PharmaSUG 2024 - Paper DV-127

The Missing(ness) Piece: Building Comprehensive, Data Driven
Missingness Reports and Codebooks Dynamically

Louise S. Hadden, Abt Global Inc.

ABSTRACT

Reporting on missing and/or non-response data is of paramount importance when working with
longitudinal surveillance, laboratory, serological, and medical record data. Reshaping the data over time
to produce "missingness" statistics is a tried and true technique, but through using metadata and little
known variations of familiar SAS procedures, combined with clever ODS reporting techniques, there's an
easier way. This paper and presentation will speed up your data cleaning reconnaissance and reporting,
and help you find your missing(ness) piece. Additionally, the same techniques will be used to
demonstrate how to create robust and utile data dictionaries..

INTRODUCTION

There are myriad ways to determine if you have missing data (PROC FREQ, PROC MEANS, PROC
SUMMARY, PROC UNIVARIATE, etc.). Most SAS® statistical procedures can report out on the number
of missing values. Depending on procedural options in PROC FREQ, missing values can be included, or
not, in counts of observations. Other statistical procedures simply drop records with missing values.
Reporting on missing values can occur via “list” output, procedural output or ODS output objects. Most
statistical procedures do not distinguish between distinct types of missing, but PROC FREQ and reporting
procedures do. This paper explores using PROC FREQ and PROC UNIVARIATE to report on missing
values by variable in a data set. This presentation is suitable for all levels, industries, and job roles.

PREPARING MISSING VALUES

It is common in survey output to assign codes such as 95 for other specify, 96 for other, 97 for refused,
98 for not answered, and 99 for not applicable. These values represent distinct types of missing.
Unfortunately, to statistical procedures, they are just numbers, and are treated as such. SAS can assign
up to 28 special missing value codes, ., ._, and .A through .Z. These represent extremely small numbers
that are greater than 0 — different extremely small numbers. SAS can and does distinguish between these
special missing values in reporting procedures and PROC FREQ. It is recommended that analysts recode
the 9x codes (and the like) to special missing values — for example, 95 (other) could be .O, and a valid
skip (determined by looking at a survey instrument or data dictionary for skip patterns) could be coded .V.
Knowing what data contains missing values is of the utmost importance. Note information on special
missing value recodes in both variable and value labels. PROC FORMAT will report on the different
missing values when used with reporting procedures and PROC FREQ. When the format below is applied
to a variable, .O, .M, and .V are all reported out separately.

proc format;

value varx f .0 = 'Other Specify'
.M = 'Missing'
.V = 'Valid Skip'
other = 'Non-Missing';
run;

PROC FREQ, ODS OUTPUT OBJECTS, AND NLEVELS

Regardless of how your data was prepared with respect to missing values, SAS has a sadly underutilized
variant of PROC FREQ that allows you to produce a missingness report with ease. This procedural option
is NLEVELS. If your data set has more than one special missing numeric value, the multiple values will be
reported as multiple “levels” of missing. Character variables have a single “level” of missing. The syntax
for PROC FREQ NLEVELS is as follows:

Ods trace;

proc freq data=int.&infi. nlevels;
ods output nlevels=nlevelsO;
tables all / noprint;

run;

ods output close;

ods trace off;

proc print data=nlevelsO (obs=5) noobs;
title 'Test nlevels output';
run;

proc contents data=nlevels(0 varnum;
run;

The only ODS output object that PROC FREQ NLEVELS produces is NLEVELS. The NLEVELSO data
set contains 5 variables: TABLEVAR (variable name), TABLEVARLABEL (variable label), NLEVELS
(number of different values, including missing), NMISSLEVELS (number of different missing values), and
NNONMISSLEVELS (number of different non-missing values). The “_all_” in the table statement means
that all variables in the input data set are tabulated automatically. Thus, you can generate a single line
with missing value statistics for each variable in a single report.

PROC FREQ with the _ALL_ tables option will report on variables in the order in which they entered the
PDV, so if a different order is desired, prepare your data set for reporting by reordering your variables.
Additionally, ensure that all variables are labelled prior to reporting.

The listing output from PROC FREQ NLEVELS is not ideal for reporting. We use a PROC REPORT step,
using the ODS OUTPUT object generated by the procedure.

In preparation for reporting, we set the NLEVELSO ODS output object, creating a temporary file for
printing. We label the variables, and create a non-printing variable that allows us to flag any variables
without any non-missing value levels.

data nlevels;
set nlevelsO;
label TableVar = "Variable Name"
TableVarLabel = "Variable Description"
NLevels = "# of Variable values"
NMissLevels = "# of Missing Value Levels"
NNonMissLevels = "# of Non- Missing Value Levels";
shadeit=(nnonmisslevels=0);
run;

We use PROC REPORT and ODS RTF to set up our Missingness report, highlighting a high degree of
missingness using the shadeit variable created above. Note that we could modify this using cardinality
ratios created from the NLEVELS, NMISSLEVELS, and NNONMISSLEVELS variables to refine our
reporting. SHADEIT is set as a non-printing variable in the DEFINE statement, but must be in the columns
statement in order for the conditional shading of the row to work. Note that this shading can also be
applied to single cells using options in the COMPUTE statement.

ods rtf file="Missingingness.rtf" path=odsout style=styles.pearl;

title2 "Missingness Report for &infi - N = &nobs";

proc report nowd data=nlevels
style (report)=[cellpadding=3pt vjust=Db]
style (header)=[just=center font face="Helvetica" font weight=bold
font size=8pt]

style(lines)=[just=left font face="Helvetica"] split='|";
columns TableVar TableVarLabel NLevels NmissLevels NNonMissLevels
shadeit;

define shadeit / display ' ' noprint;

define TableVar / style(COLUMN)={just=1 font face="Helvetica"
font size=8pt cellwidth=295 }
style (HEADER) ={just=1 font face="Helvetica" font weight=bold
font size=8pt };

define TableVarLabel / style (COLUMN)={just=1 font face="Helvetica"
font size=8pt cellwidth=395 }
style (HEADER) ={just=1 font face="Helvetica" font weight=bold
font size=8pt };

define Nlevels / style(COLUMN)={just=c font face="Helvetica"
foreground=navy
font size=8pt cellwidth=95 }
style (HEADER) ={just=c font face="Helvetica" font weight=bold
font size=8pt };

define NMissLevels / style(COLUMN)={just=c font face="Helvetica"
foreground=navy
font size=8pt cellwidth=95 }
style (HEADER) ={just=c font face="Helvetica" font weight=bold
font size=8pt };

define NNonMissLevels / style (COLUMN)={just=c font face="Helvetica"
foreground=navy
font size=8pt cellwidth=95 }
style (HEADER) ={just=c font face="Helvetica" font weight=bold
font size=8pt };

compute shadeit;

if (shadeit eq 1) then call

define (_row_, "STYLE", "STYLE=[BACKGROUND=PINK]") ;

endcomp;

run;

ods rtf close;

REPORT ON VARIABLE LEVELS

We are able to produce a report from a data set with thousands of variables with a few lines of PROC
FREQ and PROC REPORT code, instantly highlighting records for variables which may have a
missingness problem. Using the SHADEIT variable to screen, we could produce a report with variables
with only missing values to research.

of # of Non-

of Missing Missing
Variable Value Value
Variable Name Variable Description values Levels Levels
IN_DATA_EXTRCT_DT Mo 4: Date of data extraction 1 0 1
INF_IDENTIFIER1 Mo 4: Infant identifier-#1 1550 0 1550
IN_AMB_VISIT_DT Mo 4: Date of any ambulatory care visit, including 1 1 0
antenatal care, ED, telemedicine.
IN_CHLOROQ_END_DATE Mo 4: First administration of treatment - End Date: 1 0 1
Chloroquine Phosphate (Chloroquine)
IN_CHLOROQ_STRT_DATE Mo 4: First administration of treatment - Start Date: 1 0 1

Chloroquine Phosphate (Chloroquine)

Table 1. Missingness Report

NUMBER OF OBSERVATIONS & CARDINALITY

The number of observations in a file is an important datum that can be used to calculate numerous useful
statistics, for example, the cardinality ratio of each variable in a file. In order to obtain the N of a file, or a
series of files, we use a macro to grab the NOBS. There are many ways to determine the number of
observations. Since we analyze a number of different files, we use a macro driven solution to
accommodate that need.

smacro filecheck(inlib=out, inmem=recover surveillance é&delivdate.);

proc sql noprint;
create table filelistO as
select libname, memname, nobs
from dictionary.tables
where libname = upcase("&inlib");
quit;

data filelist;
set filelistO0 (where=(memname = upcase ("&inmem.")));
run;

$mend;
$filecheck (inlib=out, inmem=recover surveillance é&delivdate.);

data null ;

set filelist;

call symput('fileobs',trim(nobs));
run;

This macro is included in a larger program which calculates cardinality. Cardinality is defined as the
number of observations / nlevels. This program has a few additions to the code snippet we saw above,
namely the calculation of cardinality variables.

%include ".\INCLUDE Nobs.sas";
run;

data nlevels out.nlevels surveillance &delivdate.;
length cr type $ 12;
set nlevelsO;

label TableVar = "Variable Name"
TableVarLabel = "Variable Description"
NLevels = "# of Variable values"
NMissLevels = "# of Missing Value Levels"
NNonMissLevels = "# of Non- Missing Value Levels";

shadeit=(nnonmisslevels=0) ;

/* shades variables with NO non missing values */
nobs=&fileobs;
cardinality=nobs/nlevels;

label nobs = "# of Observations"

cardinality = "Cardinality Ratio";

select;
when (nlevels eq 1) cr type = '.unique';
when (nlevels gt 10) cr type = 'many';
otherwise cr type = 'few';

end;

label cr type='Cardinality Type';
run;

We then can produce a more robust missingness report.

ods rtf file="Missingness Report Surveillance &delivdate..rtf" path=odsout
style=styles.pearl;

title2 "Missingness Report for Deliverable Surveillance data set for
&delivdate";
proc report nowd data=nlevels

style (report)=[cellpadding=3pt vjust=Db]

style (header)=[just=center font face="Helvetica" font weight=bold
font size=8pt]
style(lines)=[just=left font face="Helvetica"] split='|";

columns TableVar TableVarLabel NLevels NmissLevels NNonMissLevels nobs
cardinality shadeit;
define shadeit / display noprint;
define TableVar / style(COLUMN)={just=1 font face="Helvetica"
font size=8pt cellwidth=250 }
style (HEADER) ={just=1 font face="Helvetica"

font weight=bold
font size=8pt };
define TableVarLabel / style(COLUMN)={just=1 font face="Helvetica"
font size=8pt cellwidth=375 }
style (HEADER) ={just=1 font face="Helvetica"
font weight=bold
font size=8pt };
define Nlevels / style(COLUMN)={just=c font face="Helvetica"
foreground=navy
font size=8pt cellwidth=75 }
style (HEADER) ={just=c font face="Helvetica"
font weight=bold
font size=8pt };
define NMissLevels / style(COLUMN)={just=c font face="Helvetica"
foreground=navy
font size=8pt cellwidth=75 }
style (HEADER) ={just=c font face="Helvetica"
font weight=bold
font size=8pt };
define NNonMissLevels / style (COLUMN)={just=c font face="Helvetica"
foreground=navy
font size=8pt cellwidth=75 }
style (HEADER) ={just=c font face="Helvetica"
font weight=bold
font size=8pt };
define Nobs / style(COLUMN)={just=c font face="Helvetica" foreground=navy
font size=8pt cellwidth=75 }
style (HEADER) ={just=c font face="Helvetica"
font weight=bold
font size=8pt };
define Cardinality / style(COLUMN)={just=c font face="Helvetica"
foreground=navy
font size=8pt cellwidth=110 }
style (HEADER) ={just=c font face="Helvetica"
font weight=bold
font size=8pt };

compute shadeit;
if (shadeit eq 1) then call

define (_row ,"STYLE","STYLE=[BACKGROUND=PINK]") ;
endcomp;

run;

ods _all close;

What does the cardinality ratio give us? My company uses it to determine how to report on variables.

of
#of #of Non-
Variabl | Missing | Missing | # of

e Value | Value | Observ | Cardinality
Variable Name Variable Description values | Levels | Levels | ations Ratio
target 4 target 1 Marshfield lab data: Lab-Swab 1: Target 4 3 1 2 304838 | 101612.67

Target: Name/type of target that the next 2 fields
(Cq and call) are referencing.

target_4_cq_1 Marshfield lab data: Lab-Swab 1- Target 4 Cq: 1309 1 1308 | 304838 | 23287853
'CQ’ value is the numeric data point that comes
from the PCR test for this target. There is a
cut-off that determines positivity vs negativity
which is assay specific.

target_4_call_1 Marshfield lab data: Lab-Swab 1: Target 4 Call: 3 1 2 304838 | 101612.67
The "call' is the written interpretation of the CQ
value

target_5_target_1 IMarshfield lab data: Lab-Swab 1- Targst 5 1 1 0 304838 304838

Target: Name/type of target that the next 2 fields
(Cq and call) are referencing.

target 5 cq 1 Marshfield lab data: Lab-Swab 1: Target 5 Cq: 1 1 0 304838 304838
'CQ' value is the numeric data point that comes
from the PCR test for this target. There is a
cut-off that determines positivity vs negativity
which Is assay specific.

target 5 call_1 Marshfield lab data: Lab-Swab 1 Target 5 Call: 1 1 0 304838 304838
The "call' is the written interpretation of the CQ
value.

assay_1 Marshfield lab data: Lab-Swab 1: This is the 6 1 5 304838 | 50806.333

name of the assay that was being used at
Marshfield when this test was conducted

Table 2. Missingness Report with Number of Observations and Cardinality

Cardinality Type
Cumulative | Cumulative
cr_type | Frequency | Percent | Frequency Percent
.unique 140 13.21 140 13.21
few 551 5198 691 65.19
many 369 34 81 1060 100.00

Table 3. Frequency on Cardinality Type

A cr_type of .unique is highly likely to represent identifiable data, and won'’t be reported on. A cr_type of
few will be handled with a frequency table, formatted or unformatted. A cr_type of many should be
handled with a summary / means / univariate.

TYPE AGNOSTIC MISSINGNESS REPORTING

Sometimes all that is required is a simple missing / presence report, by site. Perhaps you have thousands
of variables, of distinct types. SAS, the missing function, proc univariate outtable, and some clever macro
coding can produce exactly what is needed. The code snippets below provide the answer with an
informative table by site of missing and present variables, regardless of variable type.

MACRO DRIVEN CODE GENERATION

R R R S B R S B R B e I I I I I I I I I I I I I I I I I I e S I I b b I I b b b b b I b Sh b b dh b b Y
I

*** create contents to drive processing *k K,
**;

PROC SQL NOPRINT;

CREATE TABLE CONTS P AS

SELECT name format = $32. length = 32
, type format = $4. length = 4

, length format= 8. length = 8

, label format = $250. length = 250

, varnum format =8. length = 8

FROM DICTIONARY.COLUMNS

WHERE libname="INLIB" and memname=upcase ("&infi.");
QUIT;

proc print data=conts p (obs=5) noobs;
run;

proc sort data=conts p;

by type;
run;

Obtain Maximum N of Each Type & Create Macro Variables

*** get the maximum n of each type and create macro vars ***;

proc freq data=conts p;
tables type / noprint out=max type (keep=type count);
run;

data null ;
set max type;

if type='char' then do;
ccount=put (count, z4.);
CALL SYMPUTX ("cmax",ccount) ;
end;

if type='num' then do;
ncount=put (count, z4.);
CALL SYMPUTX ("nmax",ncount) ;
end;

run;

*** yse &cmax for character and &nmax for numeric ***;

**;

*** Tist variable names by type and number

* kK .
’

R R R S R R B R B I I I I I I I I I I S I I I b I I b b b I b b b b I b dh b 2 Y
I

data nums;
length name $ 32;

set conts p (where=(type='num'));
retain nnum O;
by type:;

if first.type then nnum=0;
nnum=nnum+1;

run;

data chars;
length name $ 32;

set conts p (where=(type='char'));
retain cnum O;
by type;

if first.type then cnum=0;
cnum=cnum+1;

run;

data dd.conts p;
length name $ 32;
set chars nums;
by type;

run;

Read in Crosswalks for Variable Names and Labels

proc import dbms=xlsx out = xwalk
datafile = "&outfolder.\xwalkformat p.xlsx" replace;
getnames=YES;

run;

data namexwalk (keep=fmtname type start label fmtdesc);

length start $ 8 name label $ 32;

set xwalk (keep=name type cnum label varnum rename=(type=vtype
label=vlabel));

fmtname = "namexwalk";

type='c"';

fmtdesc = "Use to convert cnnn/nnnn to correct variable names";
start = cats(vtype, 'var',put (cnum,z4.));

label = name;

run;

proc format library=work cntlin=namexwalk fmtlib;
run;

data ordxwalk (keep=fmtname type start label fmtdesc);
length start $ 8 ;

set xwalk (keep=name type cnum label varnum rename=(type=vtype
label=vlabel));

fmtname = "ordxwalk";

type='c"';

fmtdesc = "Use to convert cnnn/nnnn to obtain variable order";
start = cats(vtype, 'var',put (cnum,z4.));

label = varnum;

run;

proc format library=work cntlin=ordxwalk fmtlib;
run;

data labxwalk (keep=fmtname type start label fmtdesc):;

length start $ 8 vlabel label $ 250;

set xwalk (keep=name type cnum label varnum rename=(type=vtype
label=vlabel)) ;

fmtname = "labxwalk";

type='c"';

fmtdesc = "Use to convert cnnn/nnnn to obtain variable label";
start = cats(vtype, 'var',put (cnum,z4.));

label = vlabel;
run;

proc format library=work cntlin=labxwalk fmtlib;
run;

Create Macro Lists of Character and Numeric Variables

*k************************,-

*** create macro variables to list character and numeric variables KK,
**;

proc sgl noprint;

select name format = $32. length = 32 into :clist separated by
from conts p

where type='char';
quit;

proc sgl noprint;
select name format
from conts p
where type='num';
quit;

$32. length 32 into :nlist separated by ' '

Use the Missing Function to Create Numeric Representations of Character and Numeric
Variables

R R e S b I S b I S b I Sb b I b b S S I I S e S S I S S I S S S 2E e Sb b I S R IR Sb b I Sb b I Sb b I Sb b 3 Sb b S Jb I Sb 2b b Sb Sb I Sb b b Sb b I Sb b 3)
’

*** use missing function to create numeric reps of char and num vars KAK
**;

data temp;
set inlib.&infi;

array clist (*) &clist;
array cton (*) cvar0001 - cvar&cmax. ;

array nlist (*) &nlist;

array nton (*) nvar000l1 - nvar&nmax. ;
tempc=.;
tempn=.;

do i=1 to dim(clist);
tempc=missing (clist (i));
if tempc=0 then cton(i)=1;
else if tempc=1 then cton(i)=.;
end;

do j=1 to dim(nlist);
tempn=missing (nlist (j));
if tempn=0 then nton(j)=1;

else if tempn=1 then nton(j)=.;
end;
drop 1 73

run;

proc freq data=temp;
tables site;
run;

proc sort data=temp;
by site study id;
run;

Use PROC UNIVARIATE OUTTABLE to Create Missingness Summaries

KA A AR R AR A A A A AR A A A AR A AR A A A AR A A AR A AR A AR A A A A AR A Ak A Ak A Ak Ak k.
’

*** macro to process by site using univariate outtable xx*x;
**;

$macro outtable (site=1);

proc univariate data=temp (where=(site=&site))
outtable=TempTable Site&site (keep= var nobs nmiss
rename=(_var =varname nobs =né&site nmiss =nmissé&site)) noprint;
var cvar: nvar: ;

run;

proc sort data=temptable siteé&site;
by varname;
run;

proc print data=TempTable Siteé&site (obs=50) label noobs;
var varname né&site nmissé&site;
label varname='Variable';

title3 "Site &site";

run;

10

$mend;

I

%outtable (site=1)

Souttable (site=2);

Souttable (site=3);
()
()
()

’

$outtable (site=4
%outtable (site=5
%outtable (site=6

I

’

**;

*** combine site level runs together with two columns per site KA,
**;

data TempTable AllSites;
length name $ 32 varlabel $ 250;
merge temptable site: ;
by varname;

varname=trim (varname) ;
varnum=input (put (varname, Sordxwalk.),8.);
varlabel=put (varname, $labxwalk.) ;
name=put (varname, Snamexwalk.) ;

format nl-n6 nmiss: comma77.0 name $32.;
/* relabel */

label name='Variable Name'
varlabel="'Variable Description’
nl="'# present'
n2="'# present'
n3="'# present'
n4="# present'
n5='# present'
n6="# present'
nmissl="'# missing'
nmiss2="# missing'
nmiss3='# missing'
nmiss4='4# missing'
nmiss5='4# missing'
nmiss6="# missing';

run;

proc sort data=temptable allsites;
by wvarnum;
run;

proc print data=temptable allsites (obs=25) noobs;
var varnum name varlabel nl nmissl n2 nmiss2 n3 nmiss3 n4 nmiss4 nb5
nmiss5 n6 nmiss6;
format varlabel $50.;
title3 "All sites";
run;

11

Create a Spreadsheet with Missingness Report

ods listing close;
titlel;
title2;

ods

escapechar=""";

**;

* Kk %

* Kk %

* Kk %

* Kk

Open the Excel Spreadsheet making sure to set options
Column width to improve appearance

Name the worksheet

Sheet breaks set to none so tables follow each other

* kK .
I
* kK .
’
* kK .
I

* kK .
’

**;

ods excel file="&outfolder.\Person Missing.xlsx" style=styles.excel
options (sheet interval="none" embedded titles="yes"

sheet name="PersonMissingness");

proc report nowd data=temptable allsites
style (report)=[cellpadding=3pt vjust=b]

columns
background=ligr]Missingness by Site}" name varlabel)

(""{style
nl nmissl)
(""{style
n2 nmiss?2)
(""{style
n3 nmiss3)
(""{style
n4 nmiss4)
(""{style
n5 nmissbH)
(""{style
n6é nmiss6)
define
font size=8pt
define
font size=8pt
define
font size=8pt
define
font size=8pt
define

style (header)=[just=center font face="Helvetica"

style(lines)=[just=left font face="Helvetica"

(""{style

font size=8pt]

font size=8pt]

[Just=1 font weight=bold font size=8pt

[font weight=bold
[font weight=bold
[font weight=bold
[font weight=bold
[font weight=bold

[font weight=bold

font size=8pt
font size=8pt
font size=8pt
font size=8pt
font size=8pt

font size=8pt

font size=8pt cellwidth=250 }
style (HEADER) ={just=1 font face="Helvetica"

}s

font size=8pt cellwidth=400 }
style (HEADER) ={just=1 font face="Helvetica"

}i

font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"

}i

font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"

}i

12

background=ligr]Site
background=ligr]Site
background=ligr]Site
background=ligr]Site
background=ligr]Site

background=ligr]Site

name / style (COLUMN)={just=1 font face="Helvetica"

varlabel / style(COLUMN)={just=1 font face="Helvetica"

nl / style(COLUMN)={just=c font face="Helvetica"

nmissl / style(COLUMN)={just=c font face="Helvetica"

n2 / style(COLUMN)={just=c font face="Helvetica"

split="|";

1}m
2}
3}
ayn
53

6}"

define

define

define

define

define

define

define

define

define

run;

font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"
font size=8pt };
nmiss2 / style(COLUMN)={just=c font face="Helvetica"
font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"
font size=8pt };
n3 / style(COLUMN)={just=c font face="Helvetica"
font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"
font size=8pt };
nmiss3 / style(COLUMN)={just=c font face="Helvetica"
font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"
font size=8pt };
n4 / style(COLUMN)={just=c font face="Helvetica"
font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"
font size=8pt };
nmiss4 / style(COLUMN)={just=c font face="Helvetica"
font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"
font size=8pt };
n5 / style(COLUMN)={just=c font face="Helvetica"
font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"
font size=8pt };
nmiss5 / style(COLUMN)={just=c font face="Helvetica"
font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"
font size=8pt };
n6 / style(COLUMN)={just=c font face="Helvetica"
font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"
font size=8pt };
nmiss6 / style(COLUMN)={just=c font face="Helvetica"
font size=8pt cellwidth=70 }
style (HEADER) ={just=c font face="Helvetica"
font size=8pt };

ods excel close;

ods listing;

13

A B Formula Bar (@ D E F G H I J K L M Na

1 Missingness by Site Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 '
#

2 Missingness by Site Variable Description present missing present missing present missing present missing present missing present miss

3 study_id Admin: Study ID 609 0 71] 07 0 254] a70 0 890 0

4 site Admin: Study site 609 0 711 0 907 0 254 0 970 [} 890 0

5 study Admin: HR study 609 0 m (] 907 0 254 [970 0 890 0
[derived variable) Study participation status based on

B |der_study_part consent and §1 blood draw 609 0 71 (] 907 1] 1] 254 (] 970 1] 890 0
[derived variable] Study participation status based on

7 enroll_status consent and swab collection/active surveillance 609 0 711 (] 07 1] 254 D] 970 a 890 0
[derived variable] MMWR year and week of the first

8 suv_st_week surveillance record 520 89 658 53 872 35 249 5 898 72 832 5¢
[derived variable] MMWR year and week of the first

9 swab_st_week lab record 511 98 655 56 859 48 245 9 892 78 824 BE
[derived variable] First of either swab date or

10 der_surv_st_week completed any survey in study after enrollment 521 88 658 53 a72 35 249 5 901 89 864 2
[derived variable) Number of MMWR weeks with

11 der_n_surv surveiliance in the data 609 0 711 (] 907 1] 254 (] 970 1] 890 0w

PersonMissingness + HE | >
Ready {7 Accessibility: Good to go H b —-—a—+ 100%

Table 4. Type Agnostic Missingness Report

CONCLUSION

PROC FREQ with the NLEVELS option can provide an excellent broad stroke report on missingness in
your data sets. PROC REPORT can generate a traffic-lighted report based on the number of total levels
on each individual variable in the data set. Macro coding, the missing function, and proc univariate
outtables can produce a simple but effective table of presence and absence for an unlimited number of
variables without user intervention. We have found the Missing(ness) Piece!

REFERENCES

Boniface, Christopher J. and Wysocki, Janet L. April 2016. “You Can Bet On It, The Missing Rows are
Preserved with PRELOADFMT and COMPLETETYPES.” Proceedings of the SAS Global 2016
Conference, Las Vegas, NV: SAS Institute.

Bost, Christopher. April 2011. “To FREQ, Perchance to MEANS.” Proceedings of the SAS Global 2011
Conference, Las Vegas, NV: SAS Institute.

Fehd, Ronald J. April 2013. “Data Review Information: N-Levels or Cardinality Ratio.” Proceedings of the
SAS Global 2013 Conference, San Francisco, CA: SAS Institute.

Fehd, Ronald J. September 2022. “Calculating Cardinality Ratio in Two Steps.” Proceedings of the WUSS
2022 Conference, San Francisco, CA. https://www.lexjansen.com/wuss/2022/WUSS-2022-Paper-69.pdf

Jia, Justin and Lin, Amanda. April 2016. “Missing Values, They are NOT Nothing.” Proceedings of the
SAS Global 2016 Conference, Las Vegas, NV: SAS Institute.

Ramezani, Niloofar. April 2020. “Analyzing Non-normal Data: Application to Missing Data Problems.”
Proceedings of the SAS Global 2020 Conference, Virtual: SAS Institute.

Shan, Xia Ke and Bremser, Kurt. June 2020. “Five Simple Ways to Know If Variables in a Table Are All
Missing.” Proceedings of the SAS Global 2020 Conference, Virtual: SAS Institute.

Stutzman, Paul. June 2017. “Check Your Data: Tools for Automating Data Assessment.” Proceedings of
the PharmaSUG 2017 Conference, Baltimore, MD: PharmaSUG.

Zdeb, Mike. October 2016. “An Easy Route to a Missing Data Report with ODS+PROC FREQ+A Data
Step.” Proceedings of the 2016 Southeast SAS Users Group Conference, North Bethesda, MD: SESUG.

14

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the
author at:

Louise S. Hadden
Abt Global Inc.
Louise hadden@abtassoc.com

Any brand and product names are trademarks of their respective
companies.

15

"Hummmm?"

(2 <

. i

mailto:Louise_hadden@abtassoc.com

