
1

PharmaSUG 2024 - Paper DV-127

The Missing(ness) Piece: Building Comprehensive, Data Driven
Missingness Reports and Codebooks Dynamically

Louise S. Hadden, Abt Global Inc.

ABSTRACT

Reporting on missing and/or non-response data is of paramount importance when working with
longitudinal surveillance, laboratory, serological, and medical record data. Reshaping the data over time
to produce "missingness" statistics is a tried and true technique, but through using metadata and little
known variations of familiar SAS procedures, combined with clever ODS reporting techniques, there's an
easier way. This paper and presentation will speed up your data cleaning reconnaissance and reporting,
and help you find your missing(ness) piece. Additionally, the same techniques will be used to
demonstrate how to create robust and utile data dictionaries..

INTRODUCTION

There are myriad ways to determine if you have missing data (PROC FREQ, PROC MEANS, PROC
SUMMARY, PROC UNIVARIATE, etc.). Most SAS® statistical procedures can report out on the number
of missing values. Depending on procedural options in PROC FREQ, missing values can be included, or
not, in counts of observations. Other statistical procedures simply drop records with missing values.
Reporting on missing values can occur via “list” output, procedural output or ODS output objects. Most
statistical procedures do not distinguish between distinct types of missing, but PROC FREQ and reporting
procedures do. This paper explores using PROC FREQ and PROC UNIVARIATE to report on missing
values by variable in a data set. This presentation is suitable for all levels, industries, and job roles.

PREPARING MISSING VALUES

It is common in survey output to assign codes such as 95 for other specify, 96 for other, 97 for refused,
98 for not answered, and 99 for not applicable. These values represent distinct types of missing.
Unfortunately, to statistical procedures, they are just numbers, and are treated as such. SAS can assign
up to 28 special missing value codes, ., ._, and .A through .Z. These represent extremely small numbers
that are greater than 0 – different extremely small numbers. SAS can and does distinguish between these
special missing values in reporting procedures and PROC FREQ. It is recommended that analysts recode
the 9x codes (and the like) to special missing values – for example, 95 (other) could be .O, and a valid
skip (determined by looking at a survey instrument or data dictionary for skip patterns) could be coded .V.
Knowing what data contains missing values is of the utmost importance. Note information on special
missing value recodes in both variable and value labels. PROC FORMAT will report on the different
missing values when used with reporting procedures and PROC FREQ. When the format below is applied
to a variable, .O, .M, and .V are all reported out separately.

proc format;

 value varx_f .O = 'Other Specify'

 .M = 'Missing'

 .V = 'Valid Skip'

 other = 'Non-Missing';

run;

PROC FREQ, ODS OUTPUT OBJECTS, AND NLEVELS

Regardless of how your data was prepared with respect to missing values, SAS has a sadly underutilized
variant of PROC FREQ that allows you to produce a missingness report with ease. This procedural option
is NLEVELS. If your data set has more than one special missing numeric value, the multiple values will be
reported as multiple “levels” of missing. Character variables have a single “level” of missing. The syntax
for PROC FREQ NLEVELS is as follows:

2

Ods trace;

proc freq data=int.&infi. nlevels;

 ods output nlevels=nlevels0;

 tables _all_ / noprint;

run;

ods output close;

ods trace off;

proc print data=nlevels0 (obs=5) noobs;

title 'Test nlevels output';

run;

proc contents data=nlevels0 varnum;

run;

The only ODS output object that PROC FREQ NLEVELS produces is NLEVELS. The NLEVELS0 data
set contains 5 variables: TABLEVAR (variable name), TABLEVARLABEL (variable label), NLEVELS
(number of different values, including missing), NMISSLEVELS (number of different missing values), and
NNONMISSLEVELS (number of different non-missing values). The “_all_” in the table statement means
that all variables in the input data set are tabulated automatically. Thus, you can generate a single line
with missing value statistics for each variable in a single report.

PROC FREQ with the _ALL_ tables option will report on variables in the order in which they entered the
PDV, so if a different order is desired, prepare your data set for reporting by reordering your variables.
Additionally, ensure that all variables are labelled prior to reporting.

The listing output from PROC FREQ NLEVELS is not ideal for reporting. We use a PROC REPORT step,
using the ODS OUTPUT object generated by the procedure.

In preparation for reporting, we set the NLEVELS0 ODS output object, creating a temporary file for
printing. We label the variables, and create a non-printing variable that allows us to flag any variables
without any non-missing value levels.

data nlevels;

 set nlevels0;

 label TableVar = "Variable Name"

 TableVarLabel = "Variable Description"

 NLevels = "# of Variable values"

 NMissLevels = "# of Missing Value Levels"

 NNonMissLevels = "# of Non- Missing Value Levels";

 shadeit=(nnonmisslevels=0);

run;

We use PROC REPORT and ODS RTF to set up our Missingness report, highlighting a high degree of
missingness using the shadeit variable created above. Note that we could modify this using cardinality
ratios created from the NLEVELS, NMISSLEVELS, and NNONMISSLEVELS variables to refine our
reporting. SHADEIT is set as a non-printing variable in the DEFINE statement, but must be in the columns
statement in order for the conditional shading of the row to work. Note that this shading can also be
applied to single cells using options in the COMPUTE statement.

ods rtf file="Missingingness.rtf" path=odsout style=styles.pearl;

title2 "Missingness Report for &infi - N = &nobs";

proc report nowd data=nlevels

 style(report)=[cellpadding=3pt vjust=b]

 style(header)=[just=center font_face="Helvetica" font_weight=bold

 font_size=8pt]

3

 style(lines)=[just=left font_face="Helvetica"] split='|';

 columns TableVar TableVarLabel NLevels NmissLevels NNonMissLevels

 shadeit;

 define shadeit / display ' ' noprint;

 define TableVar / style(COLUMN)={just=l font_face="Helvetica"

 font_size=8pt cellwidth=295 }

 style(HEADER)={just=l font_face="Helvetica" font_weight=bold

 font_size=8pt };

 define TableVarLabel / style(COLUMN)={just=l font_face="Helvetica"

 font_size=8pt cellwidth=395 }

 style(HEADER)={just=l font_face="Helvetica" font_weight=bold

 font_size=8pt };

 define Nlevels / style(COLUMN)={just=c font_face="Helvetica"

 foreground=navy

 font_size=8pt cellwidth=95 }

 style(HEADER)={just=c font_face="Helvetica" font_weight=bold

 font_size=8pt };

 define NMissLevels / style(COLUMN)={just=c font_face="Helvetica"

 foreground=navy

 font_size=8pt cellwidth=95 }

 style(HEADER)={just=c font_face="Helvetica" font_weight=bold

 font_size=8pt };

 define NNonMissLevels / style(COLUMN)={just=c font_face="Helvetica"

 foreground=navy

 font_size=8pt cellwidth=95 }

 style(HEADER)={just=c font_face="Helvetica" font_weight=bold

 font_size=8pt };

compute shadeit;

 if (shadeit eq 1) then call

 define(_row_,"STYLE","STYLE=[BACKGROUND=PINK]");

 endcomp;

run;

ods rtf close;

REPORT ON VARIABLE LEVELS

We are able to produce a report from a data set with thousands of variables with a few lines of PROC
FREQ and PROC REPORT code, instantly highlighting records for variables which may have a
missingness problem. Using the SHADEIT variable to screen, we could produce a report with variables
with only missing values to research.

Variable Name Variable Description

of
Variable
values

of
Missing
Value
Levels

of Non-
Missing
Value
Levels

IN_DATA_EXTRCT_DT Mo 4: Date of data extraction 1 0 1

INF_IDENTIFIER1 Mo 4: Infant identifier-#1 1550 0 1550

IN_AMB_VISIT_DT Mo 4: Date of any ambulatory care visit, including
antenatal care, ED, telemedicine.

1 1 0

IN_CHLOROQ_END_DATE Mo 4: First administration of treatment - End Date:
Chloroquine Phosphate (Chloroquine)

1 0 1

IN_CHLOROQ_STRT_DATE Mo 4: First administration of treatment - Start Date:
Chloroquine Phosphate (Chloroquine)

1 0 1

Table 1. Missingness Report

4

NUMBER OF OBSERVATIONS & CARDINALITY

The number of observations in a file is an important datum that can be used to calculate numerous useful
statistics, for example, the cardinality ratio of each variable in a file. In order to obtain the N of a file, or a
series of files, we use a macro to grab the NOBS. There are many ways to determine the number of
observations. Since we analyze a number of different files, we use a macro driven solution to
accommodate that need.

%macro filecheck(inlib=out,inmem=recover_surveillance_&delivdate.);

proc sql noprint;

 create table filelist0 as

 select libname, memname, nobs

 from dictionary.tables

 where libname = upcase("&inlib");

quit;

data filelist;

 set filelist0 (where=(memname = upcase("&inmem.")));

run;

%mend;

%filecheck(inlib=out,inmem=recover_surveillance_&delivdate.);

data _null_;

 set filelist;

 call symput('fileobs',trim(nobs));

run;

This macro is included in a larger program which calculates cardinality. Cardinality is defined as the
number of observations / nlevels. This program has a few additions to the code snippet we saw above,
namely the calculation of cardinality variables.

%include ".\INCLUDE_Nobs.sas";

run;

data nlevels out.nlevels_surveillance_&delivdate.;

 length cr_type $ 12;

 set nlevels0;

 label TableVar = "Variable Name"

 TableVarLabel = "Variable Description"

 NLevels = "# of Variable values"

 NMissLevels = "# of Missing Value Levels"

 NNonMissLevels = "# of Non- Missing Value Levels";

 shadeit=(nnonmisslevels=0);

 /* shades variables with NO non missing values */

 nobs=&fileobs;

 cardinality=nobs/nlevels;

 label nobs = "# of Observations"

 cardinality = "Cardinality Ratio";

 select;

 when(nlevels eq 1) cr_type = '.unique';

 when(nlevels gt 10) cr_type = 'many';

 otherwise cr_type = 'few';

 end;

5

 label cr_type='Cardinality Type';

run;

We then can produce a more robust missingness report.

ods rtf file="Missingness_Report_Surveillance_&delivdate..rtf" path=odsout

style=styles.pearl;

title2 "Missingness Report for Deliverable Surveillance data set for

&delivdate";

proc report nowd data=nlevels

 style(report)=[cellpadding=3pt vjust=b]

 style(header)=[just=center font_face="Helvetica" font_weight=bold

font_size=8pt]

 style(lines)=[just=left font_face="Helvetica"] split='|';

 columns TableVar TableVarLabel NLevels NmissLevels NNonMissLevels nobs

cardinality shadeit;

 define shadeit / display ' ' noprint;

 define TableVar / style(COLUMN)={just=l font_face="Helvetica"

 font_size=8pt cellwidth=250 }

 style(HEADER)={just=l font_face="Helvetica"

font_weight=bold

 font_size=8pt };

 define TableVarLabel / style(COLUMN)={just=l font_face="Helvetica"

 font_size=8pt cellwidth=375 }

 style(HEADER)={just=l font_face="Helvetica"

font_weight=bold

 font_size=8pt };

 define Nlevels / style(COLUMN)={just=c font_face="Helvetica"

foreground=navy

 font_size=8pt cellwidth=75 }

 style(HEADER)={just=c font_face="Helvetica"

font_weight=bold

 font_size=8pt };

 define NMissLevels / style(COLUMN)={just=c font_face="Helvetica"

foreground=navy

 font_size=8pt cellwidth=75 }

 style(HEADER)={just=c font_face="Helvetica"

font_weight=bold

 font_size=8pt };

 define NNonMissLevels / style(COLUMN)={just=c font_face="Helvetica"

foreground=navy

 font_size=8pt cellwidth=75 }

 style(HEADER)={just=c font_face="Helvetica"

font_weight=bold

 font_size=8pt };

 define Nobs / style(COLUMN)={just=c font_face="Helvetica" foreground=navy

 font_size=8pt cellwidth=75 }

 style(HEADER)={just=c font_face="Helvetica"

font_weight=bold

 font_size=8pt };

 define Cardinality / style(COLUMN)={just=c font_face="Helvetica"

foreground=navy

 font_size=8pt cellwidth=110 }

 style(HEADER)={just=c font_face="Helvetica"

font_weight=bold

 font_size=8pt };

6

compute shadeit;

 if (shadeit eq 1) then call

define(_row_,"STYLE","STYLE=[BACKGROUND=PINK]");

 endcomp;

run;

ods _all_ close;

What does the cardinality ratio give us? My company uses it to determine how to report on variables.

 Table 2. Missingness Report with Number of Observations and Cardinality

 Table 3. Frequency on Cardinality Type

A cr_type of .unique is highly likely to represent identifiable data, and won’t be reported on. A cr_type of
few will be handled with a frequency table, formatted or unformatted. A cr_type of many should be
handled with a summary / means / univariate.

7

TYPE AGNOSTIC MISSINGNESS REPORTING

Sometimes all that is required is a simple missing / presence report, by site. Perhaps you have thousands
of variables, of distinct types. SAS, the missing function, proc univariate outtable, and some clever macro
coding can produce exactly what is needed. The code snippets below provide the answer with an
informative table by site of missing and present variables, regardless of variable type.

MACRO DRIVEN CODE GENERATION

**;

*** create contents to drive processing ***;

**;

PROC SQL NOPRINT;

CREATE TABLE CONTS_P AS

SELECT name format = $32. length = 32

, type format = $4. length = 4

, length format= 8. length = 8

, label format = $250. length = 250

, varnum format =8. length = 8

FROM DICTIONARY.COLUMNS

WHERE libname="INLIB" and memname=upcase("&infi.");

QUIT;

proc print data=conts_p (obs=5) noobs;

run;

proc sort data=conts_p;

 by type;

run;

Obtain Maximum N of Each Type & Create Macro Variables

*** get the maximum n of each type and create macro vars ***;

proc freq data=conts_p;

 tables type / noprint out=max_type (keep=type count);

run;

data _null_;

 set max_type;

 if type='char' then do;

 ccount=put(count,z4.);

 CALL SYMPUTX("cmax",ccount);

 end;

 if type='num' then do;

 ncount=put(count,z4.);

 CALL SYMPUTX("nmax",ncount);

 end;

 run;

*** use &cmax for character and &nmax for numeric ***;

8

**;

*** List variable names by type and number ***;

**;

data nums;

 length name $ 32;

 set conts_p (where=(type='num'));

 retain nnum 0;

 by type;

 if first.type then nnum=0;

 nnum=nnum+1;

run;

data chars;

 length name $ 32;

 set conts_p (where=(type='char'));

 retain cnum 0;

 by type;

 if first.type then cnum=0;

 cnum=cnum+1;

run;

data dd.conts_p;

 length name $ 32;

 set chars nums;

 by type;

run;

Read in Crosswalks for Variable Names and Labels

proc import dbms=xlsx out = xwalk

 datafile = "&outfolder.\xwalkformat_p.xlsx" replace;

 getnames=YES;

run;

data namexwalk (keep=fmtname type start label fmtdesc);

 length start $ 8 name label $ 32;

 set xwalk (keep=name type cnum label varnum rename=(type=vtype

label=vlabel));

 fmtname = "namexwalk";

 type='c';

 fmtdesc = "Use to convert cnnn/nnnn to correct variable names";

 start = cats(vtype,'var',put(cnum,z4.));

 label = name;

run;

proc format library=work cntlin=namexwalk fmtlib;

run;

data ordxwalk (keep=fmtname type start label fmtdesc);

 length start $ 8 ;

9

 set xwalk (keep=name type cnum label varnum rename=(type=vtype

label=vlabel));

 fmtname = "ordxwalk";

 type='c';

 fmtdesc = "Use to convert cnnn/nnnn to obtain variable order";

 start = cats(vtype,'var',put(cnum,z4.));

 label = varnum;

run;

proc format library=work cntlin=ordxwalk fmtlib;

run;

data labxwalk (keep=fmtname type start label fmtdesc);

 length start $ 8 vlabel label $ 250;

 set xwalk (keep=name type cnum label varnum rename=(type=vtype

label=vlabel));

 fmtname = "labxwalk";

 type='c';

 fmtdesc = "Use to convert cnnn/nnnn to obtain variable label";

 start = cats(vtype,'var',put(cnum,z4.));

 label = vlabel;

run;

proc format library=work cntlin=labxwalk fmtlib;

run;

Create Macro Lists of Character and Numeric Variables

**;

*** create macro variables to list character and numeric variables ***;

**;

proc sql noprint;

 select name format = $32. length = 32 into :clist separated by ' '

 from conts_p

 where type='char';

quit;

proc sql noprint;

 select name format = $32. length = 32 into :nlist separated by ' '

 from conts_p

 where type='num';

quit;

Use the Missing Function to Create Numeric Representations of Character and Numeric
Variables

**;

*** use missing function to create numeric reps of char and num vars ***;

**;

data temp;

 set inlib.&infi;

10

 array clist (*) &clist;

 array cton (*) cvar0001 - cvar&cmax. ;

 array nlist (*) &nlist;

 array nton (*) nvar0001 - nvar&nmax. ;

 tempc=.;

 tempn=.;

 do i=1 to dim(clist);

 tempc=missing(clist(i));

 if tempc=0 then cton(i)=1;

 else if tempc=1 then cton(i)=.;

 end;

 do j=1 to dim(nlist);

 tempn=missing(nlist(j));

 if tempn=0 then nton(j)=1;

 else if tempn=1 then nton(j)=.;

 end;

 drop i j;

run;

proc freq data=temp;

 tables site;

run;

proc sort data=temp;

 by site study_id;

run;

Use PROC UNIVARIATE OUTTABLE to Create Missingness Summaries

**;

*** macro to process by site using univariate outtable ***;

**;

%macro outtable(site=1);

proc univariate data=temp (where=(site=&site))

 outtable=TempTable_Site&site (keep=_var_ _nobs_ _nmiss_

 rename=(_var_=varname _nobs_=n&site _nmiss_=nmiss&site)) noprint;

 var cvar: nvar: ;

run;

proc sort data=temptable_site&site;

 by varname;

run;

proc print data=TempTable_Site&site (obs=50) label noobs;

 var varname n&site nmiss&site;

 label varname='Variable';

title3 "Site &site";

run;

11

%mend;

%outtable(site=1);

%outtable(site=2);

%outtable(site=3);

%outtable(site=4);

%outtable(site=5);

%outtable(site=6);

**;

*** combine site level runs together with two columns per site ***;

**;

data TempTable_AllSites;

 length name $ 32 varlabel $ 250;

 merge temptable_site: ;

 by varname;

 varname=trim(varname);

 varnum=input(put(varname,$ordxwalk.),8.);

 varlabel=put(varname,$labxwalk.);

 name=put(varname,$namexwalk.);

 format n1-n6 nmiss: comma7.0 name $32.;

 /* relabel */

 label name='Variable Name'

 varlabel='Variable Description'

 n1='# present'

 n2='# present'

 n3='# present'

 n4='# present'

 n5='# present'

 n6='# present'

 nmiss1='# missing'

 nmiss2='# missing'

 nmiss3='# missing'

 nmiss4='# missing'

 nmiss5='# missing'

 nmiss6='# missing';

run;

proc sort data=temptable_allsites;

 by varnum;

run;

proc print data=temptable_allsites (obs=25) noobs;

 var varnum name varlabel n1 nmiss1 n2 nmiss2 n3 nmiss3 n4 nmiss4 n5

nmiss5 n6 nmiss6;

format varlabel $50.;

title3 "All sites";

run;

12

Create a Spreadsheet with Missingness Report

ods listing close;

title1;

title2;

ods escapechar='^';

**;

*** Open the Excel Spreadsheet making sure to set options ***;

*** Column width to improve appearance ***;

*** Name the worksheet ***;

*** Sheet breaks set to none so tables follow each other ***;

**;

ods excel file="&outfolder.\Person_Missing.xlsx" style=styles.excel

 options(sheet_interval="none" embedded_titles="yes"

 sheet_name="PersonMissingness");

proc report nowd data=temptable_allsites

 style(report)=[cellpadding=3pt vjust=b]

 style(header)=[just=center font_face="Helvetica" font_size=8pt]

 style(lines)=[just=left font_face="Helvetica" font_size=8pt] split='|';

 columns ("^{style [just=l font_weight=bold font_size=8pt

background=ligr]Missingness by Site}" name varlabel)

 ("^{style [font_weight=bold font_size=8pt background=ligr]Site 1}"

n1 nmiss1)

 ("^{style [font_weight=bold font_size=8pt background=ligr]Site 2}"

n2 nmiss2)

 ("^{style [font_weight=bold font_size=8pt background=ligr]Site 3}"

n3 nmiss3)

 ("^{style [font_weight=bold font_size=8pt background=ligr]Site 4}"

n4 nmiss4)

 ("^{style [font_weight=bold font_size=8pt background=ligr]Site 5}"

n5 nmiss5)

 ("^{style [font_weight=bold font_size=8pt background=ligr]Site 6}"

n6 nmiss6)

 ;

 define name / style(COLUMN)={just=l font_face="Helvetica"

 font_size=8pt cellwidth=250 }

 style(HEADER)={just=l font_face="Helvetica"

 font_size=8pt };

 define varlabel / style(COLUMN)={just=l font_face="Helvetica"

 font_size=8pt cellwidth=400 }

 style(HEADER)={just=l font_face="Helvetica"

 font_size=8pt };

 define n1 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define nmiss1 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define n2 / style(COLUMN)={just=c font_face="Helvetica"

13

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define nmiss2 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define n3 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define nmiss3 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define n4 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define nmiss4 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define n5 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define nmiss5 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define n6 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

 define nmiss6 / style(COLUMN)={just=c font_face="Helvetica"

 font_size=8pt cellwidth=70 }

 style(HEADER)={just=c font_face="Helvetica"

 font_size=8pt };

run;

ods excel close;

ods listing;

14

Table 4. Type Agnostic Missingness Report

CONCLUSION

PROC FREQ with the NLEVELS option can provide an excellent broad stroke report on missingness in
your data sets. PROC REPORT can generate a traffic-lighted report based on the number of total levels
on each individual variable in the data set. Macro coding, the missing function, and proc univariate
outtables can produce a simple but effective table of presence and absence for an unlimited number of
variables without user intervention. We have found the Missing(ness) Piece!

REFERENCES

Boniface, Christopher J. and Wysocki, Janet L. April 2016. “You Can Bet On It, The Missing Rows are
Preserved with PRELOADFMT and COMPLETETYPES.” Proceedings of the SAS Global 2016
Conference, Las Vegas, NV: SAS Institute.

Bost, Christopher. April 2011. “To FREQ, Perchance to MEANS.” Proceedings of the SAS Global 2011
Conference, Las Vegas, NV: SAS Institute.

Fehd, Ronald J. April 2013. “Data Review Information: N-Levels or Cardinality Ratio.” Proceedings of the
SAS Global 2013 Conference, San Francisco, CA: SAS Institute.

Fehd, Ronald J. September 2022. “Calculating Cardinality Ratio in Two Steps.” Proceedings of the WUSS
2022 Conference, San Francisco, CA. https://www.lexjansen.com/wuss/2022/WUSS-2022-Paper-69.pdf

Jia, Justin and Lin, Amanda. April 2016. “Missing Values, They are NOT Nothing.” Proceedings of the
SAS Global 2016 Conference, Las Vegas, NV: SAS Institute.

Ramezani, Niloofar. April 2020. “Analyzing Non-normal Data: Application to Missing Data Problems.”
Proceedings of the SAS Global 2020 Conference, Virtual: SAS Institute.

Shan, Xia Ke and Bremser, Kurt. June 2020. “Five Simple Ways to Know If Variables in a Table Are All
Missing.” Proceedings of the SAS Global 2020 Conference, Virtual: SAS Institute.

Stutzman, Paul. June 2017. “Check Your Data: Tools for Automating Data Assessment.” Proceedings of
the PharmaSUG 2017 Conference, Baltimore, MD: PharmaSUG.

Zdeb, Mike. October 2016. “An Easy Route to a Missing Data Report with ODS+PROC FREQ+A Data
Step.” Proceedings of the 2016 Southeast SAS Users Group Conference, North Bethesda, MD: SESUG.

15

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the
author at:

Louise S. Hadden
Abt Global Inc.
Louise_hadden@abtassoc.com

Any brand and product names are trademarks of their respective
companies.

mailto:Louise_hadden@abtassoc.com

