
1

PharmaSUG 2024 - Paper DS- 188
Automated Harmonization: Unifying ADaM Generation and Define.xml

through ADaM Specifications
Wei Shao and Xiaohan Zou, Bristol Myers Squibb

ABSTRACT
In electronic submission packages, ADaM datasets and Define.xml stand as pivotal components.
Ensuring consistency between these elements is critical. However, despite the importance of this, current
methods still heavily depend on manual checks. To address this challenge, we introduce an innovative
automated approach driven by ADaM specifications. Our solution involves a suite of SAS® macros
engineered to streamline the translation from ADaM specification to both ADaM datasets and Define.xml.
These macros orchestrate a seamless automation process, facilitating the generation of ADaM datasets
while concurrently fortifying consistency between ADaM datasets and Define.xml. The automated
processes include format creation, core variables addition, variable attributes generation, dynamic length
adjustment based on actual values, and automatic ADaM specification updates from actual data. These
macros act as dynamic tools, constructing datasets with precision, adjusting variable attributes, and most
importantly, syncing Define.xml with actual data. Our automated tool system not only expedites ADaM
datasets creation, but also ensures an inherent consistency with Define.xml. This amalgamation of
automation and specification-based integrity significantly reduces manual errors, enhances data quality,
and fortifies the efficiency of the submission process.

INTRODUCTION
ADaM specifications serve as comprehensive guidelines, delineating critical details essential for ADaM
generation, and encompassing variable names, labels, lengths, data types, codelists, origins, derivations,
and more. At our company, collaboration with PINNACLE21(P21E) has yielded the ADaM Define Adaptor,
a bespoke Define.xml generator tailored to extract Define.xml directly from ADaM specifications. This
adaptation underscores the profound role of ADaM specifications not only as the bedrock for creating
ADaM datasets, but also as the singular source for Define.xml generation. This pivotal role forms the
foundation of our automation initiatives, rooted within the ADaM specification framework. In this paper, we
introduce an innovative approach centered on automating ADaM datasets and Define.xml generation,
aimed at ensuring seamless consistency between the two. Notably, our work features the development of
automated ADaM tools adept at retrieving metadata such as core variables, variable attributes, and
codelists directly from the ADaM specification. These tools seamlessly integrate this metadata into ADaM
programming, facilitating swift and accurate ADaM dataset generation. Moreover, our utility empowers the
dynamic adjustment of variable lengths in the specification based on actual ADaM data. Embracing this
pioneering approach, we guarantee metadata consistency between Define.xml and ADaM datasets,
amplifying accuracy and efficiency during regulatory submissions.

PROCESS FLOW FOR GENERATING ADAM DATASETS AND DEFINE
This section describes the process flow for creating ADaM datasets and Define.xml starting from ADaM
specifications (Figure 1)

2

Figure 1 Overview of Process Flow for Creating ADaM Datasets and Define

Figure 2 Code Pattern for ADaM Datasets

The ADaM generation workflow commences with ADaM specifications, initiating automation through an
ADaM template program, which is ADaM programming in a structured and modular approach. Our ADaM
template program comprises general macros applicable across multiple ADaM domains and domain-
specific macros tailored to individual domains, as depicted in Figure 2. Notably, the framework for ADaM
dataset generation hinges on 5 pivotal general macros, summarized in Display 1. Following ADaM
dataset creation, a conformance check is performed within the P21E system. Any detected issues within
the datasets or specifications prompt necessary actions to update the datasets or refine specifications to
rectify these issues.

Similarly, the workflow for Define.xml generation originates from ADaM specifications. We employ our
company’s ADaM specifications template to develop study-level ADaM specifications, and these
specifications are processed in P21E to generate Define.xml. Noteworthy in our toolkit is the incorporation

3

of a data-driven macro designed to dynamically adjust variable lengths based on actual data, enabling
revisions in specifications for Define.xml creation. The iterative process involves multiple checks of the
ADaM data package, including Define.xml, until all identified issues are resolved.

Since the automation of consistency checking is conducted from the beginning of ADaM programming to
the end for regulatory submission, the high quality of submissions can be achieved in a cost-effective and
efficient way.

Automation Macro Name Purpose Macro call instance

1 %genfmt Create formats and informats
based on codelists (terms and
decodes) from ADaM
specifications

%genfmt (inspec = &spec.,
 adsname = adsl);

2 %gencore Retrieve the list of core variables
from ADaM specifications and
populate them into ADaM
domains

%gencore (inspec = &spec.,
 adslib = adam,
 indset = adae,
 outdset = adae);

3 %genattrib Extract variable attributes
(names, labels, lengths, formats)
from ADaM specifications and
assign them to the variables in
ADaM domains

%genattrib (inspec = &spec.,
 adslib = adam,
 adsname = adsl,
 adslabel=%str(Subject-
Level Analysis Dataset));

4 %genlen Trim the length of all character
variables to the maximum length
of the text string for each variable
in ADaM domains

%genlen (adslib = adam,
 adsname = adsl);

5 %genspec Update the Spec by adjusting
length based on ADaM domains

%genspec(inspec = &spec.,
 adslib = adam,
 outspec = &outspec.);

 Display 1 SAS® Macros in ADaM Automation

AUTOMATION TOOLS EMPLOYED FOR ADAM CREATION AND SPECIFIFICATION
UPDATES

AUTOMATION 1: CREATE FORMATS AND INFORMATS FROM THE SPECIFICATIONS

The terminology for variables in ADaM datasets is described in the specifications. There are 2 codelists
sources in the ADaM specifications: Variable Metadata (Display 2) and Codelist (Display 3) tabs. The term /
decode values can be entered in either tab, but not both. Typically, it’s advisable to keep repeated or
lengthy codelists in the “Codelist” tab. The macro %genfmt is used to extract term/decode from both tabs
in the specifications and create formats and informats when a codelists is applicable to a variable. For
instance, let’s look at the variable AGEGR1N (pooled age group 1(N)). When both term and decode are
provided, the equal sign (=) is used as a separator. It’s important to note that we put a space before and
after the equal sign (=). In this case, the portion before the equal sign, ‘1’ or ‘2’ represents term, while the
portion after the equal sign, “<65” or “>=65” is the decode. If the code or decode value contains a
character string with “=” sign (e.g. “<=”, “>=”), do not add black spaces between characters to ensure that
the “=” sign is interpreted as text, and not as a separator.

4

Display 2 Term/Decode at Variable Metadata Sheet in The Spec

Display 3 Codelist Sheet in The Spec
The macro %genfmt is used to create dual formats from the specifications. The macro call is shown as
follows:

 %genfmt(inspec= /* the specification location */

 ,adsname= /* analysis dataset name */

);

The sample SAS® codes have the following major steps:

Step 1: Extract the codelists from the spec using PROC IMPORT
proc import file= "&INSPEC " dbms=xlsx out=_var replace;
 sheet=”Variable Metadat”;
 getnames=YES;
run;

Step 2: Split term and decode for codelist in “Variable Metadata” sheet
data _var2;
 set _var(keep=dataset_name variable_name variable_type term_decode
 rename=(dataset_name=DATASET variable_name=VARIABLE));
 vtype=input(upcase(variable_type), $vartyp.);

 nterms=countw(term_decode, '0D0A'x);
 length term decode $200;
 if index(term_decode, ' = ') >0 then
 do i=1 to nterms;
 this_term_decode=scan(term_decode, i, '0D0A'x);
 split=find(this_term_decode, ' = ');
 term=substr(this_term_decode, 1, split-1);
 decode=tranwrd(substr(this_term_decode, split+3),',','');

 output;
 end;
 keep dataset variable vtype term decode;
run;

Step 3: Create dual formats for each variable using the following SAS® codes.

• SAS® code for creating formats: START = term; LABEL = decode,
• SAS® code for creating informats: START = decode; LABEL = term.

5

After executing the above codes, the intermediate dataset (See Display 4 for an example of what this
dataset looks like) will be generated, encompassing both format and informat for variable ‘RACEN’. Users
can select and utilize either based on theirs needs.

Display 4 Formats and Informats Dataset

Step 4: Create formats and informats dataset using cntlin in the FORMAT procedure
proc format cntlin = _final;
run;

AUTOMATION 2: ADD CORE VARIABLES TO ADAM DATASETS

The FDA advises to populate a set of basic subject level variables to all analysis datasets. These
variables are called core variables. Core variables can include study ID, site ID, country, region, sex age,
race ethnicity, treatment assignment, analysis population flags, and other important baseline
characteristic variables. They will be identified from ADSL and populated into all analysis datasets. Display
5 shows that dataset name of core variables in the specifications is *ALL*.

Display 5 Core Variables at Variable Metadata Sheet in The Spec

The macro %gencore serves the purpose of merging analysis datasets with ADSL to get core variables.
The code for this process is straightforward, primarily involving the merging of ADSL with other ADaM
datasets by the unique subject identifier (USUBJID) to populate subject-related information.

The macro call of %gencore is shown below:

 %gencore(inspec= /* the specification location */

6

 ,adslib= /* analysis data library that has ADaM domains */

 ,indset=/* Name of the input dataset */

 ,outdset=/* Name of the output dataset */

);

%gencore macro is comprised of three parts:

Part1: Import the specifications with the following SAS® code:
 proc import file="&INSPEC" dbms=xlsx out=_var replace;
 sheet="Variable Metadata";
 getnames=YES;
 run;

Part2: Create a macro variable “&corevar” that contains the list of core variables separated by a space
 proc sql noprint;
 select variable_name into: corevar separated by ' '
 from _var(where=(dataset_name=upcase("*ALL*")));
 quit;

Part3: Merge ADSL with other ADaM datasets by USUBJID to populate core variables
 data &outdset.;
 merge &indset.(in=main) adsl(keep= STUDYID USUBJID &corevar.)
 by STUDYID USUBJID;
 if main;
 run;

AUTOMATION 3: GENERATE VARIABLE ATTRIBUTES FROM THE SPECIFICATIONS
Every variable in an ADaM dataset is defined by attributes including label, length, display format. The
macro %genattrib is used to retrieve this information from ADaM specifications, and then assign them to
each variable in the ADaM dataset. The macro call of %genattrib is shown as follows:

 %genattrib(inspec= /* the specification location */

 ,adslib= /* analysis dataset location */

 ,adsname= /* analysis dataset name */

 ,adslabel=/* analysis dataset label */

);

Basically, the first step of the macro is to import the specification and extract variable attributes from
variable metadata sheet. Then we would rename metadata as follows: variable_name to varnm,
variable_label to varlb, variable_type to var_typ, variable_length to varlen, variable_display_format to
varfmt. After this step, we can then use the following SAS® program to create a temporary variable named
‘allvar’ in intermediated dataset ‘_attrn’:

 data _attrn;
 set _metadata4;
 length allvar $200.;
 if var_typ = 'text' then allvar = 'attrib ' ||compress(varnm)||' label =
"'||strip(varlb)||'"'||' length = '|| '$'||varlen||';';
 else if var_typ = 'integer' then do;
 if varfmt = '' then allvar = 'attrib ' ||compress(varnm)||' label =
"'||strip(varlb)||'"'||' length = '||varlen||';';
 else allvar = 'attrib ' ||compress(varnm)||' label =
"'||strip(varlb)||'"'||' length = '||varlen||' format =

7

'||compress(varfmt)||'.'||';';
 end;
 else if var_typ = 'float' then do;
 if varfmt = '' then allvar = 'attrib ' ||compress(varnm)||' label =
"'||strip(varlb)||'"'||' length = '||varlen||';';
 else allvar = 'attrib ' ||compress(varnm)||' label =
"'||strip(varlb)||'"'||' length = '||varlen||' format =
'||'20.'||compress(varfmt)||';';
 end;
 run;

 Next, we would create the macro variable &varall using the INTO statement in PROC SQL. The example
of the value for macro variable “&varall” is following SAS® codes:
 proc sql noprint;
 select allvar into :varall separated by ' ' from _attrn;
 quit;

attrib COUNTRY label = "Country" length = $200;
attrib COUNTRYL label = "Country Long Name" length = $200;
attrib REGION1 label = "Geographic Region 1" length = $200;
attrib REGION1N label = "Geographic Region 1 (N)" length = 8 ;
attrib AAGE label = "Analysis Age" length = 8 ;
attrib AAGEU label = "Analysis Age Units" length = $200;
attrib ASEX label = "Sex Decode" length = $6 ;

Finally, put the macro variable &varall in the data step to add variable attributes.
data &adsname.;
 &varall.;
 set &adsname.;
run;

This macro avoids manually defining variable attributes for all the variables in all datasets, and therefore
significantly reducing programming workload and human errors. It guarantees the consistency between
the ADaM datasets and the specifications. Additionally, apart from assigning variable attributes, the
macro also sorts data by key variables specified in the specifications, only containing all variables defined
in the requirement specification, and ordering variables within the dataset as defined in the specifications.
This macro is especially useful to ensure that the variable attributes are adjusted or updated in
accordance with any changes made to the specifications. Running this macro is the only action required,
which enhances cost-effectiveness.

AUTOMATION 4: TRIM THE LENGTH OF CHARACTER VARIABLES
In general, we assign the maximum possible length ($200) for the character variables in the specifications
when maximum length for the variables is unknown. Setting all character variables to a length of 200
increases the size of a dataset, making it difficult for reviewers to work on. In addition, setting lengths
larger than the actual value can lead to P21 issues (SD1082) ‘Variable length is too long for actual data’.
Therefore, it’s necessary to reduce variable lengths in ADaM datasets creation.

To avoid truncation of values in the data process, our strategy involves utilizing a SAS® macro %genlen
as a final step within each ADaM program. The primary objectives of this macro are outlined below:

• Reduce the length of character variables.

• Maintain the original length of numeric variables.

• Preserve the original order of variables within the dataset.

8

• Provide flexibility to choose the set of character variables for preserving lengths, such as
predecessor variables.

• Conduct a comprehensive comparison to ensure that the reduced-size datasets remain identical
to the original dataset, except for variable length modifications.

The macro call syntax:

 %genlen (adslib = /* analysis dataset location */
 ,adsname=/* analysis dataset name */
);

The implementation of %genlen macro is comprised of three key steps:

Step 1: Create the following macro variables using PROC CONTENTS

• n_char: number of character variables

• oriname1 - oriname&n_char: character variables

• allvar: all variables
proc contents data=&adslib..&adsname. out=_content1 varnum noprint;
run;
proc sql noprint;
 select compress(put(count(*), best.)) into :n_char from _content1 where
name not in (&excluvars.) and type=2;
 select name into :oriname1-:oriname&n_char from _content1 where name not
in (&excluvars.) and type=2;
 select name into:allvar separated by ' ' from _content1 order by varnum;
quit;

Step 2: Loop through the variables using PROC SQL and get the maximum length for each variable

 proc sql;
 create table _mlength as
 select %do i=1 %to &n_char;
 max(length(&&oriname&i)) as &&oriname&i
 %if &i=&n_char %then %str();
 %else %str(,);
 %end;
 from &adslib..&adsname.;;
 quit;

 proc transpose data=_mlength out=_mlength_v;
 var _all_;
 run;

Step 3: Reset the variable lengths in each dataset and ensure trimmed data has no anticipated changes

 data _null_;
 set _mlength_v;
 call symputx(compress("charlen"||put(_N_, best.)), _name_||"
$"||strip(put(col1, best.)));
 run;

 data &adslib..&adsname.
 %if %length(&datasetlabel) %then (label="&datasetlabel");;
 retain &allvar;
 length

9

 %do i=1 %to &n_char;
 &&charlen&i
 %end;;
 set &adslib..&adsname.;
 informat _character_;
 format _character_;
 run;
In order to allow maximum flexibility but minimal effort, we decided to reduce variable lengths via a SAS®
macro as a post-processing step, which would determine in a dynamic fashion the maximum length
needed for each variable based on the actual values present in the dataset. By taking this approach, we
would not have to continuously monitor new data coming in to check for longer values and repeatedly
update programming specifications and programs.

AUTOMATION 5: UPDATE THE SPECIFICATION BASED ON ACTUAL DATA
As mentioned previously, we assign the maximum potential length (up to $200) for each character
variable in our ADaM specifications initially and then allow the macro %genlen to adjust the variable
lengths as the final step within each ADaM program. Following database lock, we execute the %genspec
macro to update variable lengths in the specifications based on actual data. The %genspec macro is
typically called at the late stage of ADaM programming cycle to finalize the specifications. The call of
macro %genspec is shown as the follows:

 %genspec(inspec= /* input specification */

 ,adslib= /* ADaM datasets location */

 ,outspec=/* output specification */

);

The partial SAS® codes in %genspec macro is used to extract variable length from ADaM datasets.

Step 1: Get the list of datasets
 data domainlist;
 set sashelp.vtable;
 where upcase(libname)=upcase("&adslib");
 keep memname memlabel order;
 run;
Step 2: Create macro variables of domains (&domain1, &domain2 ...) and number of domains
(&numdomain) that will be used in the next step

data_null_;
 set domainlist end=eof;
 call symputx(compress("domain"||put(_N_, best.)), memname);
 if eof then call symputx("numdomain", _N_);
run;

Step 3: Retrieve variable length from each dataset using a do...loop statement
 %do nd=1 %to &numdomain;
 proc contents data=&adslib..&&domain&nd out=content2 noprint;
 run;
 %end;

After obtaining the variable lengths for all variables from ADaM datasets, we will utilize this to update the
values of variable length in the specifications. Later we will create Define.xml in P21E by directly
importing the ADaM specifications to P21E.

10

CONCLUSION
In summary, ADaM dataset and define.xml are all generated from the programming specification. This
paper introduces 5 automations tools to utilize the specifications for creating ADaM datasets and define
file. The SAS® codes presented in this paper are just examples and there are other methods that have
been publicly shared as well. We encourage you to research and evaluate various methods and consider
what will work best with your process. This macro-based comprehensive approach not only maximizes
efficiency but also champions the principle of the data consistency, integrity, and regulatory compliance.

REFERENCES
ADaM Implementation Guide (ADaM-IG v1.3)
https://www.cdisc.org/system/files/members/standard/foundational/ADaMIG_v1.3.pdf

PINNACLE21 ADaM Validation Rules https://www.pinnacle21.com/validation-rules/adam

FDA Study Data Technical Conformance Guide https://www.fda.gov/media/153632/download

CDISC Define-XML https://www.cdisc.org/standards/data-exchange/define-xml

ACKNOWLEDGMENTS
The authors would like to thank our manager Allison Covucci for her great support and valuable input of
this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Wei Shao Xiaohan Zou
Bristol Myers Squibb Bristol Myers Squibb
wei.shao2@bms.com xiaohan.zou@bms.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://www.cdisc.org/system/files/members/standard/foundational/ADaMIG_v1.3.pdf
https://www.pinnacle21.com/validation-rules/adam
https://www.fda.gov/media/153632/download
https://www.cdisc.org/standards/data-exchange/define-xml

	Abstract
	Introduction
	Process flow for generating ADaM datasets and DEFINE
	AUTOmation tools employed for AdaM creation and specifification updates
	AUTOMATION 1: create formats and informats from the Specifications
	The terminology for variables in ADaM datasets is described in the specifications. There are 2 codelists sources in the ADaM specifications: Variable Metadata (Display 2) and Codelist (Display 3) tabs. The term / decode values can be entered in either...
	The sample SAS® codes have the following major steps:
	Step 1: Extract the codelists from the spec using PROC IMPORT
	Step 2: Split term and decode for codelist in “Variable Metadata” sheet
	Step 3: Create dual formats for each variable using the following SAS® codes.
	 SAS® code for creating formats: START = term; LABEL = decode,
	 SAS® code for creating informats: START = decode; LABEL = term.
	After executing the above codes, the intermediate dataset (See Display 4 for an example of what this dataset looks like) will be generated, encompassing both format and informat for variable ‘RACEN’. Users can select and utilize either based on theirs...
	Step 4: Create formats and informats dataset using cntlin in the FORMAT procedure
	The FDA advises to populate a set of basic subject level variables to all analysis datasets. These variables are called core variables. Core variables can include study ID, site ID, country, region, sex age, race ethnicity, treatment assignment, analy...
	The macro %gencore serves the purpose of merging analysis datasets with ADSL to get core variables. The code for this process is straightforward, primarily involving the merging of ADSL with other ADaM datasets by the unique subject identifier (USUBJI...
	The macro call of %gencore is shown below:
	%gencore(inspec= /* the specification location */
	,adslib= /* analysis data library that has ADaM domains */
	Conclusion
	References
	Acknowledgments
	Contact Information

