE (drop=studyid siteid rename= (SCTAUTODAT=SVDT))
SS (drop=studyid siteid rename= (SSDAT=SVDT))

SV (drop=studyid siteid rename=(VISDAT=SVDT) in=_SV)
TB (drop=studyid siteid rename= (TBDAT=SVDT))

THERPOST (drop=studyid siteid rename= (THERPOSTENDDAT=SVDT))
THERPOST (drop=studyid siteid rename=(THERPOSTSTDAT=SVDT))
THERPRE (drop=studyid siteid rename= (THERENDDAT=SVDT))
THERPRE (drop=studyid siteid rename= (THERSTDAT=SVDT))

TL1 (drop=studyid siteid rename=(TL1MDAT=SVDT))

TL1 (drop=studyid siteid rename=(TL1UDAT=SVDT))

TL2 (drop=studyid siteid rename=(TL2MDAT=SVDT))

TL2 (drop=studyid siteid rename=(TL2UDAT=SVDT))

UV (drop=studyid siteid rename= (UVDAT=SVDT) in=_UV)

VS (drop=studyid siteid rename= (VSDAT=SVDT)) ;

)
)

if folder in ('VI', 'DA') then delete;/* VI=Visit Independent, DA=Disease Assessment */

SVCNTMOD = strip (coalescec (put (VISCNTMDINC, CNTMDINC.), put(VISCNTMDINH, CNTMDINH.),
From Block 2 put (VISCNTMDR, CNTMDR.),put (VISCNTMDOT, CNTMDOT.))) ;
of _SV.SAS if not miSSing(VISEPCHGI_STD) then SVEPCHGI:Strip(VISEPCHGI_STD);

if not missing (UVREAS_STD) then SVUPDES=strip (UVREAS_STD) ;

if not missing (SVDT) then SVDTC=strip (put (SVDT/24/3600, yymmddl0.))

if _SV then VISDAT = SVDT;

call missing (UNSAPERF) ;

if _UV and ANC=1 then UNSAPERF = catx(', ', UNSAPERF, 'ANC');

if UV and PROG=1 then UNSAPERF = catx(', ',UNSAPERF, 'PROG');

if _UV and BS=1 then UNSAPERF = catx(', ',UNSAPERF, 'BS');

if _UV and LBBMCLL=1 then UNSAPERF = catx(', ', UNSAPERF, 'LBBMCLL');
if UV and LBBMLYM=1 then UNSAPERF = catx(', ', UNSAPERF, 'LBBMLYM');

if UV and MRI=1 then UNSAPERF = catx(', ',UNSAPERF, 'MRI');

if UV and CONS=1 then UNSAPERF = catx(', ',UNSAPERF, 'CONS');

if UV and PK=1 then UNSAPERF = catx (', ',UNSAPERF, 'PK'); Step 3.2: Concatenate the

if UV and PKINF=1 then UNSAPERF = catx(', ',UNSAPERF, 'PKINF'); Variable Names for QNAM =

if UV and CY=1 then UNSAPERF = catx(', ', UNSAPERF, 'CY'); “UNSAPERF” in Step 9

if UV and EG=1 then UNSAPERF = catx(', ',UNSAPERF, 'EG');

if UV and ECOG=1 then UNSAPERF = catx(', ',UNSAPERF, 'ECOG');

if UV and EQ5DS5L=1 then UNSAPERF = catx(', ',UNSAPERF, 'EQ5D5L');

if UV and BIO=1 then UNSAPERF = catx(', ',UNSAPERF, 'BIO');

if UV and BIONON=1 then UNSAPERF = catx (', ',UNSAPERF, 'BIONON'); _BLOCK A
', ',UNSAPERF, 'FACTLEU');
,

if UV and FACTLEU=1 then UNSAPERF = cat (
(' ', UNSAPERF, 'FACTLYM');
if _UV and CLLSLL=1 then UNSAPERF = catx(', ',UNSAPERF, 'CLLSLL');

(
_ X
if UV and FACTLYM=1 then UNSAPERF = catx

(
if UV and ICE=1 then UNSAPERF = catx(', ', UNSAPERF, 'ICE');

if UV and LBIMMU=1 then UNSAPERF = catx(', ',UNSAPERF, 'LBIMMU');

if UV and NL=1 then UNSAPERF = catx(', ', UNSAPERF, 'NL'); In the UV (Unscheduled

if UV and INL=1 then UNSAPERF = catx (', ', UNSAPERF, 'INL'); Subject Visit) dataset,

if UV and TL1=1 then UNSAPERF = catx(', ',UNSAPERF, 'TL1l'); concatenate these raw dataset
if UV and ITL1=1 then UNSAPERF = catx(', ', UNSAPERF, 'ITL1'); variables into a single

if _UV and TL2=1 then UNSAPERF = catx(', ', UNSAPERF, 'TL2'); character variable UNSAPERF,

if UV and ITL2=1 then UNSAPERF = catx(', ',UNSAPERF, 'ITL2'); : : H
if UV and LBBC=1 then UNSAPERF = catx(', ',UNSAPERF, 'LBBC'); which will later be mapDEd into

if UV and CHEM=1 then UNSAPERF = catx (', ', UNSAPERF, 'CHEM'); a supplemental qualifier
if UV and COAG=1 then UNSAPERF = catx(', ', UNSAPERF, 'COAG'); (_BLOCK C).

if UV and LBCRS=1 then UNSAPERF = catx(', ', UNSAPERF, 'LBCRS');

21

if UV and HEM=1 then UNSAPERF = catx(', ', UNSAPERF, 'HEM');

if UV and LBLYM=1 then UNSAPERF = catx(', ',UNSAPERF, 'LBLYM');

if _UV and PG=1 then UNSAPERF = catx (', ', UNSAPERF, 'PG');

if UV and SERO=1 then UNSAPERF = catx(', ',UNSAPERF, 'SERO');

if _UV and LS=1 then UNSAPERF = catx (', ', UNSAPERF, 'LS');

if UV and LP=1 then UNSAPERF = catx(', ',UNSAPERF, 'LP');

if UV and MRD=1 then UNSAPERF = catx(', ', UNSAPERF, 'MRD');

if UV and MR=1 then UNSAPERF = catx(', ',UNSAPERF, 'MR');

if UV and ORG=1 then UNSAPERF = catx(', ', UNSAPERF, 'ORG'); BLOCK A
if UV and PET1=1 then UNSAPERF = catx(', ',UNSAPERF, 'PETL'); -
if UV and PET2=1 then UNSAPERF = catx(', ',UNSAPERF, 'PET2');

if UV and PE=1 then UNSAPERF = catx(', ',UNSAPERF, 'PE');

if UV and IWCLL=1 then UNSAPERF = catx(', ', UNSAPERF, 'IWCLL');

if UV and LUGANO=1 then UNSAPERF = catx(', ',UNSAPERF, 'LUGANO');

if UV and SCTPOST=1 then UNSAPERF = catx(', ', UNSAPERF, 'SCTPOST');

if UV and TB=1 then UNSAPERF = catx(', ',UNSAPERF, 'TB');

if UV and VS=1 then UNSAPERF = catx(', ',UNSAPERF, 'VS');

in UV = UV;

in_SV = _SV;

if _SV or not missing(SVDTC) then output;/** with missing date from scheduled visits **/
run;

*** Below 1s the SAS codes for the EDC datasets with date and time;

data try2;
attrib sattrib.; Step 2: Identify Raw Datasets With Both
length SVDTC $20.; Dates and Times Along With Clinical Visits
set

BIO (drop=studyid siteid rename= (BIOPOSTDAT=SVDT BIOPOSTTIM=SVTM))
BIO (drop=studyid siteid rename= (BIOPREDAT=SVDT BIOPRETIM=SVTM))
BIONON (drop=studyid siteid rename= (NONBIODAT=SVDT NONBIOTIM=SVTM))
CY (drop=studyid siteid rename= (CYKDAT=SVDT CYKTIM=SVTM))
EG (drop=studyid siteid rename=(EGDAT=SVDT EGTIM=SVTM))
EX1 (drop=studyid siteid rename= (EX1ENDAT=SVDT EX1ENTIM=SVTM
EX1 (drop=studyid siteid rename=(EX1STDAT=SVDT EX1STTIM=SVIM
EX2 (drop=studyid siteid rename= (EX2ENDAT=SVDT EX2ENTIM=SVTIM

(drop=studyid siteid rename=(EX2STDAT=SVDT EX2STTIM=SVTM
EX3 (drop=studyid siteid rename= (EX3ENDAT=SVDT EX3ENTIM=SVIM
EX3 (drop=studyid siteid rename= (EX3STDAT=SVDT EX3STTIM=SVIM
PK (drop=studyid siteid rename= (PKDAT=SVDT PKTIM=SVTM))
PKINF (drop=studyid siteid rename=(PKPOSTDAT=SVDT PKPOSTIM=SVTM))
PKINF (drop=studyid siteid rename=(PKPREDAT=SVDT PKPRETIM=SVTM)) ;
if folder in ('VI', 'DA') then delete;/* VI=Visit Independent, DA=Disease Assessment */
if not missing(SVDT) then SVDTC=strip (put (SVDT/24/3600, yymmddl0.))
if not missing (SVDTC) and not missing (SVTM) then SVDTC=cats (SVDTC, 'T',

put (input (SVIM, TIME.), TOD5.));

Step 3: Stack the Raw Datasets and
Standardize Date/Time Variable

Names Into a Common Name
(SVDTC)

))
))
))
))
))
))

if not missing (SVDT) then output;
run;

*** Combine tryl and try2;
data try3;
length SVREASOC $200.;
set tryl try2;

STUDYID = 'Project-Study-101";
DOMAIN = 'SV'; _ : :
From Block 1 USUBJID = strip(STUDYID) | |strip (substr (SUBJECT,4)); V?é?‘? 4 g:ombme Two Data Blocks tO. D,enve
of Sv.sas | visit = strip(put(folder, S$visit.)); T and VISITNUM for Scheduled Visits and
- visitnum = input (visit, ?2?visitnum.); Derive SV Variables Describing Visit-Related
visitdy = input (visit, ??visitdy.); Information: SVPRESP, SVOCCUR, SVREASOC
if VISIT ~= 'Unscheduled' then SVPRESP = 'Y';
if visit='Unscheduled' then unsched=1;
if SVPRESP = 'Y' and not missing(SVDTC) then SVOCCUR = 'Y';
if SVPRESP = 'Y' and missing(SVDTC) then SVOCCUR = 'N'; Step 4.5: Import External
if not missing (VISREASOC STD) then SVREASOC=strip (VISREASOC_STD); Datasets and Combine
run; Them with the Above Two

Data Blocks

/*read in external data, and combine with try3, eg., central tumor data, etc.*/

*** merge with DM and remove dates before informed consent date or first screening date from SV ***;
proc sort data=try3;by USUBJID SVDTC;run;
data svO0;
set try3(where=(in_SVv=1));
by USUBJID SVDTC;
if first.USUBJID;
run; _BLOCK B
data try4 prescreen;
merge try3(in=inl) sv0 (keep=USUBJID SVDTC rename=(SVDTC=SVDTC1l)) dm(keep=USUBJID RFICDTIC in=in2);
by USUBJID;
if inl and in2 and ((RFICDTC <= SVDTC) or (SVDTCl <= SVDTC) or in_SV) then output try4;
else if inl and in2 then output prescreen;
run;

22

*** separate into scheduled, unscheduled, and missed visits;
data try sched

try_unsched Step 5: Separate the Combined Data into Two
try missed; Data Blocks: One With Scheduled Visits Only,

set tryé4; . .
if missing(SVDIC) then output try missed; Another With Unscheduled Visits Only

else if UNSCHED then output try_ unsched;
else output try sched;
run;
*** process scheduled visits ***;
proc sort data=try sched;by USUBJID VISITNUM VISIT SVDTC;run;
data try sched2;
length STARTDTC $20.;
retain STARTDTC;
set try sched;
by USUBJID VISITNUM VISIT SVDTC;
if first.VISIT then STARTDTC = SVDTC;

if last.VISIT then do; Step 6: For Each Scheduled Visit, Derive
SVSTDTC = STARTDTC; SVSTDTC From the Earliest Date/Time and Derive
SVENDTC = SVDTC; SVENDTC From the Latest Date/Time
output;

end;
run;
proc sort data:try_sched2;by USUBJID SVSTDTC UNSCHED SVENDTC; run;
*** process unscheduled visits ***;
proc sort data=try unsched;by USUBJID SVDTC descending SVUPDES descending UNSAPERF descending UVREAS O;runj
data try unsched2;

set try unsched;

by USUBJID SVDTC descending SVUPDES descending UNSAPERF descending UVREAS O;

SVSTDTC = SVDTC;

SVENDTC = SVDTC;

call missing (VISITNUM) ;

if first.SVDTC then output;
run;
proc sort data=try unsched2;by USUBJID SVSTDTC UNSCHED SVENDTC;run;
*** combine and calculate VISITNUM for unscheduled visits ***;

Step 6: For Each Unscheduled Visit, Set Both
SVSTDTC and SVENDTC Equal to SVDTC

data try5;
retain VISITNUML;) Step 7: Combine the Scheduled Visits and
set try sched2 try unsched2; Unscheduled Visits Blocks and Derive VISIT and

by USUBJID SVSTDTC UNSCHED SVENDTC;
VISITNUM OLD = VISITNUM;
VISIT OLD = VISIT;
if first.USUBJID then VISITNUM1 = max(0.01, VISITNUM);
else if not missing (VISITNUM) then VISITNUM1 = VISITNUM;
run;
proc sort data=try5;by USUBJID VISITNUM1 SVSTDTC UNSCHED SVENDTC;run;
data try6;
retain VISITNUMZ;
set try5;
by USUBJID VISITNUM1 SVSTDTC UNSCHED SVENDTC;
if first.VISITNUM1l then VISITNUM2 = 0;
if UNSCHED = 1 then VISITNUM2 + 0.01;
if VISITNUM2 > 0 then do;
VISITNUM = VISITNUM1 + VISITNUMZ;
VISIT = catx(" ", VISIT, put (VISITNUM, 8.2));
end;
run;
*** combine with missed visits **x*;
data try7; set try6 try missed; run;
proc sort data=try7;by USUBJID VISITNUM SVSTDTC;run;
** bring in NV (Next Visit) to add NVYN STD(Subject Be Advancing to the Next Visit) to be stored in SUPPSV;

_BLOCK B

VISITNUM for Unscheduled Visits

data try0;
set NV (drop=studyid siteid);
STUDYID = 'Project-Study-101"';
DOMAIN = 'SV';

USUBJID = strip (STUDYID) | |strip (substr (SUBJECT,4));
visit = strip(put(folder, $visit.));
visitnum = input(visit, ??visitnum.);
visitdy = input(visit, ??visitdy.);
run;
*** merge in variables from raw SV, NV *;
proc sort data=try0O;by USUBJID VISITNUM;run;
proc sort data=try4;by USUBJID VISITNUM;run;
data try;
merge try7
try0 (keep=USUBJID VISITNUM NVYN_ STD in=inl)
try4 (where=(in_SV=1) keep=USUBJID VISITNUM VISDAT SVCNTMOD SVEPCHGI in_ SV in=in2);
by USUBJID VISITNUM;
run;
kkkAkxkAXA% Programming Note: SDTM Variable: SVSTDY Needs the Derivation by the Macro Call: %get_dy;

23

From Block 3
of _SV.SAS

From Block 4]
of _SV.SAS

From Block 5
of _SV.SAS]

%get_dy (_DATEVAR=SVSTDTC, DAYVAR=SVSTDY) ;
*xxxxxxxx pProgramming Note: SDTM Variable: SVENDY Needs the Derivation by the Macro Call: %get_dy;
%get_dy (_DATEVAR=SVENDTC, DAYVAR=SVENDY) ;

proc sort data=try;by studyid usubjid VISITNUM; run;

*** Qutput permanent datasets to: wsdtm ***;

data wsdtm.&domain. (keep=&keep label=&label);
attrib &attrib.;
set try;

format all ;
informat _all ;

- data suppé&domain.;

attrib &attrib supp.;

set try;

rdomain = "&domain.";

idvar = 'VISITNUM';

idvarval = strip(put (VISITNUM, best.));

if not missing (NVYN_STD) then do;
gnam="'NXTVISYN';
glabel='Subject Advancing to Next Visit?';
qval=strip (NVYN_STD) ;
gorig='CRF';
geval="";
output;

end;

if not missing (VISDAT) then do;
gnam="'VISDTC';
glabel='Visit Date';
gval=strip (put (VISDAT/24/3600, yymmdd10.)) ;
gorig="CRF';
geval="";
output;

end;

if not missing (UVREAS O) then do;
gnam="'UNSREASO"';
glabel='Unscheduled Visit: Other Reason, Specify';
gval=strip (UVREAS O);
gorig='CRE';
geval="";
output;

end;

if not missing (VISREASOC AE) then do;
gnam="'VISMAEID';
glabel='Missed Visit: Adverse Event, Specify';
qval=strip (VISREASOC_AE) ;

gorig="CRF';
gizgiz; ’ Step 9: Map Other Raw Dataset Variables into SUPPSV

end;

1f not missing (UNSAPERF) then do;
gnam="'UNSAPERF"' ;
glabel="'Unscheduled Assessments Performed';

qval=strip (UNSAPERF) ; Variable UNSAPERF was derived in _BLOCK A.

qorig='CRF'; _BLOCK C Here it is output as QVAL for QNAM =
geval=""; “UNSAPERF” for SUPPSV.
output;

end;

1f not missing (VISREASOC O) then do;
gnam="'VISMOTHS';
glabel="'Missed Visit: Other Reason, Specify';
gval=strip (VISREASOC O);
gorig='CRE';
geval="";
output;

end;

if not missing (VISCNTMD_O) then do;
gnam='VISTYPOS';
glabel='Type of Visit: Other, Specify';
qval=strip (VISCNTMD O) ;

gorig="'CRF';
geval="";
output;

end;

~ run;

- proc sort data=&suppdomain.;by usubjid idvarval gnam;run;
data wsdtm.&suppdomain. (keep=&keep supp label=&label supp);

attrib sattrib_supp.;
set &suppdomain.; Step 10: Output Permanent Dataset: SUPPSV
format all ;

informat _all ;

- run;

24

